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The present study aimed to predict the performance of maize hybrids and assess whether the total effects of associated markers
(TEAM)method can correctly predict hybrids using cross-validation and regional trials.The training was performed in 7 locations
of Southern Brazil during the 2010/11 harvest.The regional assays were conducted in 6 different South Brazilian locations during the
2011/12 harvest. In the training trial, 51 lines from different backgrounds were used to create 58 single cross hybrids. Seventy-nine
microsatellite markers were used to genotype these 51 lines. In the cross-validation method the predictive accuracy ranged from
0.10 to 0.96, depending on the sample size. Furthermore, the accuracy was 0.30 when the values of hybrids that were not used in
the training population (119) were predicted for the regional assays. Regarding selective loss, the TEAMmethod correctly predicted
50%of the hybrids selected in the regional assays.Therewas also loss in only 33% of cases; that is, only 33% of thematerials predicted
to be good in training trial were considered to be bad in regional assays. Our results show that the predictive validation of different
crop conditions is possible, and the cross-validation results strikingly represented the field performance.

1. Introduction

Maize breeding programs aim to create increasingly produc-
tive hybrids, which require conducting several crosses and
generating several hybrids to be tested in trial networks.
Although there are various breeding strategies, which range
from population breeding to the creation and selection of
haploids for the synthesis of lines, the choices of parentals and
cross designs (factorial, diallels, triallels, or tetra-allels) are
key issues to obtain high performance hybrids.

Although there are severalmethods available for planning
crosses, the choice of method generally takes into considera-
tion either the breeder’s “experience,” desirable traits of the
parental lines, and preestablished heterotic groups [1]. Al-
though the breeder’s “experience” can be highly useful, the
choice of crosses based on additional information as pedigree

data or genomic tools may be useful for directing crosses and
even for increasing the predictive accuracy using optimum
designs [2].

Another factor to be considered when choosing crosses
is the number of lines to be used during hybrid synthesis. As
the number of lines increases, the range of possible crosses
can become so large that it economically precludes the estab-
lishment of all crosses [3]. Therefore, the breeder must una-
voidably perform several crosses and disregard some poten-
tial crosses, which can result in several promising crosses not
being performed and many inferior crosses being evaluated.
Thus, the breeder must be able to predict all of the uneval-
uated crosses, even when evaluating only a portion of the
crosses, to recover superior genotypes that would otherwise
be discarded.
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The first studies for predicting single cross hybrids using
molecularmarkers were conducted using the genetic distance
between lines. In a naı̈ve view, the more divergent the paren-
tals are, the greater the heterosis is expected to be because
heterosis may be described by the genetic distance and the
dominance effect when disregarding the epistasis [4].

Several studies have been conducted, starting in the 1990s,
that aimed to predict the performance of hybrids based on
genetic distance using this simplified theory of quantitative
genetics [5–10]. However, the results found when using this
approach were inconclusive and, in general, failed to reflect
the credibility of its large-scale use in breeding programs.

New approaches were developed in parallel to the pre-
diction using markers that were based on studies performed
by [11] in mixed models context. [3] unified the analyses of
mixed models and molecular markers in the prediction of
single cross hybridswhich usedmixedmodels, complex pedi-
grees, and molecular markers [3]. The method consists of
using a relationship matrix of the selection candidates in
mixedmodel equations to recover unevaluated hybrids based
on their genetic covariance with the tested hybrids. This
method has been effective in predicting hybrids in various
situations [12–15].

Recently, Schrag et al. [13, 16, 17] proposed the substitu-
tion of the genetic similarity matrix used in the Bernardo
method with the genotype of the marker itself in the mixed
model equations matrix. This new method was termed
TEAMor total effects of associatedmarkers. In this approach,
the design matrix of general combining ability (GCA) and
specific combining ability (SCA) is replaced by the additive
and dominance matrix of molecular markers and ridge re-
gression BLUP (RR-BLUP) [18] is used, wherein genetic
values are assigned to each marker. The hybrid genotypic
value can be recovered using the total effects of markers, as
if through genomic selection. This method seeks to assess
the genetic values of markers based on a test population and,
subsequently, validate the prediction in the remaining genetic
group, which may include both the untested hybrids and the
test population itself, through cross-validation.

