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SUMMARY
CD137 is a costimulatory receptor expressed on natural killer cells, T cells, and subsets of dendritic cells. An
agonistic monoclonal antibody (mAb) against CD137 has been used to reduce tumor burden or reverse auto-
immunity in animal models and clinical trials. Here, we show that mice treated with an agonistic anti-CD137
mAb have reduced numbers of germinal center (GC) B cells and follicular dendritic cells (FDCs) in lymphoid
tissues, which impair antibody responses to multiple T-cell-dependent antigens, including infectious virus,
viral proteins, and conjugated haptens. These effects are not due to enhanced apoptosis or impaired prolif-
eration of B cells but instead correlate with changes in lymphoid follicle structure and GCB cell dispersal and
are mediated by CD137 signaling in CD4+ and CD8+ T cells. Our experiments in mice suggest that agonistic
anti-CD137 mAbs used in cancer and autoimmunity therapy may impair long-term antibody and B cell mem-
ory responses.
INTRODUCTION

Agonistic monoclonal antibodies (mAbs) targeting the costimu-

latory receptor CD137 enhance antibody-dependent cell-medi-

ated cytotoxicity by natural killer (NK) cells and proliferation,

functional activity, and survival of T cells.1 Based on these func-

tions and other pre-clinical studies,1–6 anti-CD137 mAbs have

been combined with chemotherapy and immunotherapy in hu-

man cancer clinical trials.1 Anti-CD137 mAbs also have been

evaluated in autoimmune disease models based on their ability

to induce tolerogenic dendritic cells (DCs) and regulatory

T cells (Tregs).7,8 Although early-stage clinical trials have shown

promising antitumor effects, dose-dependent liver toxicity of

anti-CD137 mAb has been reported.9 Moreover, it remains

unclear whether anti-CD137-based drugs could have additional

effects of immune activation, which could impact their wide-

spread use.

Germinal centers (GCs) in lymphoid tissues are complex

anatomical sites where somatic hypermutation and antibody iso-

type switching in B cells occurs. GC B cells proliferate exten-
Cell R
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sively and traffic through the light and dark zones as part of an

antigen-driven affinity-based clonal selection and expansion

process (reviewed in Mesin et al.10). In the light zone, GC B cells

recognize antigens on follicular DCs (FDCs) and undergo selec-

tion after antigen internalization, processing, and presentation.

GC B cells interact with cognate follicular helper T (Tfh) cells,

which themselves are instructed by follicular regulatory T (Tfr)

cells.11 Although some GC B cells that express B cell receptors

(BCRs) with a higher affinity for antigens receive T cell help, re-

enter the dark zone, selectively expand, and undergo somatic

hypermutation, lower affinity GC B cells without T cell help often

apoptose.12 The GC reaction culminates in the generation of

high-affinity memory B cells (MBCs) and terminally differentiated

long-lived plasma cells (LLPCs), the latter of which durably

secrete antibody.

Previously, while evaluating anti-CD137 mAb as a possible

therapy for chronic virus infection in mice, we unexpectedly

observed reduced numbers of GC B cells.13 Here, we evaluated

the consequences of agonistic anti-CD137 mAb treatment on

antibody and B cell responses in the context of immunization
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Figure 1. Anti-CD137 mAb Treatment Reduces the Number of GC B Cells, Antigen-Specific MBCs, and LLPCs when Given before GC

Formation

(A–G) Four-week-old WTC57BL/6 male mice were inoculated with 103 focus-forming units (FFU) of CHIKV (A). At 2 dpi, 400 mg of agonistic anti-CD137 or isotype

control mAb was administered by an i.p. route. The numbers of total CD19+ B cells (B) and PNA+CD95+ or GL7+CD95+ GC B cells (C and D) in the spleen at 7 and

14 dpi were analyzed by flow cytometry. (C) Representative dot plots of GC B cells are shown. At day 90 dpi, spleen and bone marrow were harvested to assess

antigen-specific MBCs (E) and LLPCs (F). (G) Serum was harvested at 7, 14, 30, 50, 65, and 90 dpi, and anti-CHIKV IgG titers were measured.

(H–J) Four-week-old WT C57BL/6 male mice were inoculated with 103 FFU of CHIKV (H). At 14 dpi, 400 mg of agonistic anti-CD137 or isotype control mAb was

administered by an i.p. route. The numbers of total CD19+ B cells (I) and PNA+CD95+ GC B cells (J) in the spleen at 28 dpi were analyzed by flow cytometry.

(legend continued on next page)
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or virus infection in mice. During infection with chikungunya virus

(CHIKV), an emerging alphavirus, anti-CD137 mAb treatment re-

sulted in reduced numbers of GC B cells, MBCs, and LLPCs.

Administration of agonistic anti-CD137 mAb also dampened

the serum antibody response in mice immunized with other

T-cell-dependent antigens (influenza virus hemagglutinin

[HA] and 4-hydroxy-3-nitrophenylacetyl hapten [NP]-conjugated

keyhole limpet hemocyanin [KLH]) but not with a T-cell-indepen-

dent antigen (NP-Ficoll) or at homeostasis. The reduction of GC

B cell numbers caused by anti-CD137 mAb was associated with

altered GC architecture; attrition of FDCs, which are critical for

GC formation and maintenance; and dispersal of GC B cells. In-

hibition of GC formation by anti-CD137 mAb required cell-

intrinsic signaling of T cells. Thus, in mice, anti-CD137 mAb

treatment results in the activation of T cells that impairs GC

development and MBC formation and inhibits the induction of

long-lived antigen-specific antibody responses.

RESULTS

Anti-CD137 mAb Treatment Diminishes GCs and
Antigen-Specific MBCs and LLPCs
Because we previously observed diminished GC numbers in

CHIKV-infected mice treated with anti-CD137 mAb,13 we evalu-

ated the effect on long-term MBC responses. Four-week-old

C57BL/6 male mice were inoculated subcutaneously (s.c.) in

the foot with CHIKV (day 0) and then injected by an intraperito-

neal (i.p.) route with anti-CD137 mAb at 2 days postinfection

(dpi) (Figure 1A). At 14 dpi, mice treated with anti-CD137 mAb

had slightly reduced numbers of CD19+ B cells in the spleen

compared to isotype control mAb-treated animals (1.4-fold,

p < 0.01; Figure 1B). However, the number of GC B cells (as

determined by either peanut agglutinin lectin [PNA]+CD95+ or

GL7+CD95+ staining) in the spleen at 14 dpi was reduced to a

greater extent (33.3- to 43.3-fold, p % 0.0001; Figures 1C and

1D). To assess the long-term consequence on the humoral

response, serum was obtained at 7, 14, 30, 50, 65, and 90

dpi, and the spleen and bone marrow were harvested at 90

dpi to profile antigen-specific MBCs and LLPCs (Figure 1A).

Anti-CD137 mAb-treated mice had lower numbers of CHIKV-

specific MBCs in the spleen (20.6-fold, p < 0.001) and LLPCs

in the bone marrow (43.5-fold, p < 0.001) than isotype control

mAb-treated animals (Figures 1E and 1F). Serum anti-CHIKV

immunoglobulin G (IgG) levels also were reduced in anti-

CD137 mAb-treated mice compared to isotype control mAb-

treated animals beginning at 14 dpi (4.9- to 33.1-fold, p %

0.0001; Figure 1G).

To test the effect of anti-CD137mAb on a later stage of the GC

reaction, we treated CHIKV-infected mice with anti-CD137 mAb

at 14 dpi and analyzed cell numbers at 28 dpi (Figure 1H).
(K–N) Four-week-old WT C57BL/6 male mice were inoculated with 103 FFU of CH

administered by an i.p. route. At 90 dpi, spleen and bonemarrowwere harvested t

titers (N) also were measured.

(O) Four-week-old naive WT C57BL/6 male mice were administered with 400 mg o

PNA+CD95+ GC B cells in the spleen at 5 days after treatment were analyzed by fl

and dotted lines denote the limit of detection of the assay. Data are pooled from 2

titers where two-way ANOVA with Sidak post-test was used: *p < 0.05; **p < 0.0
Although the number of total CD19+ B cells did not change (Fig-

ure 1I), the number of PNA+CD95+ GC B cells in anti-CD137

mAb-treated mice was decreased (142-fold, p % 0.0001)

compared to isotype control mAb-treated animals (Figure 1J).

We then evaluated the effect of anti-CD137 mAb on an estab-

lished MBC response. CHIKV-infected mice were treated with

anti-CD137 mAb at 56 dpi, a time when the GC reaction is fully

established,10,14 and spleen and bone marrow were harvested

at 90 dpi for analysis (Figure 1K). Anti-CD137 mAb-treated

mice showed similar numbers of CHIKV-specific MBCs and

only slightly reduced numbers (2-fold, p < 0.01) of CHIKV-spe-

cific LLPCs compared to isotype control mAb-treated animals

(Figures 1L and 1M). Correspondingly, serum anti-CHIKV IgG

levels at 90 dpi were similar between mice treated at 56 dpi

with anti-CD137 or isotype control mAb (Figure 1N). These

data suggest that anti-CD137 mAb treatment inhibits the devel-

opment of MBCs and LLPCs but has a minimal effect on the

maintenance of established MBC compartments. In naive path-

ogen-free mice, anti-CD137 mAb treatment did not substantially

alter the relatively low number of GC B cells seen at homeostasis

(Figure 1O).

