
1SCIeNTIfIC ReportS |  (2018) 8:14393  | DOI:10.1038/s41598-018-32782-8

www.nature.com/scientificreports

MicroRNA Expression Profiles in 
Gastric Carcinogenesis
Jinha Hwang1, Byung-Hoon Min2, Jiryeon Jang3,4, So Young Kang4, Hyunsik Bae4, 
Se Song Jang1, Jong-Il Kim   1,5,6 & Kyoung-Mee Kim   4

Intestinal-type gastric carcinoma exhibits a multistep carcinogenic sequence from adenoma to 
carcinoma with a gradual increase in genomic alterations. But the roles of microRNAs (miRNA) in this 
multistage cascade are not fully explored. To identify differentially expressed miRNA (DEM) during early 
gastric carcinogenesis, we performed miRNA microarray profiling with 24 gastric cancers and precursor 
lesions (7 early gastric cancer [EGC], 3 adenomas with high-grade dysplasia, 4 adenomas with low-grade 
dysplasia, and 10 adjacent normal tissues). Alterations in the expression of 132 miRNA were detected; 
these were categorized into three groups based on their expression patterns. Of these, 42 miRNAs 
were aberrantly expressed in EGC. Five miRNA (miR-26a, miR-375, miR-574-3p, miR-145, and miR-15b) 
showed decreased expression since adenoma. Expression of two miRNA, miR-200C and miR-29a, was 
down-regulated in EGCs compared to normal mucosa or adenomas. Six miRNA (miR-601, miR-107, miR-
18a, miR-370, miR-300, and miR-96) showed increased expression in gastric cancer compared to normal 
or adenoma samples. Five representative miRNAs were further validated with RT-qPCR in independent 
77 samples. Taken together, these results suggest that the dysregulated miRNA show alterations at the 
early stages of gastric tumorigenesis and may be used as a candidate biomarker.

A subset of gastric cancer (intestinal-type gastric cancer by Lauren’s histologic classification) exhibits a gradual 
development through a multistep carcinogenic sequence from non-neoplastic atrophic and metaplastic gastric 
mucosa to adenoma with low-grade dysplasia (LGD), followed by adenoma with high-grade dysplasia (HGD) 
and eventually develops into invasive carcinoma1,2. A recent report by Min et al. showed a gradual increase in 
genomic alterations, including somatic nucleotide variation, gene fusion, and copy number variation, from LGD 
to carcinoma3.

Aside from the accumulation of genetic alterations, epigenetic changes such as DNA methylation and aberrant 
gene expression by non-coding RNAs are other key players involved in carcinogenesis4. MicroRNAs (miRNAs) 
are abundant non-coding RNA molecules of 18–25 nucleotides that inhibit translation or promote degradation of 
messenger RNAs (mRNAs) with complementary sequences. miRNAs are estimated to regulate the expression of 
30–60% of human genes and are known to modulate cell development, differentiation, proliferation, and apopto-
sis. Hence, alterations in their expression are associated with human diseases such as cancer5,6. Depending on its 
mRNA target, the miRNA may function as a tumor suppressor or promoter of tumorigenesis7.

In colorectal and esophageal adenocarcinomas, miRNA profiles of cancer and their precursor lesions such 
as Barrett’s esophagus or colorectal adenoma are well described8–15. These profiles have the potential to be used 
as diagnostic biomarkers for early cancer detection and therapeutic targets for cancer prevention. Only a single 
study has reported the gradual increase in miR-106a, a member of miR-17 family, during the multistep gas-
tric carcinogenesis using real-time quantitative polymerase chain reaction (RT-qPCR)16. However, there are no 
reports on miRNA profiles in gastric precursor lesions or during multistep carcinogenesis.

To identify miRNA expression signatures through a multistep carcinogenic sequence, we performed 
NanoString miRNA expression assays in normal gastric mucosa, LGDs, HGDs, and intestinal-type early gas-
tric cancers (EGCs) and subsequently validated five miRNAs using independent sample sets with RT-qPCR. 
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In addition, we used RNA sequencing data from our previous study to investigate the correlation between the 
expression of miRNAs and their target mRNAs.