The TEAM method has proved to be more efficient than
the method proposed by [3] in predicting hybrids [16]. More
strikingly, [19] has extended this approach to the genomic
wide selection (GWS) itself. However, normally the efficiency
of TEAM or GWS approaches was not assessed by using real
data set validation, that is, the data set where the predicted
hybrids are assessed on different environments and years
from those ones used in the training population. On the
contrary, in traditional cross-validation method, a Jackknife
procedure is used to assess the accuracy of the model where
the same data set is divided in two groups of different sizes
representing the training and validation population. As a
result, the accuracy of model is tested by the use of the cor-
relation between predicted and missing data. Therefore, the
aim of the present study was to validate the TEAM method
accuracy in the prediction of maize hybrids using cross-
validation and regional data set in different environments and
years.
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Figure 1: A diagram of the crosses conducted in the present trial
(black) with the hybrids tested in regional assays (red). Hybrids
selected for the test population are shown in green. Hybrids selected
in the regional assay are represented by the letter B. The hybrids
evaluated in the regional assay that were selected from the test
population are outlined in green.

2. Materials and Methods

2.1. Experimental Data. During the winter of 2010, 51 lines
of different backgrounds were crossed to create the test
population in the experimental field of Uberlândia South of
Minas Gerais State, Brazil. Fifty-eight single cross hybrids
were created starting from of these lines in an incomplete
partial diallel system (Figure 1). These materials were evalu-
ated in 7 locations distributed in the Southern region of Bra-
zil (Vacaria, RS; Abelardo Luz, SC, Arapoti, PR, Candoi, PR,
Canoinhas, PR, Castro, PR, and Ponta Grossa, PR) in 2010/
2011 summer. Subsequently, in the 2011/12 summer, 119 new
hybrids were generated from these 51 lines, for a final total of
175 genotypes to be evaluated during the second year of eval-
uation, which we regarded as the regional assays. These 175
hybrids were evaluated in regional assays conducted in 6
cities of Southern Brazil (Sananduva, RS; Vacaria, RS; Guara-
puava, PR; Ipiranga, PR; Itapeva, SP; and Faxinal dos Guedes,
SC). The conditions of the regional assays were identical to
those described for the test population, although the year and
locations were not necessarily the same.

The two experiments from both years were conducted
using incomplete blocks designs with 2 replicates, and each
plot had 4 to 5m rows, with 70 cm spacing between rows.
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Table 1: Distribution of the 79 microsatellite markers within the 10 linkage groups (LG) of maize.

Marker LG Bin Marker LG Bin Marker LG Bin Marker LG Bin
bnlg1179 1 1.01 dupssr08 3 3.09 bnlg1200 7 7.01 umc1139 8 8.01
bnlg1014 1 1.01 bnlg1496 3 3.09 bnlg1808 7 7.02 bnlg1056 8 8.01
bnlg1007 1 1.02 umc1136 3 3.09 bnlg1305 7 7.03 bngl2082 8 8.03
bnlg1614 1 1.02 phi072 4 4.01 umc1342 7 7.04 bngl1067 8 8.03
bnlg1866 1 1.03 umc1101 4 4.09 bnlg2259 7 7.04 umc1858 8 8.04
umc1128 1 1.07 umc1109 4 4.10 umc1154 7 7.05 phi015 8 8.08
phi037 1 1.08 umc1197 4 4.11 umc1075 8 8.01 bnlg1131 8 8.09
bnlg1643 1 1.08 umc1058 4 4.11 umc1414 8 8.01 bnlg2122 9 9.01
umc1725 1 1.11 phi019 4 4.11 bnlg1194 8 8.01 umc1040 9 9.01
umc1797 1 1.12 umc1591 5 5.04 phi119 8 8.02 bnlg1724 9 9.01
umc1079 2 2.06 umc1482 5 5.04 umc1034 8 8.03 umc1078 9 9.05
bnlg1036 2 2.06 bnlg1237 5 5.05 phi115 8 8.03 umc1310 9 9.06
dupssr24 2 2.08 bnlg1118 5 5.07 mmc412 8 8.03 umc1319 10 10.01
bnlg1520 2 2.09 bnlg1371 6 6.01 umc2146 8 8.03 bnlg1079 10 10.03
umc1970 3 3.01 umc1006 6 6.02 phi121 8 8.03 umc2043 10 10.05
bnlg1601 3 3.05 umc1887 6 6.03 umc2147 8 8.03 bnlg1074 10 10.05
bnlg1160 3 3.06 umc1918 6 6.04 umc1157 8 8.03 umc1061 10 10.06
umc1148 3 3.07 bnlg1740 6 6.07 umc1202 8 8.05 bnlg1360 10 10.07
umc1167 3 3.08 phi089 6 6.08 bngl240 8 8.06 umc1084 10 10.07
bnlg1108 3 3.08 umc1066 7 7.01 umc1933 8 8.08