Anti-CD137 mAb Treatment Reduces T-Cell-Dependent
but Not -Independent Antibody Responses
We evaluated the effect of anti-CD137 mAb treatment after im-

munization with model T-cell-dependent (NP-KLH) and T-cell-

independent (NP-Ficoll) antigens.15 Four-week-old C57BL/6

male mice were immunized by the i.p. route with NP-KLH or

NP-Ficoll and then treated with anti-CD137 mAb 2 days later.

Sera were obtained at multiple time points postimmunization,

and at the last time point, bone marrow was harvested to profile

LLPCs (Figures 2A and 2F). Spleens from a separate cohort of

mice were harvested at 30 days postimmunization to quantify

MBCs. Anti-CD137 mAb treatment reduced the number of

GC B cells (18-fold, p < 0.01) and NP-specific IgG+ MBCs

(7-fold, p < 0.001) at 14 and 30 days postimmunization, respec-

tively, in mice administered NP-KLH (Figures 2B and 2C). The

number of NP-specific LLPCs (12-fold, p < 0.0001) also was

reduced at 130 days postimmunization (Figure 2D). Corre-

spondingly, serum anti-NP IgG levels were diminished in anti-

CD137 mAb-treated mice beginning at 28 days postimmuniza-

tion (Figure 2E). In NP-Ficoll-immunized mice, the numbers of

NP-specific IgM+ plasmablasts at days 3 and 7, NP-specific

IgM+ MBCs at day 30, and IgG+ LLPCs at day 130 were equiv-

alent between anti-CD137 and isotype control mAb-treated

groups (Figures 2G–2I). Consistent with these data, serum

anti-NP IgM and IgG levels generally were similar whether ani-

mals received anti-CD137 or not (Figures 2J and 2K). Thus,

anti-CD137 treatment affects B cell responses that require

T-cell-dependent help.
IKV (K). At 56 dpi, 400 mg of agonistic anti-CD137 or isotype control mAb was

o assess antigen-specificMBCs (L) and LLPCs (M). At this time, anti-CHIKV IgG

f agonistic anti-CD137 or isotype control mAb by an i.p. route. The numbers of

ow cytometry. Symbols represent individual mice, bars indicate median values,

to 4 independent experiments (Mann-Whitney test, except for serum antibody

1; ***p < 0.001; ****p < 0.0001; n.s., not significant).
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Figure 2. Anti-CD137 mAb Treatment Dampens T-Cell-Dependent Antibody Responses

(A–F) Four-week-old C57BL/6 male mice were injected by i.p. route with 5 mg of NP-KLH (A) or 10 mg of NP-Ficoll (F). At 2 dpi, 400 mg of agonistic anti-CD137 or

isotype control mAb was administered by an i.p. route. (B–E) After immunization with NP-KLH, the number of PNA+CD95+ GC B cells (B) in the spleen at 14 days

postimmunization was analyzed by flow cytometry. At 30 days postimmunization, antigen-specific MBCs were harvested from a separate set of animals and

profiled (C). At day 130, bone marrow was harvested to profile antigen-specific LLPCs (D). Serum was collected at 7, 14, 21, 28, 35, 56, 76, 96, and 130 days

postimmunization, and anti-NP IgG (E) was measured.

(G–K) After immunization with NP-Ficoll, spleens were harvested at day 3 and 7 to assess antigen-specific IgM+ plasmablasts (G). At 30 days postimmunization,

antigen-specific IgM+ MBCs were harvested and profiled (H). Bone marrow was harvested at day 130 to assess antigen-specific IgG+ LLPCs (I). Serum was

collected at 7, 14, 21, 28, 35, 56, and 130 days postimmunization, and anti-NP IgM (J) and IgG (K) were measured. Symbols represent individual mice, and bars

indicate median values, except for serum antibody titers where bars indicate mean values. The IgM and IgG ELISA binding data were analyzed by subtracting the

optical density (OD) of naive serum from the OD of serum from immunized animals. Dotted lines represent the baseline number of plasmablasts that secrete NP-

binding natural IgM in naive control mice (G) or limit of detection (E, J, and K). Data are pooled from 3 independent experiments (Mann-Whitney test, except for

serum antibody titers where two-way ANOVA with Sidak post-test was used: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; n.s., not significant).
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Figure 3. Anti-CD137 mAb Treatment Has a Minimal Effect on Apoptosis and Proliferation of GC B Cells

Four-week-oldWTC57BL/6male mice were inoculated with 103 FFU of CHIKV. At 2 dpi, 400 mg of agonistic anti-CD137 or isotype control mAbwas administered

by an i.p. route. The number of CD86hiCXCR4low light zone B cells (A and B) and CD86lowCXCR4hi dark zone B cells (A and C); and the percentage of annexin V+

Viability dye� early-stage apoptotic light zone (D and E) and dark zone B cells (G), annexin V+ Viability dye+ late-stage apoptotic light (D and F) and dark zone B

cells (H), and Brdu+ proliferating light (M and N) and dark zone B cells (P) in the spleen at 4, 5, 6, and 7 dpi were analyzed by flow cytometry. Representative dot

plots of light and dark zone B cells (A), apoptotic light zone B cells (D), and proliferating light zone B cells (M) are shown. The total numbers of apoptotic (I–L) and

proliferating GC B cells (O and Q) at 7 dpi are shown. Symbols represent individual mice, and bars indicate median values, except for percentages where bars

indicatemean values. Data are pooled from 3 independent experiments (Mann-Whitney test: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; n.s., not significant).

See also Figure S1.
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Apoptosis and Proliferation of GC B Cells Are Minimally
Affected by Anti-CD137 mAb Treatment
As reductions in GC B cells associated with anti-CD137 mAb

treatment might be due to increased cell death, we stained GC

B cells with annexin V, which recognizes phosphatidylserine on

the plasma membrane of apoptotic cells. In this experiment,

CHIKV-infected mice were treated with anti-CD137 mAb at

2 dpi. The total number of CD86hiCXCR4lo light zone and
CD86loCXCR4hi dark zone B cells were reduced slightly at

5 dpi (1.7-fold, p < 0.01; 1.5-fold, p < 0.01, respectively) but

more so at 7 dpi (2.2-fold, p < 0.0001; 5.8-fold, p < 0.0001,

respectively) in anti-CD137 mAb-treated mice compared to iso-

type control mAb-treated animals (Figures 3A–3C). However, the

percentage of annexin V+ Viability dye� early-stage apoptotic

GC B cells in light or dark zone was similar between anti-

CD137 and isotype control mAb-treated animals (Figures 3D,
Cell Reports Medicine 1, 100035, June 23, 2020 5



Figure 4. Anti-CD137 mAb Results in Disorganization of B Cell Follicle Architecture in the Spleen
Four-week-oldWTC57BL/6malemicewere inoculatedwith 103 FFU of CHIKV. At 2 dpi, 400 mg of agonistic anti-CD137 or isotype control mAbwas administered

by an i.p. route. Spleens were harvested at 6 dpi (A–D), 7 dpi (E and F), and 14 dpi (I–M) for imaging. (A–D) FDCs (green) were stained for CD21/35; IgD+ B cells

(red); and T cell zone (turquoise), CCL21. (B and D) Insets of the respective dotted boxes. (E and F) FDCs (green) were stained for CD21/35; IgD+ B cells (red); and

CD4+ T cells (snow). White scale bars indicate 50 mm. Yellow arrows indicate IgD+ B cells surrounding FDCs, and white arrows indicate IgD+ B cells at the CCL21+

T cell zone border. (G and H) The number of CD45�CD21/35+CD54+ FDCs in the spleen at 7 and 14 dpi was analyzed by flow cytometry. (G) Representative flow

cytometry dot plots of FDCs are shown. (I) B cells (blue) were stained for B220; FDCs (green), CD21/35; and GC B cells (snow), GL7. White scale bars indicate

(legend continued on next page)
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3E, and 3G). Anti-CD137 mAb treatment also did not alter the

percentage of annexin V+ Viability dye+ late-stage apoptotic/

necrotic GC B cells in the light or dark zones (Figures 3F and

3H). At 7 dpi, the numbers of early-stage apoptotic GC B cells

in the light zone and late-stage apoptotic/necrotic GC B cells

in the light and dark zones were similar between anti-CD137

and isotype control mAb-treated animals, although early-stage

apoptotic GC B cells in the dark zone were reduced slightly after

anti-CD137 mAb treatment (Figures 3I–3L). Overall, anti-CD137

mAb treatment does not appear to cause GC B cell deficits by

globally promoting cell death.