Results
Altered miRNA expression in normal gastric mucosa, adenoma, and EGC.  We performed miRNA 
expression arrays by using NanoString to identify DEM patterns in normal gastric mucosa, adenoma with LGD 
and HGD, and EGC (Table 1). We identified 132 DEMs among three groups (p-value < 0.01, average expression 
>5, and fold change > = 2.5 or < = 0.4). DEMs were categorized into three groups based on the changing pat-
terns of miRNA expression. The DEM-1 group exhibited a decrease in the miRNA expression from adenoma 
lesion (DEM-1a, n = 16) or EGC (DEM-1b, n = 7) compared to normal gastric mucosa. DEM-2 group comprised 
cases with highest miRNA expression levels in adenomas (n = 3). DEM-3 group showed an upregulated miRNA 
expression in EGC as compared with normal mucosa or adenomas (n = 98) (Supplementary Table 1).

Principal component analysis (PCA) showed that the cancer and non-cancer samples were separated along the 
PCA1 axis, whereas the normal gastric mucosa and adenoma samples were differentially located along the PC2 
axis (Fig. 1A). Unsupervised PCA results showed that normal and adenoma samples showed similar expression 
patterns, but EGC samples tended to cluster to a separate group (Fig. 1B).

We found that 42 miRNAs were aberrantly expressed (false discovery rate [FDR] <0.01) in early gastric tum-
origenesis (Fig. 1C). Among the 42 DEMs, we selected 13 miRNAs that showed patterns identical or similar to 
those reported in previous miRNA studies (Table 2). In comparison to normal gastric mucosa samples, adenoma 
samples showed a decrease in the expression of five miRNAs (miR-26a, miR-375, miR-574-3p, miR-145, and miR-
15b), which are known to be down-regulated in gastric cancer17–21. The expression of two miRNAs (miR-200C 
and miR-29a), which are known to be down-regulated in gastric cancer22,23, decreased in EGCs as compared with 
normal mucosa or adenomas. In addition, there was an increase in the expression of six miRNAs (miR-601, miR-
107, miR-18a, miR-370, miR-300, and miR-96), which are known to be upregulated in gastric cancer24–35, in EGCs 
as compared with normal or adenoma samples (Fig. 1C and Table 2).

Additionally, we validated two novel miRNAs which have been established as tumor suppressor or suppres-
sor of epithelial-to-mesenchymal transition (miR-655) in hepatocellular36 and esophageal squamous cell carci-
noma37,38, and reported as oncogenic (miR-938) miRNA in colorectal cancers39, but their roles have not been 
studied in gastric cancer. Unexpectedly, we found that expressions of miR-655 decreased from normal to ade-
noma and carcinoma, suggesting tumor suppressive role in gastric cancer. Meanwhile, miR-938 was up-regulated 
in EGCs compared to normal gastric mucosa and adenomas, suggesting oncogenic function in gastric cancer 
(Supplementary Fig. 1).

Validation of results and correlation between miRNA and target genes.  For further experimental 
validation, we measured the expression of five miRNAs (miR-107, miR-300, and miR-370 from DEM-3; miR-
26a and miR-375 from DEM-1a) in 77 independent samples using RT-qPCR, owing to the obvious difference 
(fold change >4) in their expression between normal and EGC group in the miRNA microarray analysis. We 
observed a progressive increase in the expression of miR-107 and miR-300 from normal to adenoma and EGC in 
microarray analysis; these results were subsequently validated in an independent sample set with RT-qPCR. In 
comparison to the normal gastric mucosa, adenomas and EGCs showed a decrease in the expression of miR-26a 
and miR-375 in both microarray and qPCR assays (Fig. 2A). However, we failed to confirm the gradual increase 
in the expression of miR-370 in the validation set. From TCGA datasets, we found that 4 miRNAs (miR-107, miR-
370, miR-26a and miR-375) were dysregulated in gastric cancer compared to normal gastric mucosa and also 
showed differential gene expression levels between tubular adenocarcinoma (well- and moderately differentiated, 
intestinal-type by Lauren) group (n = 76) and other types of gastric cancer group (n = 313) (Fig. 2B).