A complete description of this experimental design can be
obtained at appendix notes in Melo et al. [20]. The grain
yield was evaluated and adjusted for 13% moisture and con-
verted into t⋅ha−1. The tillage and cover fertilizations were
conducted according to the recommendations for each area,
and cultural treatments were conducted to control the popu-
lations of Fall armyworm (Spodoptera frugiperda) and moth
larva (Helicoverpa zea), as well as for weed control.

2.2. Molecular Data. Seventy-nine microsatellite markers
were used to genotype the 51 lines (Table 1). These markers
were distributed throughout the 10 linkage groups of maize.

The data matrix of markers was designed using the pres-
ence of allele 𝑡 ofmarker𝑚 in line 𝑖 as 1, and the absence of the
allele was designated as 0. This coding scheme facilitated the
design of the additive and dominancematrices of the hybrids.

Using the above coding scheme and considering that
recombination is irrelevant in homozygous lines, the additive
matrix of hybrids was designed as follows:
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where 𝑎 is the genotype of the 𝑡th allele of marker 𝑚 in the
lines 𝑖 and 𝑗, ∀means for all situations where one or (∨) other
lines present different alleles.

Similarly, the matrix of dominance effects was designed
using the following relation (see [20, 21] for more details):
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for values of 1 and 2 of the 𝑡th alleles of marker𝑚. A deviation
of dominance for the homozygous allele occurs in the first
case, and a deviation for heterozygous complement occurs in
the second case.

2.3. Diallel Analysis and Total Effect of Associated Markers.
The phenotypic data for the hybrids were analyzed using the
partial diallel model and the markers model.

The following linear model was assumed in the first case:

𝑦 = 𝑋𝛽 + 𝑍

1

𝑎

1

+ 𝑍

2

𝑎

2

+ 𝑍

3

𝑑 + 𝑍

4

𝑖

1

+ 𝑍

5

𝑖

2

+ 𝑍

6

𝑤 + 𝜉, (3)

where 𝑦 is the plot observation; 𝑋 is the incidence matrix of
fixed effects (blocks, replicates, and environments); 𝑍

1
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6

correspond to incidence matrices of random effects; the pa-
rameters 𝑎

1

, 𝑎
2

, 𝑑, 𝑖
1

, 𝑖
2

, and𝑤 correspond to the GCA effects
of group 1 (GCA1), the GCA effects of group 2 (GCA2), the
SCA, the interaction GCA1 × Environments, the interaction
GCA2 × Environments, and the interaction SCA × Environ-
ments, respectively; and 𝜉 is the model residue. Estimates of
fixed effects, phenotypic variance components, and predic-
tions of random effects were obtained by restrictedmaximum
likelihood (REML), using the expectation-maximization
(EM) algorithm.

The incidence matrices of parental effects and specific
combination in the markers model were replaced by the ma-
trices of additive and dominance effects of markers.Thus, the
TEAMmodel was calculated as follows:

𝑦 = 𝑋𝛽 + 𝐴𝑎 + Δ𝑑 + 𝜉, (4)

where 𝐴 corresponds to the matrix of incidence for additive
effects (𝑎) and Δ corresponds to the matrix of incidence for
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Figure 2: Total effects of the associated markers (TEAM) method when considering only the additive effect of markers (TEAM1) and the
additive effects + the dominance effects (TEAM2).

dominance deviations (𝑑), both described above inmolecular
data topic. Unlike the RR-BLUP model, which is normally
used in genomic selection, model 2 is characterized as a
mixed model because the environmental effects are consid-
ered in the fixed effects matrix; furthermore, the interaction
of the values assigned to each marker per environment was
confounded with the residue due to high computational cost
involved in estimating the interaction effects of each allele and
the allelic interactions with the environment.