To determine the effect of anti-CD137 treatment on GC B cell

proliferation, we injected 5-bromo-20-deoxyuridine (Brdu) into

CHIKV-infected mice and measured incorporation by GC B

cells. The percentage of Brdu+ proliferating GC B cells was

similar between animals treated with anti-CD137 and isotype

control mAb except for small differences at 4 and 5 dpi (Figures

3M, 3N, and 3P). However, at 7 dpi, anti-CD137 mAb treatment

reduced the overall number of proliferating GC B cells due to the

decrease in the total number of cells at this time point (Figures

3O and 3Q). We also assessed whether there was any bias to-

ward reducing the percentage of antigen-specific GC B cells

by incubating cells with CHIKV-like particles (CHIK VLPs16).

The percentage of CHIKV-specific GC B cells was comparable

between anti-CD137 mAb-treated and isotype control mAb-

treated mice except for small differences at 5 dpi (Figures S1A

and S1B).

Anti-CD137 mAb Treatment Alters B Cell Follicle
Architecture
To examine whether anti-CD137 mAb affects the anatomic

structures of the spleen, we performed immunofluorescence

staining at 6 (Figures 4A–4D), 7 (Figures 4E and 4F), and 14 (Fig-

ure 4I) dpi. At 6 dpi, in isotype control mAb-treated mice, we

observed IgD+ B cells surrounding CD21/35+ FDCs and some

IgD+ B cells at the border of the CCL21+ T cell zone (Figures

4A and 4B). However, in anti-CD137 mAb-treated animals, the

localization of IgD+ B cells at the T cell zone border was altered

(Figures 4C and 4D). At 7 dpi, IgD+ B cells surrounded FDCs in

the light zone in isotype control mAb-treated mice (Figure 4E),

whereas in anti-CD137 mAb-treated animals, IgD+ B cells

covered the FDC area (Figure 4F).

We next determined whether anti-CD137 mAb treatment

altered the number of FDCs in the spleen. Flow cytometry anal-

ysis revealed that the number of CD45�CD21/35+CD54+ FDCs

was comparable at 7 dpi but reduced at 14 dpi in anti-CD137

mAb-treated mice (17-fold, p < 0.0001; Figures 4G and 4H).

Immunofluorescence microscopy confirmed that at 14 dpi the

numbers of FDCs and GC B cells were decreased and/or

dispersed in anti-CD137mAb-treatedmice compared to isotype

control mAb-treated animals (Figures 4I–4L). In the context of

antigen stimulation, FDCs in secondary B cell follicles upregulate
500 mm or 100 mm (insets). Each symbol represents an individual FDC-contain

Quantification was performed for FDC area per FDC-containing-follicle (J), distanc

FDC (L). (M) Left and middle: FDCs (blue) were stained for CD21/35; VCAM-1 (re

FDCs (red). White scale bars indicate 200 mm or 50 mm (insets). The images are r

Whitney test: ***p < 0.001; ****p < 0.0001; n.s., not significant).
the expression of ICAM-1 (CD54) and VCAM-1 (CD106), which

support integrin- (aLb2 (CD11a/CD18) and a4b1 (CD49d/

CD29))-mediated interactions with GC B cells.17 As expected,

at 14 dpi, in isotype control mAb-treated mice, VCAM-1 was ex-

pressed by CD21/35+ FDCs, and this was associated with coloc-

alization of GL7+ GC B cells (Figure 4M). In contrast, CD21/35+

FDCs in anti-CD137 mAb-treated animals did not express

VCAM-1 or colocalize with GL7+ GC B cells (Figure 4M).

Loss of GC Formation after Agonistic Anti-CD137 mAb
Treatment Requires T-Cell-Intrinsic Signaling
We first evaluated a possible role of CD137 signaling on stromal

cells including FDCs, by transplanting wild-type (WT) or

CD137�/� bone marrow into irradiated CD137�/� mice (Fig-

ure 5A) and confirming reconstitution (Figure 5B). Anti-CD137

mAb treatment reduced the number of GC B cells in mice

receiving WT but not CD137�/� bone marrow (Figure 5C). For

the reciprocal experiment, T cell receptor (TCR)bd�/� mice

were used as recipients because some T cell subsets (e.g., nat-

ural killer T and memory T cells) in WT recipients are radioresist-

ant18 and we wanted to deplete endogenous T cells completely

(Figure 5D). Anti-CD137 mAb treatment reduced the number of

GC B cells in TCRbd�/� mice receiving WT but not CD137�/�

bone marrow (Figure 5E). These experiments suggest that

CD137-mediated signaling in radiosensitive, hematopoietic cells

is required to reduce the number of GC B cells.

T cells are one of the principal immune cell subsets that ex-

press CD137 in the spleen of CHIKV-infected mice at 2 dpi.13

To test whether anti-CD137 mAb treatment reduced the number

of GC B cells through CD137 signaling in T cells, we adoptively

transferred into recipient TCRbd�/� mice combinations of

CD4+ and CD8+ T cells isolated fromWT or CD137�/� mice (Fig-

ure 5F). Anti-CD137mAb treatment reduced the number of GC B

cells in mice receiving WT CD4+ T cells + WT CD8+ T cells,

CD137�/� CD4+ T cells + WT CD8+ T cells, or WT CD4+

T cells + CD137�/� CD8+ T cells (15.0- to 20.5-fold, p < 0.001)

but not in mice receiving CD137�/� CD4+ + CD137�/� CD8+

T cells (Figure 5G). Thus, CD137-mediated signaling in either

CD4+ or CD8+ T cells is required to inhibit GC B cell production.

Anti-CD137 mAb Treatment Promotes Proinflammatory
Signatures in Cycling CD8+ T Cells, Neutrophils, and
Differentiating Monocytes
To define global transcriptional changes in lymphoid tissues of

mice treated with anti-CD137 mAb, we performed single-cell

RNA sequencing (scRNA-seq) on splenocytes harvested from

CHIKV-infected mice during the acute phase of infection (3

and 7 dpi). Immune cell subsets were identified by their cell-

type-specific gene expression: CD3e (T cells), Ncr1 (NK cells),

CD79a (B cells), Flt3 (DCs),Sdc1 (plasmablasts),Adgre1 (macro-

phages), S100a8 (neutrophils), and Ccr2/Ly6c2 (monocytes)

(Figure S2A).
ing follicle (J), GC B cell (K), or spleen (L), and bars indicate mean values.

e between the closest GCB cells (K), andGCBcells greater than 10 mm from an

d); merge (white). (M) Right: GC B cells (white) were stained for GL7; VCAM-1+

epresentative of 3 spleens per group from 2 independent experiments (Mann-
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Figure 5. Cell-Intrinsic CD137 Signaling in CD4+ or CD8+ T Cells Is Required for Anti-CD137 mAb-Mediated Inhibition of the GC Reaction

Four-week-old CD137�/� (A) or TCRbd�/� (D) micewere irradiated and then received bonemarrow cells fromWTor CD137�/�mice. After 8 weeks, recipient mice

were inoculated with 103 FFU of CHIKV. At 2 dpi, 400 mg of agonistic anti-CD137 or isotype control mAb was administered by an i.p. route. (B) Immune cell

reconstitution was confirmed in recipient mice. The number of PNA+CD95+ GC B cells (C, E, and G) in the spleen at 14 dpi was determined. (F and G) Four-week-

old TCRbd�/� mice were administered 7.1 3 106 WT CD4+ T cells + WT CD8+ T cells, WT CD4+ T cells + CD137�/� CD8+ T cells, CD137�/� CD4+ T cells + WT

CD8+ T cells, or CD137�/� CD4+ T cells + CD137�/� CD8+ T cells by an i.v. route. Five days later, recipient mice were inoculated with 103 FFU of CHIKV. At 2 dpi,

400 mg of agonistic anti-CD137 or isotype control mAb was administered by an i.p. route. Symbols represent individual mice, and bars indicate median values.

Data are pooled from 3 to 4 independent experiments (Mann-Whitney test: ***p < 0.001; ****p < 0.0001; n.s., not significant).
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Most cells expressing Tnfrsf9, the gene encoding CD137,

were NK and T cells (Figure S2B), which is consistent with results

of our prior staining experiments by flow cytometry.13 NK and

T cells were reclustered to identify different cell subsets (e.g.,

NK cells, NKT cells, CD4+ and CD8+ T cells, and activated

T cells) (Figures S2C and S2D). Among activated T cells, the fre-

quency of cycling CD8+ T cells, characterized by the expression

ofCcnb2,Ccna2,Cdca3, andMki67 (Figure S3A), was increased

in anti-CD137 mAb-treated mice compared to isotype control

mAb-treated animals at 7 dpi. The cycling CD8+ T cells and NK

cells showed a proinflammatory and cytolytic signature with

high transcript levels of Gzma, Gzmb, Gzmk, and Ccl5 (Figures

S3B and S3C). We also observed an expansion of myeloid cell

subsets with proinflammatory signatures in anti-CD137 mAb-

treated mice. For example, a subset of S100a8/Mmp9-express-

ing neutrophils (Figures S3D and S3E) expressed Cxcl2, Il1b,

Ccl6, Csf1, Tnf, Tnfsf14, and Il15 at higher levels at 7 dpi in

anti-CD137 mAb-treated mice than the controls (Figures S3F

and S3G). Clustered with the Ccr2-expressing monocytes

were differentiating monocytes expressing Spic, a marker of

red pulp macrophages19 (Figures S3H and S3I). Differentiating
8 Cell Reports Medicine 1, 100035, June 23, 2020
monocytes persisted in anti-CD137 but not isotype control

mAb-treatedmice at 7 dpi and expressed higher transcript levels

of the chemokines Cxcl10, Cxcl9, Ccl2, Cxcl16, and Ccr5 (Fig-

ures S3J and S3K). Thus, scRNA-seq analysis revealed an

expansion of several lymphoid and myeloid cell populations

with proinflammatory signatures in anti-CD137 mAb-treated

mice.