To determine the impact of these miRNAs on target genes, we calculated the correlation coefficient between 
the expression of miRNAs and their target genes using our previous RNA sequencing data. A negative correlation 

Pathology
Sample 
No. Gender Age

Size 
(cm)

Invasion 
Depth

Lymphatic 
invasion

H. pylori 
infection

EBV 
infection

EGC CST04 M 75 1.2 LP No Yes No

EGC CST95 M 63 1.8 LP No Yes No

EGC CST22 F 69 4.2 LP No Yes No

EGC CST36 M 75 2.2 MM No Yes No

EGC CST58 F 65 3.0 MM No Yes No

EGC CST78 M 66 3.2 MM No Yes No

EGC CST29 M 72 4.5 MM No Yes No

HGD HST92 F 74 0.4 Yes No

HGD HST87 M 64 1.4 Yes No

HGD HST85 M 63 2.3 No No

LGD LST09 F 63 1.1 Yes No

LGD LST34 F 75 2.1 Yes No

LGD LST20 M 74 2.6 Yes No

LGD LST72 M 64 3.0 Yes No

Table 1.  Demographics of the discovery cohorts.
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was observed between miR-26a and EZH2 (r = −0.689), miR-375 and YWHAZ (r = −0.629), and miR-375 
and RUNX1 (r = −0.432) (Fig. 3A). We also found weak negative correlation between miR-26a and EZH2 
(r = −0.101), miR-375 and RUNX1 (r = −0.218) from TCGA dataset (Fig. 3B). Three target genes (EZH2, 
YWHAZ and RUNX1) were upregulated in gastric cancer compared to normal gastric mucosa. Moreover, their 
normalized mRNA levels also showed slight difference between well- and moderately differentiated tubular, 
intestinal-type gastric cancer group compared to other types of cancers (Fig. 3C). We also performed correlation 
analyses with miR107, miR300, and miR370 with their target genes and only miR375 and miR26a showed high 
correlations with their target genes (Supplementary Fig. 2).

Figure 1.  The expression profiles of miRNA for LGD, HGD, and EGC. (A) Principal component analysis 
of the whole set of miRNAs. (B) Results of un-supervised clustering analysis. (C) Differentially expressed 
miRNAs (DEM) among three groups. DEM-1 with highest expression levels in normal control mucosa, DEM-2 
with highest miRNA expression levels in adenoma, and DEM-3 with upregulated miRNA in EGC with their 
representative histopathologic findings.