The genetic additive and dominance value of each hybrid
𝑖 was recovered by the sum of additive effects of each allele
within the specimen; that is, 𝛼
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= ∑
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: 𝜙 = {0, 1}, where 𝑘 is the total number of
allelic interactions 𝑙within eachmarker𝑚, 𝑛 is the number of
alleles found in𝑚markers, and𝜆 and𝜙 are indicator variables
related to state of themarker𝑚 in the hybrid 𝑖 for additive and
dominance effects, respectively. It is equivalent to the point
prediction 𝛼
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𝑑 where 𝑖 is the 𝑖th
row of the matrices defined in (4).

Estimates of components of phenotypic variances and
fixed effects were computed by predicting the additive and
dominant effects contained in each marker through REML
[20]. The total genetic variance recovered was regarded as
common for each marker and was calculated as follows: 𝜎2
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[22].

2.4. Cross-Validation and Validation Using Regional Trials.
The cross-validation was performed using the set of hybrids
that comprised the training population. For this purpose, dif-
ferent levels of imbalance were applied to the data set which
corresponded to 58 single cross hybrids.The cross-validation
was performed by resampling a group of individuals using the
generalized Jacknife procedure [23].The generalized Jacknife
method is based on dividing the sample data set 𝐶 into 𝑔

groups of equal size 𝑘, so that𝐶 = 𝑔𝑘. In each of the 𝑔 groups,
𝑘 individuals are removed to form the validation population.

The levels of imbalance ranged from5 to 51%.The additive
and additive + dominance models were used to predict the

genotypic value of each hybrid. The correlation between the
predicted and observed values was used as a parameter in the
cross-validation. Raw molecular data were also used in the
genetic distances as predictors of specific ability of hybrids.
The genetic distance was calculated as 1 − 𝑠

𝑖𝑗

, where 𝑠

𝑖𝑗

is
Jaccard’s genetic similarity.

In the second phase of the study, some hybrids combina-
tions that were not tested in the training phase were predicted
and compared with the results from the regional assays;
that is, all possible combinations of the 51 lines were pre-
dicted based on results obtained from phase one, and those
hybrids present in the regional assays were used to validate
the method. The accuracy was assessed through quadratic
regression fitting between the SCA predicted in the trial set
and the values observed in the regional assays.

3. Results

The genetic variance of the general combing ability of group
1 was 0.055 (t⋅ha−1)2 (lines 1–27; Figure 1), while the genetic
variance of group 2 was 0.077 (t⋅ha−1)2 (lines 28–51; Figure 1).
The sum of the 2 GCA variances was 0.132 (t⋅ha−1)2, which
was a larger value than that found for the variance of SCA,
which was 0.063 (t⋅ha−1)2. The 3 combining ability variances
recovered the total genetic variance calculated in the analysis
of hybrids [0.22 (t⋅ha−1)2]. The heritability was 0.65, and the
phenotypic variance was strongly affected by the interaction
between the hybrids and the environments. The interaction
between the hybrids and the environments was 3 times
greater than the genetic variance and 5 times greater than the
residual variance (𝜎2CGC𝑖 = 0.45 t2 ⋅ha−2 𝜎2CEC𝑖 = 0.23 t2 ⋅ha−2),
indicating that the performance of the hybrids was highly
affected by their interactions with the environments.

The analysis using molecular markers in the lines showed
636 different alleles, with a mean of 8.05 alleles per locus.
The crosses performed, shown in Figure 1, generated 1168
dominance effects; when these were added to the additive
effects, there were a total of 1804 genetic effects that described
nearly all of the genetic variance of the hybrids (𝜎2

𝑔

= 𝑛𝜎

2

𝑎

+

𝑘𝜎

2

𝑑

= 0.25 t⋅ha−1). This result can be confirmed in Figure 2,
where the TEAM-2 model fit, which included the additive
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Table 2: Means, medians, and modes of the correlations between the predicted values of untested hybrids and the outcomes of the test
population, using different sample sizes of disequilibrium in both the additive and additive + dominance models.