Anti-CD137 mAb Treatment Alters the Number of Tfh,
Regulatory T, and Tfr Cells
scRNA-seq analysis revealed an activated CD4+ T cell subset

expressing genes (Cxcr5 and Il21) characteristic of Tfh cells (Fig-

ure S4A).20 Both scRNA-seq and flow cytometric data showed

that at 7 dpi anti-CD137mAb treatment resulted in a reduced fre-

quency and number of CXCR5hiPD-1hi GC Tfh cells21–23 (2.1-

fold, p < 0.0001) (Figures S4B and S4C), which are essential

for GC maintenance and affinity maturation.12,24 We assessed

whether the decreased number of GC Tfh cells in anti-CD137

mAb-treated mice was linked to the reduction of GC B cells.

We rescued the number of GC Tfh cells by administering inter-

leukin-2 (IL-2)-depleting and CTLA-4-blocking mAbs: IL-2
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regulates Tfh cell differentiation by negatively modulating Bcl6

expression,25 and CTLA-4 regulates Tfh cell differentiation by

controlling the strength of CD28 signaling.26 Combination treat-

ment with IL-2-depleting and CTLA-4-blocking mAbs increased

the number of GC Tfh cells in mice treated with anti-CD137 mAb

to levels similar to those treatedwith isotype control mAbwithout

treatment (Figure S4D). However, this treatment did not restore

the number of GC B cells in anti-CD137 mAb-treated mice (Fig-

ure S4E). Thus, the decreased number of GC Tfh cells associ-

ated with anti-CD137 mAb treatment did not alone mediate the

reduction in GC B cells.

scRNA-seq analysis also showed that anti-CD137 mAb treat-

ment increased the proportion of CD4+ and CD8+ T cells ex-

pressing Foxp3 (Figures S5A and S5C). Flow cytometric analysis

at 2 dpi showed that most CD4+ T cells expressing CD137 were

FoxP3+ Tregs (Figure S5D). Moreover, agonistic anti-CD137

mAb treatment increased the number and frequency of

CD4+FoxP3+ Tregs (Figures S5E–S5G), CD4+CXCR5hiPD-1hi-

FoxP3+ Tfr cells (Figures S5H and S5I), and CD8+FoxP3+

T cells (Figures S5J and S5K). Because Tfr cells can modulate

GC responses,11 we used an adoptive transfer approach to

assess whether the increased number of Tfr cells in anti-

CD137 mAb-treated mice caused the reduction in GC B cells.

T cells from CD137�/� mice and FoxP3+ T cells sorted from

FoxP3-GFP reporter mice weremixed and transferred into recip-

ient TCRbd�/� mice (Figure S5L). Although Tregs and Tfr cells

were reconstituted in recipient mice (Figure S5M), anti-CD137

mAb treatment failed to reduce the number of GC B cells at 14

dpi (Figure S5N). Thus, CD137 signaling exclusively on Tregs

and Tfr cells among all T cell populations was not sufficient for

anti-CD137 mAb-mediated reduction of GC B cells.

Anti-CD137 mAb Treatment Increases the Number of
Antigen Nonspecific Plasmablasts and Minimally Alters
BCR Usage
B cells were reclustered to identify different cell subsets (e.g.,

follicular B cells, marginal zone B cells, plasmablasts, and

cycling B cells) (Figures S2C and S2D). Transcriptional analysis

suggested that plasmablasts genes (Xbp1, Irf4, and Prdm1)

were more abundant in anti-CD137 and isotype mAb-treated

mice at 7 dpi than naive animals but more so in anti-CD137

mAb-treated animals (Figures 6A and 6B). Indeed, flow cytome-

try results of splenocytes showed that in anti-CD137 mAb-

treated mice the total number of plasmablasts was increased

at 7 dpi (2.1-fold, p % 0.05) but reduced at 14 dpi (2.9-fold,

p % 0.01) (Figures 6C and 6D). In naive mice, anti-CD137 mAb

treatment did not alter the number of plasmablasts in the spleen

(Figure 6E).

During a primary GC reaction, naive B cells that bind to

cognate antigens undergo somatic hypermutation and clonal se-

lection, which biases the use of BCR genes in the pool of re-

sponding cells.27 Because anti-CD137 mAb treatment disrupted

the GC reaction, we evaluated whether anti-CD137 mAb treat-

ment altered B cell clonality by analyzing the single-cell V(D)J se-

quences at 0 and 7 dpi. Overall, the BCR gene usage was similar

between anti-CD137 mAb- and isotype control mAb-treated

mice. Among the IgG clonotypes, Igh2c was used dominantly

in both groups but not in naive animals (Figures S6A–S6D). There
was bias in the use of Ighv1-80 heavy chains joined with Igkv5-39

or Igkv5-43 light chains in both anti-CD137 and isotype control

mAb-treated CHIKV-infected mice but not in naive animals (Fig-

ures S6A–S6C), suggesting that these genes were selected dur-

ing acute CHIKV infection. There were minimal differences in V

gene use of lambda light chains or J gene use among anti-

CD137 and isotype control mAb-treated CHIKV-infected mice

and naive animals (Figures S6A and S6D). Thus, BCR use seems

minimally altered by anti-CD137 mAb treatment.

Even though there was an expansion of plasmablasts in anti-

CD137 mAb-treated mice compared to isotype control mAb-

treated animals, this did not occur at a clonal level (Figure S6E).

Indeed, by enzyme-linked immunospot (ELISpot), we observed

that the number of CHIKV-specific plasmablasts was similar

between anti-CD137 mAb- and isotype control mAb-treated

mice (Figure 6F). Thus, it appears that B cells with low or no

affinity for CHIKV antigens prematurely differentiate into

short-lived plasmablasts in anti-CD137 mAb-treated animals

(Figure 6G).

Anti-CD137 mAb Treatment Negatively Impacts B Cell
Responses in the Context of Viral Vaccine Immunization
or Boosting
Memory Tfhs and FDCs within secondary lymphoid follicles pro-

mote the rapid differentiation of MBCs upon antigen re-

encounter.28–30 Because we observed that anti-CD137 mAb

treatment disrupted secondary lymphoid follicles, we tested its

effect on an anamnestic response to a vaccine antigen. Influenza

virus HA is a well-defined antigen that elicits neutralizing anti-

bodies.31 Nine-week-old C57BL/6 female mice were immunized

by an intramuscular route with influenza A virus H5 HA proteins

(day 0) and then injected with anti-CD137 mAb 2 days later (Fig-

ure 7A). At 28 days postimmunization, the mice were boosted

with H5 HA protein. The number of GC B cells, antigen-specific

MBCs, and plasmablasts were reduced in anti-CD137 mAb-

treated mice compared to isotype control mAb-treated animals

7 days after boosting (11.6-fold, p < 0.001; 30.5-fold, p <

0.001; 281-fold, p < 0.001, respectively) (Figures 7B–7D). In

another group of mice, we administered anti-CD137 mAb

1 day before boosting to assess the effects on the anamnestic

B cell response (Figure 7E). The numbers of GC B cells and an-

tigen-specific MBCs but not antigen-specific plasmablasts were

reduced in anti-CD137 mAb-treated mice compared to isotype

control mAb-treated animals 7 days after boosting (12.9-fold,

p < 0.001; 7.1-fold, p < 0.001; and not significant, respectively)

(Figures 7F–7H). Thus, during an anamnestic memory response,

anti-CD137 mAb treatment affects the secondary GC B cell and

MBC response and has aminimal effect on plasmablast differen-

tiation from pre-existing MBCs.

DISCUSSION

In this study, we have shown that administration of anti-CD137

mAb early (day 2) but not late (day 56) after CHIKV infection

dampens the durable humoral immune response, as judged by

marked reductions in antigen-specific MBCs, LLPCs, and serum

antibody titers. Similarly, long-lasting antibody responses were

impaired in response to NP-KLH, a T-cell-dependent antigen,
Cell Reports Medicine 1, 100035, June 23, 2020 9



Figure 6. Anti-CD137 mAb Treatment Increases the Number of Plasmablasts

Four-week-oldWTC57BL/6malemicewere inoculatedwith 103 FFU of CHIKV. At 2 dpi, 400 mg of agonistic anti-CD137 or isotype control mAbwas administered

by an i.p. route.

(A) Expression of Xbp1, Irf4, and Prdm1 in plasmablasts is shown in t-distributed stochastic neighbor embedding (tSNE) plots.

(B) The fraction of plasmablasts combined from all samples is shown in bar graphs.

(C and D) TACI+CD138+ plasmablasts in the spleen at 7 dpi were analyzed by flow cytometry. (C) Representative dot plots and (D) total number of plasmablasts.