DEM 
group miRNA

Fold change 
adenoma/normal

Fold change 
egc/normal

Fold change 
egc/adenoma FDR

Up- or down- 
regulation Reference

DEM-1a

hsa-miR-26a 0.33 0.07 0.22 5.25E-05 Down 17

hsa-miR-375 0.45 0.15 0.33 9.73E-03 Down 18,46–48

hsa-miR-574-3p 0.32 0.26 0.80 2.58E-04 Down 19

hsa-miR-145 0.24 0.20 0.85 1.98E-03 Down 20

hsa-miR-15b 0.48 0.47 0.98 1.98E-03 Down 21

DEM-1b
hsa-miR-200c 0.73 0.26 0.36 4.43E-03 Down 22

hsa-miR-29a 0.91 0.39 0.43 4.60E-03 Down 23

DEM-3

hsa-miR-601 2.53 4.69 1.85 1.98E-03 Up 24

hsa-miR-107 2.98 6.31 2.12 5.14E-03 Up 25–28,41

hsa-miR-18a 2.03 3.46 1.70 5.89E-03 Up 29–31

hsa-miR-370 2.02 5.65 2.80 4.38E-03 Up 32,33

hsa-miR-300 2.13 4.58 2.15 1.98E-03 Up 34

hsa-miR-96 1.92 2.62 1.36 3.23E-03 Up 35

Table 2.  Differentially expressed miRNAs showing identical patterns as in the previous miRNA studies.
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Discussion
The pathogenesis of gastric cancer involves multistep genetic and epigenetic alterations, which predispose 
cells to neoplastic transformation1–3. Given the importance of miRNAs in the regulation of cell growth and 
viability, miRNA dysregulation is believed to be closely correlated with the development and progression of 
gastric cancer4. In the stomach, previous research on miRNA dysregulation was focused on gastric cancer its
elf6,7,18,20,22,23,26,27,29,33,40 and only one study has been conducted to explore the role of miRNA during the histologic 
progression from gastric adenoma to carcinoma without non-tumorous controls, warranting more research16. To 
our best knowledge, this is the first study to evaluate and compare the expression profile of miRNAs in non-tumor 
tissue, LGD, HGD, and EGC, using a high-throughput screening array. The aim of our study was to screen altera-
tions in miRNA expressions during the stepwise gastric carcinogenesis and we demonstrated the role of miRNAs 
during the stepwise gastric carcinogenesis and confirmed their expressions with RT-qPCR.

Although previous reports have revealed several molecular alterations in gastric cancer such as DNA muta-
tions, copy number variations, mRNA expression changes, and miRNA alterations, most of these studies were 
conducted by comparing gastric cancer tissues or cell lines with normal gastric samples, without adenoma 
samples. Zhu et al.16 investigated the miR-106a expression in gastric dysplasia and gastric samples using in situ 
hybridization. The frequency and extent of miR-106a expression was found to show a gradual increase along the 

Figure 2.  Stepwise changes in the expression of miRNAs during early gastric carcinogenesis. (A) The 
expression levels of five miRNAs were measured using miRNA array and real-time RT-PCR. (B) The expression 
patterns of four miRNAs were also identified in TCGA dataset.
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histologic progression from mild, moderate, and severe dysplasia to EGC. However, they failed to evaluate the 
expression of other miRNAs. In the present study, we identified alterations in miRNA expressions using normal, 
LGD, HGD, and EGC samples. Overall, the expression of miRNAs showed distinct patterns as compared with 
the expression pattern of mRNAs. In comparison to the EGC samples, samples from the non-cancerous group 
(normal and adenoma samples), showed similar miRNA expression pattern. Within the non-cancerous group, 
the normal and adenoma samples were separated based on their expression patterns.

The expression of miR-107 has been reported to increase in the serum and tissues of gastric cancer patients 
and gastric cancer cell lines. miR-107 acts as an oncogene and regulates gastric cancer development and pro-
gression by targeting NF1, DICER1, FOXO1, and CDK825,27,28,41. We found a gradual increase in the expression 
of miR-107 with the histologic progression from LGD to EGC. Microarray and RT-qPCR results revealed that 
the expression of miR-107 was significantly upregulated in HGD and EGC as compared with the normal mucosa 
(**p = 0.006 and *p = 0.031, respectively).

Overexpression of miR-300 promotes cell cycle progression, cell proliferation, and invasion in several can-
cers, including gastric cancer34, liver cancer40, and osteosarcoma42. miR-300 displays the potential to be used in 
the treatment, diagnosis, and prognosis of gastric cancer, as its expression decreased in gastric cancer following 
chemotherapy or exposure to radiation43.

In gastric cancer, miR-370 showed altered expression and acted as either an oncogene or a tumor suppressor. 
Previous studies have shown that the up-regulation of miR-370 resulted in the progression of gastric carcinoma 
via suppression of transforming growth factor beta receptor II (TGFβRII) or FOXO132,33. Although we observed 
a relative increase in the expression of miR-370 in LGD, it showed a weak correlation with the expression of its 
target gene, FOXO3.

The expression of miR-26a is frequently aberrant in many tumors such as gastric cancer, bladder tumor, 
breast cancer, oral squamous cell carcinoma, and Burkitt lymphoma44. miR-26a is known to be significantly 
down-regulated in gastric cancer and suppresses tumor growth and metastasis by targeting FGF9 gene17. 
Furthermore, miR-26a improves the sensitivity of gastric cancer cells to cisplatin-based chemotherapies by tar-
geting NRAS and E2F245. We found a decrease in the expression of miR-26a from LGD and a strong negative 
correlation between the expression of miR-26a and its known target EZH2 (r = −0.689).