Size and percentage of
missing hybrids

Additive Additive + dominance
Mean Median Mode Mean Median Mode

3 (5%) 0.28 0.51 0.95 0.39 0.68 0.94
6 (10%) 0.36 0.44 0.53 0.38 0.47 0.62
9 (15%) 0.21 0.30 0.44 0.36 0.35 0.32
12 (20%) 0.28 0.26 0.26 0.35 0.36 0.37
15 (25%) 0.26 0.29 0.39 0.32 0.32 0.34
17 (30%) 0.25 0.23 0.21 0.30 0.33 0.40
20 (35%) 0.22 0.24 0.27 0.29 0.30 0.39
25 (43%) 0.22 0.23 0.23 0.27 0.27 0.34
30 (51%) 0.15 0.14 0.09 0.27 0.28 0.34
∗

0.10ns 0.07
∗Correlation assessed by genetic distance; nsnonsignificant according to the Mantel test.

and dominance effects, was more effective in describing
the performance of the hybrids than the TEAM-1 model,
which only described the additive effects of markers. Figure 2
shows that the additive effects were more important than
the dominance effects because the fit between the values
predicted using the strictly additive model and the genotypic
value was 0.84, whereas the fit that included the model of
dominance effects became 0.95; that is, the adjustment of
model was increased by 0.11 with the addition of the domi-
nance effects. These results confirm the relationship between
the magnitude of the GCA and the SCA variances calculated
in the diallel analysis.

The process of cross-validation showed that the pre-
diction ability of the TEAM-1 and TEAM-2 methods was
reasonable to low, and the model including the dominance
effects was slightly superior to the strictly additive model, as
shown in Figure 2. Table 2 shows the means, medians, and
modes of the correlations between the predicted and ob-
served values when considering the strictly additive model
(TEAM-1) and the additive + dominance model (TEAM-2).
These results show that as the number of hybrids removed
increases (increased imbalance), themode of the correlations
between the observed and predicted values using the TEAM-
1 model asymptotically tends towards the correlation value
of 0.10 that was observed between genetic distance and grain
production (Table 2, sample size 0∗). This value was very low
and nonsignificant according to theMantel test.TheTEAM-2
model, which we regarded as the additive + dominance
model, was little affected by the number of imbalanced hy-
brids and maintained the most stable correlation, with the
mode of the distribution of correlations remaining in the
range of 0.34, even when more than 50% of the hybrids were
discarded.

In the TEAM-2 model, the regression adjustment be-
tween the predicted hybrids and those observed in the re-
gional assays was 𝑅2 = 0.09 (Figure 3). Figure 3 shows that
most of the high-performance hybrids observed in the re-
gional assays were also those that were predicted to have high
performance in training population (outlined in green), and

R² = 0.09

0
0.2
0.4
0.6
0.8

Pr
ed

ic
te

d 
SC

A

Observed SCA

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.2
−0.4
−0.6
−0.8

Figure 3: Credibility of the predicted values of the hybrids that were
not tested by the TEAM2 method in the test population and the
values recorded in the regional assays.

the low-performance hybrids in the regional assays were also
predicted to have low-performance in training (outlined in
red). These results demonstrate that, in general, this method
might be useful to discard the low-performance hybrids and
selected the high-performance hybrids, even with a low fit.

Figures 4 and 5 show the predictive accuracy of hybrid
performance per parental, considering the parental involved
to be the genitors of at least 4 crosses. The results show that
the prediction led to the selection of the best hybrids and
the exclusion of the worst hybrids for most parental, with
the exception of parentals 5, 10, 11, and 14. Figures 4 and 5
show that the predictive ability was high for crosses involving
parentals 6 and 9 and was low for lines 10 and 11, suggesting
that the method credibility may vary from line to line.

The response between the performance of the 58 hybrids
tested in the training set (first-year tests) and their perfor-
mance in the regional assays (second-year tests) is shown in
Figure 6. On Figure 6(a) we have the measure of the credibil-
ity of the selection of hybrids at first year and their response
at second year. On Figure 6(b) we have the predictive ability
of TEAM-2 obtained for these 58 hybrids in training set, with
the values observed in the regional assays. Considering that
the hybrid heritability was 0.65 in the training population,
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Figure 4: Total effects of associated markers (TEAM2) method fit per line with more than 4 crossing replicates (lines of 1–5).
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Figure 5: Total effects of associated markers (TEAM2) method fit per line with more than 4 crossing replicates (lines 7, 8, 9, 10, 11, 13, 14, 18,
and 26).

the equivalent value for heritability would be expected to
be repeated throughout the other environments because the
SCA and GCA were free of interaction effects. However,
Figure 6 shows that concordance among the performance of
these 58 hybrids in the first and second year was just 0.23 and
that the predictive ability dropped to nearly half (0.13) when
using the performance predicted by the TEAM-2 method, a
value rather close to the accuracy assessed between all 175

predicted hybrids and the values found in the regional as-
says (0.09; Figure 3). These results indicate that when the in-
teraction between genotypes and environments is high, as
was observed in the present study, the BLUP of hybrids
cannot be extrapolated to any environment.