(E) Four-week-old naive WT C57BL/6 male mice were administered 400 mg of agonistic anti-CD137 or isotype control mAb by an i.p. route. The numbers of

TACI+CD138+ plasmablasts in the spleen at 5 days after treatment were analyzed by flow cytometry.

(F) Four-week-old WT C57BL/6 male mice were inoculated with 103 FFU of CHIKV. At 2 dpi, 400 mg of agonistic anti-CD137 or isotype control mAb was

administered by an i.p. route. The number of CHIKV-specific plasmablasts in the spleen at 7 dpi was analyzed by ELISpot. (D–F) Symbols represent individual

mice, and bars indicate median values. Data are pooled from 3 independent experiments (Mann-Whitney test: *p < 0.05; **p < 0.01; n.s., not significant).

(G) Model of B cell differentiation after treatment with anti-CD137mAb is shown. Left: in the context of normal T-cell-dependent responses, activated B cells enter

GCs (a); proliferate and hypermutate in the dark zone (b); receive survival and selection signals from GC Tfh cells and FDCs (c); exit GCs as MBC, LLPCs, or

plasmablasts (d). Right: the inflammatory environment induced by anti-CD137 mAb-activated T cells may induce B cells to differentiate prematurely into

plasmablasts at the expense of GCs, which in combination with improper B cell priming due to altered B cell follicular architecture reduces the number of FDCs

and GC Tfh cells that enable MBC and plasma cell differentiation. See also Figures S2, S3, S4, S5, and S6.
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but not NP-Ficoll, a T-cell-independent antigen. The inhibition of

the GC reaction in anti-CD137 mAb-treated mice was not asso-

ciated with relatively increased cell death or decreased prolifer-

ation of GC B cells but was correlated with a disorganized archi-

tecture of the B cell follicle and disrupted VCAM-1 expression on
10 Cell Reports Medicine 1, 100035, June 23, 2020
FDCs. The anti-CD137 mAb-mediated effect on GC B cells

required CD137 signaling in either CD4+ or CD8+ T cells. In addi-

tion to its effects on GC formation, anti-CD137 mAb treatment

also increased the number of plasmablasts. Administration of

anti-CD137 mAb prior to boosting with an influenza virus HA



Figure 7. Effect of Anti-CD137 mAb Treat-

ment on Antigen-Specific BCell Populations

when Administered before Viral Vaccine

Boosting

Nine-week-old WT C57BL/6J female mice were

injected by an intramuscular (i.m.) route with re-

combinant influenza A virus H5 HA protein. A total

of 400 mg of agonistic anti-CD137 or isotype con-

trol mAb was administered by an i.p. route at either

2 days postimmunization (A) or 27 days post-

immunization (E) before boosting with H5 HA at

28 days after initial immunization. Spleens were

harvested 7 days after the booster immunization,

and the numbers of GC B cells (B and F) and an-

tigen-specific MBCs (C and G) were analyzed by

flow cytometry. (D and H) The number of antigen-

specific plasmablasts was analyzed by ELISpot.

Symbols represent individual mice, and bars indi-

cate median values. Data are pooled from 2 inde-

pendent experiments (Mann-Whitney test: ***p <

0.001; n.s., not significant).
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antigen reduced the secondary GC reaction but did not affect the

differentiation of antigen-specific plasmablasts.

FDCs promote the expansion and maintenance of affinity-

selected GC B cells by presenting antigens and interacting

through their integrin proteins.17,32,33 Our observations

describing a disrupted B cell follicular architecture are consistent

with an earlier report, which showed that anti-CD137 mAb treat-

ment diminished GC formation and FDC networks, although that

study was limited to immunohistochemistry analysis at 14 days

after immunization with sheep erythrocytes and KLH.34 Our im-

aging experiments show a diminished expression of VCAM-1

by FDCs, which is consistent with their lack of proper interaction

and support for GC B cells. Because the proportion of GC B cells

undergoing apoptosis or proliferation was similar between anti-

CD137 and isotype control mAb-treated mice, we hypothesize

that the inflammatory environment induced by anti-CD137

mAb-activated T cells results in improper GC B cell priming

due to altered architecture, which in turn results in GC collapse

and dispersal of activated B cells.

GCs are dynamic structures formed by antigen-specific B

cells activated by cognate T cells. Somatic hypermutation and

affinity-based selection occur in clonally expanding B cells,

some of which egress from GC as plasma cells or MBCs. An

alternative explanation for how anti-CD137 mAb alters the GC

reaction is that some B cells with low or no affinity for viral anti-

gens may differentiate prematurely into plasmablasts and exit.

Indeed, we observed comparable numbers of CHIKV-specific
Cell Rep
plasmablasts in anti-CD137 and isotype

control mAb-treated mice, even though

the total number of plasmablasts was

increased in anti-CD137 mAb-treated an-

imals. Although anti-CD137 mAb treat-

ment resulted in the short-term expansion

of the plasmablast response, GC collapse

led to a dampening of long-term antigen-

specific antibody responses. We propose

a model where the inflammatory environ-
ment induced by anti-CD137 mAb-activated T cells skews

the differentiation of GC B cells. This results in the expansion

of short-lived plasmablasts at the expense of GC reaction

and also may lead to reductions in FDCs and GC Tfh cells

(Figure 6G).

Anti-CD137 mAb when given at 2 days after the first immuni-

zation of influenza HA protein globally impaired anamnestic B

cell responses at 7 days after the secondary booster immuniza-

tion. However, when anti-CD137 mAb was given the day before

boosting, the number of antigen-specific plasmablasts was not

reduced, suggesting that this response does not require a sec-

ondary GC reaction. This is consistent with reports showing

that re-entry of MBCs into germinal centers is rare under typical

boost regimens.35 After primary immunization, CXCR5-express-

ing memory Tfh cells accumulate at the B cell-T cell border and

mediate efficient recall responses.28,29 Upon encountering spe-

cific antigens during secondary infection or immunization, MBCs

present the antigen to cognate CD4+ T cells and proliferate and

differentiate rapidly into plasmablasts.28,36 Thus, when given

before boosting, anti-CD137mAb likely does not affect the inter-

action between MBCs and cognate memory Tfh cells. In

contrast, anti-CD137 mAb likely hinders the secondary GC reac-

tion of pre-existing MBCs. During the recall response, exoge-

nous antigens bound by antibodies may be transported to

FDCs, which then present immune complexes to MBCs for

further rounds of affinity maturation and LLPC differentiation.30

Because mice treated with anti-CD137 mAb show perturbed
orts Medicine 1, 100035, June 23, 2020 11
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GC architecture, secondary MBC differentiation likely becomes

compromised.

Although agonistic anti-CD137 mAbs are being considered as

therapies for cancer and autoimmune diseases,1,37,38 their

mechanism(s) of action remain unclear, and possible collateral

effects on immune responses are understudied. Ligation

of CD137 in DCs was reported to enhance the expression of

retinal dehydrogenase, which induces the differentiation of

FoxP3+ Tregs.7 In a mouse model of collagen-type-II-induced

arthritis, anti-CD137 mAb treatment induced an expansion of

CD11c+CD8+ T cells that produced interferon g (IFNg), which

induced tolerogenic DCs.8 We show that agonistic anti-CD137

mAb treatment inhibits humoral and cellular B cell responses,

which could be another explanation for its utility in autoimmunity.

Our data establish that T-cell-intrinsic signaling is required for

CD137-dependent reduction in GC formation. This conclusion

is consistent with a prior study showing that anti-CD137 mAb

treatment diminished FDC networks in WT but not T-cell-defi-

cientmice.34 Although anti-CD137mAbs are being tested in can-

cer clinical trials, no study has evaluated their effects on immune

responses to viruses or vaccines. Our study establishes how

anti-CD137 mAbs compromise the induction of memory re-

sponses in the B cell compartment but not the differentiation of

pre-existing MBCs. In this respect, vaccination before anti-

CD137 mAb therapy in humans may be beneficial. Although a

corroborating analysis of human subjects is warranted, anti-

CD137 mAb treatment in the context of immunotherapy could

diminish or prevent antibody and memory responses to newly

administered vaccines or infection with pathogens.