Previous studies have demonstrated that miR-375 inhibits cell proliferation of gastric cancer cells by repress-
ing JAK2, ERBB2, and YWHAZ18,46–48. We found a significant decrease in miR-375 expression in LGD, HGD, and 
EGC, as evident from the microarray and RT-qPCR results. Moreover, miR-375 expression was inversely corre-
lated (r = −0.629) with the expression of YWHAZ (14-3-3ζ), a member of the 14-3-3 family of proteins, which 
has been implicated in the initiation and progression of cancers and is a potential biomarker for gastric cancer.

Figure 3.  Spearman’s correlation between miRNA and well-known target genes in samples from normal, LGD, 
HGD, and EGC. (A) Negative correlation between miR-26a and EZH2 (***P = 2.87E-4, r = -0.689). Negative 
correlation between miR-375 and YWHAZ (*P = 1.28E−3, r = −629) and RUNX1 (*P = 3.61E−2, r = −0.432) 
in microarray data. (B) Negative correlation between miR-26a and EZH2 (*P = 2.18E-2, r = -0.101). Negative 
correlation between miR-375 and YWHAZ (P = 0.288, r = 0.028) and RUNX1 (***P = 5.00E-6, r = -0.218) 
observed in TCGA data. (C) Expression of miRNA and their target gene mRNA expression patterns in TCGA 
dataset.
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Additionally, we validated two novel miRNAs which have been known as tumor suppressive (miR-655) and 
as oncogenic (miR-938) miRNA in gastrointestinal cancers other than gastric37–39,49. Although they did not show 
any stepwise elevation during multistep carcinogenesis, we could prove that they worked as tumor suppressive 
and oncogenic in gastric cancers. These results also prove that those novel miRNAs are important in gastric can-
cers, but do not work in multistep carcinogenesis, so they were not detected in our DEM miRNA groups.

Our study has several limitations. First, the sample size in miRNA array experiments is quite small (n = 24). To 
overcome this limitation, we replicated our microarray results in 77 FFPE samples and TCGA datasets. Secondly, 
the effects of altered miRNA on their target mRNA were not investigated. It is widely accepted that miRNAs have 
multiple -sometimes hundreds- of targets and the main approach to explore connections between miRNAs and 
their targets has been focused on the most significant target for each miRNA50. In the present study, we selected 
target genes that have been known to interact with miRNA in the previous studies by experimental investigation 
to confirm the relationship between miRNA and target mRNA. Further in vitro experiments using cell lines and 
larger scale studies are recommended to confirm our results and to analyze the potential effects of those deregu-
lated miRNA.

In conclusion, we found that the upregulated (miR-107 and miR-300) or down-regulated (miR-26a and miR-
375) miRNAs show alteration at early stages of gastric tumorigenesis and may be used as candidate biomarkers. 
Further investigation is needed to elucidate the exact role of these miRNAs in early gastric carcinogenesis.

Materials and Methods
Ethics statement.  Fresh tumor and non-tumor samples were obtained by forceps biopsy at Samsung 
Comprehensive Cancer Center. Informed consent was obtained from all individuals who participated in this 
study. The study protocol was approved by the institutional review board of Samsung Medical Center (IRB 2010-
09-020-008) and all experiments were performed in accordance with the approved guidelines and regulations.

Samples.  Fresh tumor samples from 14 patients were obtained during endoscopy by forceps biopsy and were 
used as a test set (seven well to moderately differentiated intestinal-type EGCs, three HGDs, and four LGDs) 
(Table 1). No patient had prior chemo or radiation therapy. All lesions were completely removed further with 
an endoscopic submucosal dissection technique after tissue acquisition with forceps biopsy, and the resected 
specimens were reviewed by two pathologists. The pathologic diagnosis of histological grade (LGD, HGD, or 
EGC) was made based on the review of both forceps biopsy and endoscopic submucosal dissection specimens 
to ensure histological homogeneity as previously described3. Tumors mixed with components of different histo-
logical grades were excluded from the study. Non-tumor gastric samples more than 2 cm apart from the tumor 
were used as a reference. All non-tumor samples showed intestinal metaplasia. All fresh tissue samples were snap 
frozen in liquid nitrogen immediately after collection and stored at −80 °C until use. Helicobacter pylori infection 
status was determined using both urea breath test and histology, while Epstein-Barr virus status was determined 
by the Epstein-Barr encoding region in situ hybridization.