Figure 1 summarizes the whole dynamic of the present
study, showing the hybrids tested in the first year (training
population—black cells), the hybrids tested in the second
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Figure 6: Selective credibility among the hybrids tested in the test population and the hybrids evaluated in the regional assaywhen considering
the traditional method and the total effects of associated markers (TEAM2).

year (regional assay—red cells), and the hybrids that were
predicted to be good in the first year at 20% (green cells).
Cells with the letter B refer to the selected hybrids selected in
the second-year tests. Thus, those cells with the letter B that
are marked in green refer to hybrids that were predicted to
be good and that were confirmed as good in the second-year
tests, that is, those hybrids where the selection was correct.
Conversely, red cells marked in green without the letter B
refer to hybrids that were predicted to be good but that were
not selected in the second-year tests, that is, the selection
error. Figure 1 clearly represents a 0 and 1 function loss; that
is, 0 follows a correct selection (zero loss) and 1 follows an
incorrect selection (total loss). The analysis of this parameter
and a count of the cells in Figure 1 indicated a 50% correct
prediction rate and a 33% error rate. That is, the method was
able to correctly predict 50% of the hybrids selected in the
regional assays; this is an extremely good value because the
predictionwas based on results fromenvironments (locations
of the first-year tests) that were extremely different from the
environments used to validate the method (locations of the
second-year tests). Furthermore, only 33% of the hybrids
discarded in the regional assays were selected, which is an
extremely good value considering the number of markers
used and the number of hybrids tested. This result shows
that this method is better for discarding the low-performance
hybrids than for selecting the best hybrids.

4. Discussion

The genotypic values of SCA and GCA were broken down
into 1804 additive and dominance effects, and the sum of
those effects nearly recovered the genetic variance of the
hybrids. The improvement in prediction using markers was
not higher because the TEAM models did not include the
interaction with environments, and that effect was con-
founded with the residual variance. The interaction between
genotypes and environments was strongly involved in the
phenotypic variance of hybrids andwas the primary cause for

the lack of genetic correlation between hybrids in the 6 loca-
tions evaluated in the second-year tests; therefore, the pre-
diction of genotypic value might have been better if the
interaction with the environment had been included.

The prediction results found in the present study are
encouraging, considering the test population size (58
hybrids), the number of markers used (79 markers), and the
completely different environments between the evaluation
locations of the first- and second-year tests. For example,
Schrag et al. [16, 17] found high values of 𝑅2 (0.16–0.65) using
an imbalance of 50% in a set of 400 tested hybrids and more
than 1,000 molecular markers. Our results reached a fit of
0.15 for that level of imbalance using fewer than 10% of the
number of markers and fewer than 15% of the number of hy-
brids in the test population than were used by Schrag et al. In
contrast, in comparison to the study by [19], who obtained
accuracy values of 0.75 to 0.87 for an imbalance of 10%
when using cross-validation, our results reached 0.62 for
that same level of imbalance and an accuracy of 0.95 with
5% imbalanced hybrids (3 hybrids excluded from the total of
58).

Another key result found in the present study was the in-
effectiveness of using genetic distances to predict the perfor-
mance of maize hybrids. There was only a 0.10 correlation
between genetic distance and grain production, which is a
nonsignificant value according to the Mantel test. Similar
results were found by [9, 15, 24]. Thus, it may be inferred that
it is better to use the data frommarkers as predictors in a lin-
earmodel than to use genetic distances as predictors of hybrid
performance because the amount of data contained in TEAM
is far greater than the distances per se, evenwhenusing an im-
balanced model.