Limitations of Study
Although our study establishes potential collateral effects of anti-

CD137 agonistic mAb therapy on GC formation and MBC induc-

tion, there are several qualifications: (1) the study was performed

exclusively in mice and requires re-evaluation in humans, (2)

there remains a gap in our understanding of how T cells activated

by anti-CD137 antibody alter the architecture of the B cell follicle

and skew differentiation of GC B cells, (3) a more granular kinetic

analysis of the earliest consequences of anti-CD137 therapy on

the FDC network could provide additional insight into the mech-

anism, and (4) the effects on B cells of anti-CD137 therapy were

not explored in models of cancer or autoimmunity.
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Anti-IL-2 mAb S4B6-1 Bio X Cell Cat#BE0043-1; RRID: AB_1107705

Anti-CTLA-4 mAb 9D9 Bio X Cell Cat#BE0164; RRID: AB_10949609

Rat IgG2a 2A3 Bio X Cell Cat#BE0089; RRID: AB_1107769

Mouse IgG2b MPC-11 Bio X Cell Cat#BE0086; RRID: AB_1107791

Purified rat anti-mouse CD16/32 mAb BioLegend Cat#101302; RRID: AB_312801

BV605 conjugated rat anti-mouse CD45 mAb BioLegend Cat#103140; RRID: AB_2562342

PE/Cy7 conjugated Armenian hamster anti-mouse CD3εmAb BioLegend Cat#100320; RRID: AB_312685

APC/Cy7 conjugated rat anti-mouse CD19 mAb BioLegend Cat#115530; RRID: AB_830707

FITC conjugated rat anti-mouse CD21/CD35 mAb BD Biosciences Cat#553818; RRID: AB_395070

PE conjugated Armenian hamster anti-mouse CD95 mAb BD Biosciences Cat#554258; RRID: AB_395330

Alexa647 conjugated rat anti-mouse FoxP3 mAb BioLegend Cat#126408; RRID: AB_1089115

Biotinylated rat anti-mouse CXCR5 mAb BioLegend Cat#145510; RRID: AB_2562126

BV421 conjugated rat anti-mouse CD4 mAb BioLegend Cat#100438; RRID: 11203718

PerCP/Cy5.5 conjugated rat anti-mouse CD8a mAb BioLegend Cat#100734; RRID: 2075238

Alexa647 conjugated rat anti-mouse CD86 mAb BioLegend Cat#105019; RRID: AB493465

PE conjugated rat anti-mouse CXCR4 mAb BioLegend Cat#146505; RRID: AB_2562782

FITC conjugated rat anti-mouse PD-1 mAb BioLegend Cat#135214; RRID: AB_10680238

BV510 conjugated mouse anti-mouse CD45.1 mAb BioLegend Cat#110741; RRID: AB_2563378

Alexa700 conjugated mouse anti-mouse CD45.2 mAb Thermo Cat#56-0454-82; RRID: AB_657752

Alexa647 conjugated rat anti-mouse CD138 mAb BioLegend Cat#142526; RRID: AB_2566239

BV421 conjugated rat anti-mouse TACI mAb BD Biosciences Cat#742840; RRID: AB_2741091

Biotinylated goat polyclonal anti-mouse IgG Sigma Cat#B7022; RRID: AB_258598

BV421 conjugated rat anti-mouse IgM mAb BioLegend Cat#406517; RRID: AB_10899576

Alexa647 conjugated rat anti-mouse CD38 mAb BioLegend Cat#102716; RRID: AB_2073334

BV510 conjugated rat anti-mouse IgD mAb BioLegend Cat#405723; RRID: AB_2562742

PerCP/Cy5.5 conjugated rat anti-mouse, human GL7 mAb BioLegend Cat#144609; RRID: AB_2562978

Biotinylated Syrian hamster anti-mouse CD137 mAb BioLegend Cat#106104; RRID: AB_313241

Purified rat anti-reticular fibroblasts and reticular fibers mAb Abcam Cat#ab51824; RRID: 881651

Purified rabbit anti-mouse CD4 mAb Abcam Cat#ab183685; RRID: AB_2686917

Alexa555 conjugated goat polyclonal anti-rabbit IgG (H+L) Thermo Cat#A-21428; RRID: AB_141784

Alexa700 conjugated rat anti-B220 mAb BioLegend Cat#103232; RRID: AB_493717

Alexa647 conjugated rat anti-mouse, human GL7 BioLegend Cat#144606; RRID: AB_2562185

Alexa647 conjugated donkey polyclonal anti-goat IgG (H+L) Thermo Cat#A-21447; RRID: AB_141844

Biotinylated rat anti-mouse IgD mAb SouthernBiotech Cat#1120-08; RRID: AB_2631189

eFluor450 rat anti-mouse CD21/CD35 mAb Thermo Cat#48-0212-82; RRID: AB_2016703

Biotinylated goat polyclonal anti-mouse IgG (H+L) Jackson ImmunoResearch Cat#115-065-062; RRID: AB_2338562

Purified rat anti-mouse VCAM-1 mAb Thermo Cat#14-1061-85; RRID: AB_467420

Bacterial and Virus Strains

Chikungunya virus (strain LR-2006) Tsetsarkin et al.39 KY575571

Chemicals, Peptides, and Recombinant Proteins

Biotinylated peanut agglutinin Vector Cat#B-1075; RRID: AB_2313597

Alexa647 conjugated streptavidin Thermo Cat#S-21374; RRID: AB_2336066

(Continued on next page)
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PE conjugated 4-Hydroxy-3-nitrophenylacetyl hapten Biosearch Technologies Cat# N-5070-1

Biotinylated H5 Immune Technology Cat# IT-003-0052DTMp

Alexa555 conjugated streptavidin Thermo Cat#S32355; RRID: AB_2571525

4-Hydroxy-3-nitrophenylacetyl hapten conjugated Ficoll Biosearch Technologies Cat#F-1420-10

4-Hydroxy-3-nitrophenylacetyl hapten conjugated Keyhole

Limpet Hemocyanin

Biosearch Technologies Cat#N-5060-5

Alum adjuvant Thermo Cat#77161

AddaVax adjuvant InvivoGen Cat#vac-adx-10

Recombinant H5 hemagglutinin Ellebedy et al.42 N/A

Recombinant chikungunya virus E2 protein Pal et al.40 N/A

4-Hydroxy-3-nitrophenylacetyl hapten conjugated chicken

gamma globulin

Biosearch Technologies Cat#N-5055E-5

Streptavidin conjugated horseradish peroxidase Vector Cat#SA-5004; RRID: AB_2336509

Chikungunya virus-like particles (strain 37997) Akahata et al.16 N/A

Critical Commercial Assays

eFluor506 fixable viability dye Thermo Cat#65-0866-14

annexin V detection kit eFluor450 Thermo Cat#88-8006-72

FITC Brdu flow kit BD Biosciences Cat#559619; RRID: AB_2617060

CD4+ T cell isolation kit Miltenyi Biotec Cat#130-104-454

CD8a+ T cell isolation kit Miltenyi Biotec Cat#130-104-075

Pan T cell isolation kit Miltenyi Biotec Cat#130-090-130

Chromium Single Cell 50 Library & Gel Bead Kit 10x Genomics Cat#1000006

Chromium Single Cell 50 Library Construction Kit 10x Genomics Cat#1000020

Chromium Single Cell A Chip Kit 10x Genomics Cat#120236

Chromium Single Cell V(D)J Enrichment Kit, Mouse B Cell 10x Genomics Cat#1000072

Chromium i7 Multiplex Kit 10x Genomics Cat#120262

Deposited Data

Single cell RNA sequencing data – gene expression This study GEO: GSE141111

Single cell RNA sequencing data – BCR V(D)J This study GEO: GSE141117

B cell clonal analysis code This study https://github.com/iosonofabio/

BCR_Zanini_Diamond

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Jackson Laboratory Cat#000664; RRID: IMSR_JAX:000664

Mouse: B6.129P2-Tcrbtm1Mom Tcrdtm1Mom/J Jackson Laboratory Cat#002121; RRID: IMSR_JAX:002121

Mouse: C.Cg-Foxp3tm2Tch/J Jackson Laboratory Cat#006769; RRID: IMSR_JAX:006769

Mouse: B6.SJL-Ptprca Pepcb/BoyJ Jackson Laboratory Cat#002014; RRID: IMSR_JAX:002014

Mouse: CD137�/� Kwon et al.41 N/A

Software and Algorithms

FACSDiva BD Biosciences N/A

FlowJo FlowJo, LLC N/A

GraphPad Prism GraphPad N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Michael S.

Diamond (diamond@wusm.wustl.edu).
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Materials Availability
All requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact author. This includes transgenic

mice, antibodies, and proteins. Antibodies to CD137 and CD137�/�mice will be made available on request after completion of a Ma-

terials Transfer Agreement.

Data and Code Availability
The authors declare that all data supporting the findings of this study are available within the paper. All sequencing data have been

deposited as GSE141111 and GSE141117.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Viruses and cells
The recombinant CHIKV La Reunion OPY1 strain was generated from a full-length infectious cDNA clone using T7-dependent DNA-

dependent RNA polymerase in vitro transcription, and transfection of viral RNA into BHK-21 cells, as described previously.39 The

resultant virus was harvested from the supernatant, propagated once in C6/36 Aedes albopictus cells, and titrated using Vero cells

and a focus-forming assay as described.40

Animal studies
All animal experiments were performed with the approval of Washington University Institutional Animal Care and Use Committee

guidelines. All mouse infection studies were performed in an animal biosafety level 3 laboratory. C57BL/6J (000664), B6.129P2-

Tcrbtm1Mom Tcrdtm1Mom/J (002121; abbreviated TCRbd�/�), C.Cg-Foxp3tm2Tch/J (006769; abbreviated FoxP3-GFP) and B6.SJL-

Ptprca Pepcb/BoyJ (002014) were purchased from Jackson Laboratories. CD137�/� mice41 were obtained as a gift from Michael

Croft (La Jolla Institute for Immunology). At 4 weeks of age, male mice were anesthetized with ketamine hydrochloride (80 mg/kg)

and xylazine (15 mg/kg) and inoculated s.c. in the left rear footpad with 103 focus-forming units (FFU) of CHIKV in 10 mL of PBS.