In addition, a total of 77 formalin-fixed paraffin-embedded (FFPE) samples were collected and used as a 
validation set (21 well/moderately differentiated intestinal-type EGCs, 22 HGDs, 24 LGDs, and 10 non-tumor 
tissues). Informed consent was obtained from all individuals who participated in the study, and the study protocol 
was approved by the institutional review board.

miRNA microarray by NanoString.  For the nCounter analysis, 10 consecutive tissue sections (4-μm 
thick) from archival FFPE tissues of precursor lesions (LGD and HGD) and carcinoma were used. Total miRNA 
was isolated using the Qiagen miRNeasy Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol. 
Total miRNA samples were analyzed using the nCounter Human miRNA Expression Assay kit (NanoString, 
Seattle, WA) according to manufacturer’s instructions. Briefly, 100 ng RNA was incubated in the presence of 
miRNA-specific capture and reporter probes and non-hybridized probes were removed, followed by immobili-
zation of the purified hybridized complexes. The abundance of specific target molecules was subsequently quan-
tified on the nCounter Digital Analyzer by counting the individual fluorescent barcodes and assessing the target 
molecules, as previously described51.

Differentially expressed miRNA analysis and correlation with mRNA.  To identify the differen-
tially expressed miRNAs (DEMs) among LGDs, HGDs, and EGCs, we calculated analysis of variance (ANOVA) 
p-value, average of miRNA expression within the same group, and fold change by comparing expression levels 
among the three groups. DEMs were defined by a p-value < 0.01, average expression >5 in at least one group, 
and |log2(fold change)| >1. The adjusted p-value was calculated using Benjamini and Hochberg algorithm in R. 
We next performed a k-means clustering to categorize DEMs into groups using expression patterns. To quantify 
the mRNA expression level, we counted the number of aligned fragments for each gene using HTSeq-0.6.1 with 
parameters (−s no, −r pos, −f bam, −m intersection-non-empty, and −t exon) according to the Ensembl tran-
script annotation (GRCh37 version) and calculated the fragments per kilobase per million mapped read (FPKM) 
values of each gene. Correlation between miRNA and mRNA expression was calculated by Spearman’s correlation 
using R. miRNA and mRNA expression data from The Cancer Genome Atlas (TCGA) datasets52 were also used 
to validate the patterns of DEMs and correlation between expression of miRNA and target mRNA expression.

Real-time quantitative PCR analysis with FFPE samples.  Ten serial paraffin cuts obtained in 
an Eppendorf tube were deparaffinized in xylene. Total RNA was isolated using RNeasy Micro Kit (Qiagen, 
Germany) according to the manufacturer’s instructions. RNA concentrations were measured using NanoDrop 
(Thermo Scientific, USA). Total RNA from each sample was reverse transcribed with the TaqMan MicroRNA 
Reverse Transcription kit (Thermo Fisher, USA). Reverse transcription was performed with the following thermal 
cycling parameters: 30 minutes at 16 °C, 30 minutes at 42 °C, and 5 minutes at 85 °C (Bio-Rad).
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The miRNA expression was determined with TaqMan MicroRNA primer/probe sets. All qPCR reactions 
were performed with 7900 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). Gene expres-
sions for hsa-miR-375 (Assay ID, 000564), hsa-miR-370 (Assay ID, 002275), hsa-miR-26a (Assay ID, 000405), 
hsa-miR-300 (Assay ID, 241035), hsa-miR-1260 (Assay ID, 002896), and hsa-miR-107 (Assay ID, 000443), 
hsa-miR-655 (Assay ID, 001612), and hsa-miR-938 (Assay ID, 002181) were quantified by TaqMan microRNA 
Assays (Applied Biosystems) according to manufacturers’ protocol and normalized by U6 snRNA (Assay ID 
001973). PCR amplification of target genes and quantification of PCR products were performed by ABI PRISM 
7900 HT Sequence Detection System (Applied Biosystems). Differences in the expression were determined by the 
relative quantification method; the Ct values of the test genes were normalized to the Ct values of the endogenous 
control U6 snRNA. The fold change was calculated using the equation 2−ΔΔCt.
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