Regarding the methods used to validate predictions, the
studies published in the literature have usually used cross-
validation as a method for assessing the accuracy of predic-
tions and have not tested the predicted value of hybrids in
conditions that differ completely from the test conditions;
that is, under different environments and in competitionwith
genotypes that are completely different from those used in
cross-validation. Accordingly, the present study stands apart
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from all others by using the method efficacy to an extreme of
prediction conditions and by considering that parameter for
validating the method.The results found in the present study
show that the accuracy of prediction for hybrid performance
in locations and conditions of cultivation different from the
test population is similar to that found under levels of im-
balance above 30% (Table 1, Figure 3). Thus, cross-validation
may be used under high levels of imbalance to assess the effi-
cacy of the method in different conditions of cultivation.

Furthermore, the accuracy value was noticeably more
stable than the credibility of selection assessed by using her-
itability because the estimated heritability was 0.65 and the
realized was only 0.23. The value of 0.23 was calculated
through the regression of the genotypic values of 58 hybrids
tested in the training population and their genotypic values
observed in the regional assays. The adjustment was 0.13,
slightly above the adjustment for 175 hybrids that were not
tested in the training population, which was 0.09 (Figure 3).

Another interesting result was the ability of the method
to select hybrids correctly. A function of 0 and 1 type loss is
reached when analyzing Figure 1, considering the value of 0
each time the correct hybrid was selected and the value of
1 each time the wrong hybrid was selected. Figure 1 clearly
shows that 50% (30) of the best hybrids evaluated in the
regional assay were selected using values predicted in the test
population under a selection index of approximately 20%.
Furthermore, only 33% (20) of the hybrids discarded in the
regional assay were selected using values predicted in the test
population. The TEAM method is clearly more efficient in
avoiding type-1 errors (selecting thewrong hybrid) than type-
0 errors (not selecting the correct hybrid), and the mode of
distribution of cross-validation may be used in that case.

The present study demonstrated that the prediction of hy-
brids, especially maize, still requires further study. The in-
crease in the number of markers and individuals in the test
population may be crucial for validating the method. How-
ever, it became evident that the validation in regional assays,
especially in locations and conditions of cultivation different
from those adopted in the test population,may provide awid-
er perspective on the method efficacy to the breeder. Accord-
ingly, the results from this study suggest that validation in
different conditions of cultivation is possible, and the cross-
validation results strikingly represent the field performance.
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Advanta Comércio de Sementes.

References
[1] A. R. Hallauer, M. J. Carena, and J. B. Miranda-Filho,Quantita-

tive Genetics in Maize Breeding, Springer, New York, NY, USA,
2010.

[2] J. S. de S. Bueno Filho and S. G. Gilmour, “Planning incomplete
block experiments when treatments are genetically related,”
Biometrics, vol. 59, no. 2, pp. 375–381, 2003.

[3] R. Bernardo, “Prediction of maize single-cross performance
using RFLPs and information from related hybrids,” Crop Sci-
ence, vol. 34, no. 1, pp. 20–25, 1994.

[4] A. E. Melchinger, “Genetic diversity and heterosis,” in The
Genetics and Exploitation of Heterosis in Crops, J. G. Coors and
S. Pandey, Eds., ASA, Madison, Wis, USA, 1999.

[5] S. Smith, S. Luk, B. Sobral, S. Muhawish, J. Peleman, and M.
Zabeau, “Association among inbred lines of maize using RFLP
and amplification technologies (AFLP and AP-PCR) and cor-
relations with pedigree, F1yield, and heterosis,” Maize Genetics
Newsletter, vol. 68, pp. 1–45, 1994.

[6] L. L. B. Lanza, C. L. de Souza Jr., L. M. M. Ottoboni, M. L. C.
Vieira, and A. P. de Souza, “Genetic distance of inbred lines
and prediction of maize single-cross performance using RAPD
markers,” Theoretical and Applied Genetics, vol. 94, no. 8, pp.
1023–1030, 1997.

[7] A.M.M. Barbosa, I. O. Geraldi, L. L. Benchimol, A. A. F. Garcia,
C. L. Souza Jr., and A. P. Souza, “Relationship of intra- and
interpopulation tropical maize single cross hybrid performance
and genetic distances computed from AFLP and SSR markers,”
Euphytica, vol. 130, no. 1, pp. 87–99, 2003.

[8] M. Balestre, J. C. Machado, J. L. Lima, J. C. Souza, and L.
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