For immunization with NP-Ficoll (Biosearch Technologies) or NP-KLH (Biosearch Technologies), 4-week-old C57BL/6J male mice

were injected via i.p. route with 5 mg of NP-Ficoll in 200 mL of PBS or 10 mg of NP-KLH in 100 mL of alum mixture (1:1 ratio of immu-

nogen in PBS to alum (Thermo)). For immunization with influenza A virus H5 hemagglutinin, 9-week-old C57BL/6J female mice were

injected via intramuscular (i.m.) route with 10 mg of recombinant H5 HA42 in 50 mL of antigen:AddaVax (1:1) (InvivoGen). At the termi-

nation of experiments, mice were euthanized and perfused via intracardiac injection with PBS. For proliferation assays, CHIKV-in-

fected mice were injected via intravascular route with 1 mg of Brdu in 100 mL of PBS two hours before harvest.

METHOD DETAILS

Antibodies and cell depletions
Anti-CD137mAb (clone 2A, rat Ig2a) has been described previously.43 Antibodywas purified from hybridoma supernatants by protein

G affinity chromatography by a commercial vendor (BioXCell). Anti-IL-2 (clone S4B6-1) and anti-CTLA-4 (clone 9D9) were purchased

from BioXCell and used for IL-2 depletion and CTLA-4 blockade, respectively, with rat IgG2a (clone 2A3) and mouse IgG2b (clone

MPC-11) serving as isotype controls. Mice were administered 400 mg of anti-CD137 or rat Ig2a isotype control mAb (clone 2A3,

BioXCell) via i.p. route at 2 dpi. For IL-2 depletion studies, mice were administered 500 mg of anti-IL-2 mAb on 2, 4 and 6 dpi. For

CTLA-4 blockade, mice were administered 500 mg of anti-CTLA-4 mAb on 2 dpi and 250 mg on 5 dpi.

Immune cell analysis
Spleens wereminced and incubated for 30min at 37�C in 2mL digestion buffer (1mg/ml collagenase (Sigma) and 100 mg/mLDNase I

(Sigma) in Dulbecco’s Modified Eagle’s medium (DMEM) containing 2% FBS in a 24-well plate. Cell suspensions were passed

through a 100 mm cell strainer. After rinsing with 10% FBS, 5 mM EDTA in DMEM, erythrocytes were lysed with 1 mL of ACK Lysing

Buffer (GIBCO) per spleen for 2 min. Cells were washed with DMEM and centrifuged, followed by rinsing with washing buffer (2%

FBS, 5 mM EDTA in PBS). After centrifugation, cells were resuspended in washing buffer at 5 3 108 cells/ml and incubated with

2.5 mg of anti-mouse CD16/32 antibody (101302, Biolegend) per 108 cells for 20min on ice. Then, cells were stained with BV605-con-

jugated anti-CD45 (103140, Biolegend), PE-Cy7-conjugated anti-CD3 (100320, Biolegend), APC-Cy7-conjugated anti-CD19

(115530, Biolegend), FITC-conjugated anti-CD21/35 (553818, BD Biosciences), PE-conjugated anti-CD95 (554258, BD Biosci-

ences), Alexa647-conjugated anti-FoxP3 (126408, Biolegend), biotinylated anti-CXCR5 (145510, BIolegend), BV421-conjugated

anti-CD4 (100438, Biolegend), PerCP/Cy5.5-conjugated anti-CD8a (100734, Biolegend), Alexa647-conjugated anti-CD86

(105019, Biolegend), PE-conjugated anti-CXCR4 (146505, Biolegend), FITC-conjugated anti-PD-1 (135214, Biolegend), BV510-con-

jugated anti-CD45.1 (110741, Biolegend), Alexa700-conjugated anti-CD45.2 (56-0454-82, Thermo), Alexa647-conjugated anti-

CD138 (142526, Biolegend), BV421-conjugated anti-TACI (742840, BD Biosciences), biotinylated anti-IgG (B7022, Sigma),

BV421-conjugated anti-IgM (406517, Biolegend), Alexa647-conjugated anti-CD38 (102716, Biolegend), BV510-conjugated anti-

IgD (405723, Biolegend), PerCP/Cy5.5-conjugated anti-GL7 (144609, Biolegend) antibody, biotinylated PNA (B-1075, Vector),

Alexa647-conjugated streptavidin (S-21374, Thermo) and eFluor506 fixable viability dye (65-0866-14, Thermo). For detection of
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apoptosis, an annexin V detection kit eFluor450 (88-8006-72, Thermo) was used according to the manufacturer’s instructions. For

proliferation detection, the Brdu flow kit (559619, BD) was used according to the manufacturer’s instructions. To confirm CD137

expression, cells were stained with biotinylated anti-CD137 (106104, Biolegend). For detection of NP-specific and hemaglutinin-spe-

cific memory B cells, cells were stained sequentially with PE-conjugated NP (N-5070-1, Biosearch Technologies) or biotinylated H5

(IT-003-0052DTMp, Immune Technology). Subsequently, cells were fixed with BD FACS Lysing Solution, processed on a LSR For-

tessa X-20 (BD Biosciences) flow cytometer, and analyzed using BD FACSDiva and FlowJo software.

Single cell RNA sequencing
Isolated single cell suspensions were subjected to droplet-basedmassively parallel single cell RNA sequencing using ChromiumSin-

gle Cell 50 Reagent Kit in a BSL-3 level laboratory as per manufacturer’s instructions (10x Genomics). Briefly, cell suspensions were

loaded at 1,000 cells/mLwith the aim to capture 10,000 cells/well. The 10xChromiumController generatedGEMdroplets, where each

cell was labeled with a specific barcode, and each transcript labeled with a uniquemolecular identifier (UMI) during reverse transcrip-

tion. The barcoded cDNA was isolated via a Dynabeads MyOne SILANE bead cleanup mixture and amplified 13 cycles. Amplified

cDNA was purified via SPRI bead cleanup and removed from the BSL-3 space for library generation. For gene expression libraries,

50 ng of amplified cDNAwas used for library preparation, consisting of fragmentation, end repair, A-tailing, adaptor ligation and sam-

ple index PCR as per the manufacturer’s instructions. Libraries were sequenced on a NovaSeq S4 (200 cycle) flow cell, targeting

45,000 read pairs/cell. For B Cell repertoire libraries, 2 mL of amplified cDNA underwent two rounds of Target Enrichment using

nested primer pairs specific for mouse B cell Ig constant regions. 50 ng of the target enrichment PCR product was used for library

preparation, consisting of fragmentation, end repair, A-tailing, adaptor ligation and sample index PCR as per the manufacturer’s in-

structions. Enriched libraries were sequenced on a NovaSeq S4 (200 cycle) flow cell, targeting 5,000 read pairs/cell. All sequencing

data have been submitted to the GEO database (GSE141111 and GSE141117).

Single cell RNA sequencing analysis
Sample demultiplexing, barcode processing, and single-cell 50 counting was performed using the Cell Ranger Single-Cell Software

Suite (10x Genomics). Cellranger count was used to align samples to the mm10 reference genome, quantify reads, and filter reads

with a quality score below 30. The resultant files were input into Seurat for normalization across all samples and merging. The Seurat

package in R was used for subsequent analysis.44 Cells with mitochondrial content greater than 5 percent were removed for down-

stream analysis. Data were normalized using a scaling factor of 10,000, and number of Unique Molecular Identifiers was regressed

with a negative binomial model. Principal component analysis was performed using the top 3,000 most variable genes and t-SNE

analysis was performed with the top 10 PCAs. Clustering was performed using the FindClusters function which works on K-nearest

neighbor graph model with the granularity ranging from 0.1-0.9 and selected 0.6 for the downstream clustering. For identifying the

markers for each cluster, we performed differential expression of each cluster against all other clusters identifying negative and pos-

itive markers for that cluster. Data from different cell types (e.g., NK cells/T cells and B cells) were re-clustered to further analyze

transcripts in each cell type.

B cell clonal analysis
The sequencing reads were preprocessed using 10X Genomics’ cellranger vdj package. The B cell receptor (BCR) sequences were

assembled using the mouse IMGT database and variable V, J, and constant chain alleles were called for both heavy and light chain.

BCRs with identical CDR3 nucleotide sequences were assigned to the same clonal family irrespective of their V, J, and constant re-

gion calls, which are the standard parameters. Among all sequenced cells, B cells were identified by transcriptome analysis. Briefly,

reads were mapped against the Mus musculus genome (mm10-3.0.0) using cellranger count, which included STAR aligner45 and

HTSeq.46 The gene expression table was restricted to the 500 genes with the highest Fano factor and log transformed. PCA with

30 components was then used to reduce dimensionality, pairwise correlation distances were then used to construct a k-nearest

neighbor graph with k = 15 and a threshold for edge calling of R 0.2. Unsupervised clustering on the graph was performed using

Leiden,47 constant Potts model optimization, and a resolution parameter of 0.001. Clonal analysis was performed for heavy and light

chains separately. Clonal graph plots were restricted to families withR 2 members. All plots were generated via custom Python 3.7

scripts. The code for the whole B cell clonal analysis is available at https://github.com/iosonofabio/BCR_Zanini_Diamond.

Immunofluorescence imaging
Spleens were fixed in periodate-lysine-paraformaldehyde buffer for 48 h, and moved to 30% sucrose in PBS for at least 24 h before

embedding. Tissues were embedded in optimal-cutting-temperature medium (Electron Microscopy Sciences) in longitudinal orien-

tation and frozen in dry-ice-cooled isopentane. 18-mmsections were cut on a Lecia cryostat (LeicaMicrosystems), blocked with 10%

bovine and donkey serum, and then stained with combinations of the following antibodies: anti-reticular fibroblasts and reticular

fibers (ab51824, Abcam), anti-CD21/35 (48-0212-82, Thermo), anti-CD4 (ab183685, Abcam), Alexa555-conjugated anti-rabbit IgG

(A-21428, Thermo), Alexa700-conjugated anti-B220 (103232, Biolegend), Alexa647-conjugated anti-GL7 (144606, Biolegend),

Alexa647-conjugated anti-goat IgG (A-21447, Thermo), biotinylated anti-IgD (1120-08, SouthernBiotech) antibody and Alexa555-

conjugated streptavidin (S32355, Thermo). Images were acquired on a Leica SP8 confocal microscope equipped with acousto-op-

tical tunable filters, HyD hybrid detectors, and a 700 nm wavelength laser (Leica Microsystems). Images were merged from tilescans
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acquiredwith a 40X objective. Images were processed and analyzed using Imaris (Bitplane). FDC areawas calculated using the ‘‘Sur-

faces’’ function of Imaris andmeasured only FDCs networks in follicles that contained FDCs. GC B cells were marked using the auto-

mated ‘‘Spots’’ function of Imaris. The percentage of GC B cells far away from FDCs were calculated using the Imaris XT module

‘‘Spots and Surfaces Distance.’’ GC B cells were considered far away from FDCs if they were greater than 10 mm from the closest

FDC surface. The distance between GC B cells was calculated using the Imaris XT module ‘‘Spots to Spots Closest Distance.’’

Adoptive transfer experiments
Minced spleens from naive WT or CD137�/� mice were passed through a 70 mm cell strainer to generate single cell splenocyte sus-

pensions. After lysis of erythrocytes, CD4+ and CD8+ T cells were isolated using the CD4+ or CD8a+ T Cell Isolation Kits (130-104-454

and 130-104-075, respectively, Miltenyi Biotec) according to the manufacturer’s instructions. 4.3 3 106 CD4+ T cells and 2.8 3 106

CD8+ T cells were mixed and adoptively transferred into TCRbd�/� mice. After 5 days, the recipient mice were inoculated with 103

FFU of CHIKV. For adoptive transfer of FoxP3+ T cells, spleens from naive CD137�/� mice and FoxP3-GFP reporter mice were pro-

cessed as described above. T cells were isolated using the Pan T Cell Isolation Kit (130-090-130, Miltenyi Biotec). The isolated T cells

were sorted using a BD FACS Aria II. 1.33 105 sorted FoxP3+ T cells and 7.13 106 CD137�/� T cells were adoptively transferred into

TCRbd�/� mice.

ELISA
MaxiSorp 96-well flat-bottom ELISA plates (44-2404-21, Thermo) were coated with 2 mg/ml of CHIKV E2 protein40 or 20 mg/ml of NP-

conjugated chicken gamma globulin (NP-CGG, Biosearch Technologies) overnight at 4�C. Plates were washed with ELISA wash

buffer (PBS, 0.05% Tween-20) and then incubated with blocking buffer (PBS, 5% FBS) for 4 h at 37�C. Sera from CHIKV-infected,

NP-KLH- or NP-Ficoll-immunized mice were added in 3-fold dilutions starting with a 1/100 dilution. After incubating for 1 h at room

temperature, plates were rinsed with ELISA wash buffer and then incubated with biotinylated anti-IgG (115-065-062, Jackson Immu-

noResearch) for 1 h at room temperature. After washing, plates were incubated with streptavidin-conjugated HRP (SA-5004, Vector

Laboratories) for 30 min at room temperature. After final rinses with ELISA wash buffer and PBS, substrate solution (34029, Thermo)

was added. The reaction was quenched with 2N H2SO4, and the plates were read using a Synergy H1 Hybrid Reader (BioTek). The

optical density (OD) value of naive serum was subtracted from OD values of CHIKV-infected or NP-Ficoll- or NP-KLH-immunized

samples, and non-linear regression curves were calculated. The titer of anti-CHIKV or anti-NP was defined as the dilution of serum

yielding a half-maximal OD value after background and naive value subtraction.

MBC limiting dilution assay
96-well flat-bottom feeder cell plates were seeded with BAFF- and CD40L-expressing feeder cells the day before B cell isolation and

were incubated with 5 mg/ml of mitomycin C at 37�C and 5% humidified CO2 for 3 h, as described before.48 Splenocyte suspensions

from CHIKV-infected mice were centrifuged and resuspended in washing buffer (1% FBS, 2 mM EDTA in PBS). CD19+ B cells were

isolated using CD19 MicroBeads (130-052-201, Miltenyi Biotec) according to the manufacturer’s protocol. The isolated B cells were

cultured (RPMI, 10% FBS, 1X penicillin-streptomycin, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 10 mM HEPES,

50 mM b-mercaptoethanol) in 5-fold dilutions starting at 1,000,000 cells per well in the feeder cell plates sealed with an adhesive

film at 37�C and 5% humidified CO2 for 6 days. To calculate the frequency of CHIKV-specific MBCs that produced IgG, MaxiSorp

96-well flat-bottom ELISA plates (44-2404-21, Thermo) were coated with 2 mg/ml of CHIKV E2 protein40 overnight at 4�C. Plates were

washed with ELISA wash buffer (PBS, 0.05% Tween-20) and blocked with blocking buffer (PBS, 5% FBS) for 4 h at 37�C. Superna-
tants from B cell culture were added to the ELISA plates (50 ml per well) and processed as described above for serum antibodies.

Positive wells were defined as wells that scored 2-fold over the mean OD of negative control wells (wells containing feeder cells

and naive B cells). The frequency of CHIKV-specific MBCs was calculated as one cell per the number of cells plated where

63.2% of wells were positive.

ELISpot assay
Mixed cellulose filter 96-well plates (Millipore) plates were pre-coated with 50 mg/ml of CHIKV E2 protein,40 20 mg/ml of NP-CGG (Bio-

search Technologies) or 2 mg/ml of H542 overnight at 4�C. After rinsingwith ELISAwash buffer and PBS, plates were blocked for 4 h at

37�C with culture medium (RPMI, 10% FBS, penicillin-streptomycin, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids,

10 mM HEPES, and 50 mM b-mercaptoethanol). For LLPC assays, bone marrow from the tibia and femur was filtered through

40 mm cell strainer. For plasmablast assays, single cell splenocyte suspensions were generated as detailed above. Erythrocytes

were lysed, and CD138+ cells were isolated using CD138 MicroBeads (130-098-257, Miltenyi Biotec). The isolated cells were incu-

bated (RPMI 1640, 10% FBS, penicillin-streptomycin, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 10 mM HEPES,

50 mM b-mercaptoethanol) on the antigen-coated filter plates at 37�C and 5% humidified CO2 overnight, except for H5-specific plas-

mablasts which were incubated for 4 h. After washing with PBS, plates were incubated with 1% NP40 (Sigma) for 20 min at room

temperature. Plates were washed with ELISA wash buffer and incubated sequentially with biotinylated anti-IgG (B7022, Sigma)

and streptavidin-conjugated horseradish peroxidase (HRP; SA-5004, Vector Laboratories), each for 1 h at room temperature. After

additional washes with PBS, substrate solution (5510-0050, SeraCare) was added. The reaction was quenched by washing with wa-

ter. Spots were enumerated using a Biospot plate reader (Cellular Technology).
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Bone marrow transplantation
Four-week-old CD137�/� mice were irradiated with 900 Rads and reconstituted via intravenous injection with 33 107 bone marrow

cells isolated from the femur and tibia of WT (CD45.1) or CD137�/� mice (CD45.2). After 8 weeks, immune cell reconstitution was

confirmed by flow cytometry.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed with Prism 8.2.0 software (GraphPad Prism). Statistical significance was assigned when p < 0.05. In each

experiment in the Figure legends, the number of animals is indicated in scatterplot form with a symbol representing an individual an-

imal. Additionally, the particular statistical test and number of independent experiments are indicated in the Figure legends. For im-

mune cell analyses, data were analyzed by the Mann-Whitney test or Kruskal-Wallis ANOVA with Dunn’s post-test. A Mann-Whitney

test in lieu of an unpaired t test was used throughout for consistency, as some data had points at the level of detection. For serum

antibody titer analyses, data were analyzed by two-way ANOVA with Sidak post-test. Bars indicate median values. No formal analyt-

ical method was used to determine whether the data met assumptions of the statistical approach.
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