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Simulation of liquid flow 
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intelligence flow field 
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Direct numerical simulation (DNS) of particle hydrodynamics in the multiphase industrial process 
enables us to fully learn the process and optimize it on the industrial scale. However, using high-
resolution computational calculations for particle movement and the interaction between the solid 
phase and other phases in fine timestep is limited to excellent computational resources. Solving the 
Eulerian flow field as a source of solid particle movement can be very time-consuming. However, by 
the revolution of the fast and accurate learning process, the Eulerian domain can be computed by 
smart modeling in a very short computational time. In this work, using the machine learning method, 
the flow field in the square shape cavity is trained, and then the Eulerian framework is replaced with 
a machine learning method to generate the artificial intelligence (AI) flow field. Then the Lagrangian 
framework is coupled with this AI flow field, and we simulate particle motion through the fully AI 
framework. The Adams–Bashforth finite element method is used as a conventional CFD method 
(Eulerian framework) to simulate the flow field in the cavity. After simulating fluid flow, the ANFIS 
method is used as an AI model to train the Eulerian data-set and represents AI fluid flow (framework). 
The Lagrangian framework is coupled with the AI method, and the particle freely migrates through 
this artificial framework. The results reveal that there is a great agreement between Euler-Lagrangian 
and AI- Lagrangian in the cavity. We also found that there is an excellent agreement between AI 
overview with the Adams–Bashforth approach, and the new combination of machine learning and 
CFD method can accelerate the calculation of the flow field in the square-shaped cavity. AI model can 
mimic the vortex structure in the cavity, where there is a zero-velocity structure in the center of the 
domain and maximum velocity near the moving walls.

Computational methods and mathematical simulations help process engineering tools have their role in two 
aspects. First, comprehending complex process engineering, which includes potentially rate-limiting transport 
phenomena. Moreover, the next one refers to designing unit operations, and completing process plants. Multi-
scale simulations received much attention due to linking with two elements, including phenomena and processes 
at various time and length  scales1,2. CFD simulations are extensively used in different industrial processes, such 
as multiphase flows, and interaction between phases. This numerical tool can provide a new framework to 
understand the process and calculate some parameters in the flow that are difficult to measure in experimental 
observations or time  consuming3–12. The progress in process modeling has been enhanced by increasing the 
computational power. CFD approach standing for computational fluid dynamics has a significant role in the 
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mentioned trend. However, the engineering community is taking advantage of the Adams–Bashforth method 
to simulate the flow filed in different industrial  scales1,13.

The Adams–Bashforth method refers to an approach that is conventional CFD modeling. In classical process 
engineering, continuum models are mostly preferable rather than using ‘particle’ based models. However, a large 
number of transport phenomena textbooks that comment on kinetic gas theory deal with how chaotic molecu-
lar movements are at the basis of phenomenological transport coefficients. This model, which is a capable and 
numerical one, is based on molecular motion information. It is also able to simulate fluid flow in the complex 
geometry, and in particular, in reactors, while solid particles are linked with the fluid flow  solver1.

Fluid–particle flows are often encountered in different industrially significant reactors, so the gas-fluidized 
bed is an essential instance for this use. Fluidized beds are mostly used due to their appropriate heat and mass 
transfer characteristics. This interaction between solid phase and liquid phase can be seen in other applications, 
such as nanofluid  matter14. But the problem of staying with them is that their complex hydrodynamics is not 
fully understood, leading to severe difficulties in the scale-up of these solid–gas  interactions15–17.

Numerical simulation flow in the geometry is connected with solid particles and needs high computational 
time as well as cautious CFD model implementation in the CFD model. Not long ago, machine learning is smartly 
applied for combining with CFD results and promote the overall optimization process and therefore produce con-
tinuous  results18. Moreover, soft computing methods exist, which are neural networks support vector machines, 
evolutionary algorithms, and adaptive neuro-fuzzy inference system (ANFIS) that have been suggested in other 
literature for simulating physics in real-life  uses19–21. There are several studies about mapping CFD data-set into 
machine learning methods such as a combination of neural network or ant colony with fuzzy structure system. 
These mapping strategies have been used in different industrial and scientific processes such as bubbly  flow22,23 
and thermal distribution in nanofluid  devices24,25. They showed that there is a great agreement between CFD 
and prediction results and suggested this mapping solution as alternative ways for prediction of process. This 
type of prediction has also proposed a non-discrete prediction methodology. However, there are many studies 
about the prediction of numerical data set with machine learning  methods2,26. As far as the ANFIS method can 
train complicated relationships, the method becomes widespread and attracted the attention of researchers. The 
ANFIS method has an intelligent behaviour for the comprehensive as well as complicated algorithm referring to 
the  method20. Moreover, the method has the potentiality to adjust its accuracy in situations whenever making 
a decision is hard.

In the learning step of this method, we need a suitable selection of training output, which is needed for the 
accurate development of the ANFIS tool. The ANFIS technique can simulate the fluid flow and temperature 
distribution in a lid-driven cavity; therefore, researchers, including Azwadi et al. utilized this method for the 
mentioned  purpose27 in which simulation of heat transfer behaviour was carried out in a 2D system, consider-
ing different Reynolds numbers. The results of their study revealed that the developed ANFIS model has the 
potentiality to simulate the temperature and flow fields in a very limited time. Not long ago, the ANFIS was used 
for simulating flow pattern within a bubble column reactor. Pourtousi et al.28,29 are the researchers who applied 
information about the hydrodynamics of multiphase reactors for the training step. The researchers of the study 
found that CFD and ANFIS can be used as a perfect tool for estimating BCR behaviour. They reported that the 
ANFIS algorithm is a suitable method that can be substituted for the CFD method for simulating bubble flow 
within the BCR. For the case of homogeneous flow regime, the simulation of bubble flow is possible, meaning 
that the bubbles need to be identical with a spherical shape and velocity in the BCR.

To the best of our knowledge, the combination of machine learning and the CFD method has not been 
fully used to predict the behaviour of solid materials in the fluid flow, and physical interaction between fluid 
and solids. In addition, many machine learning methods used CFD results to mimic similar conditions of flow 
or optimize the process based on CFD results. Still, machine learning methods do not play mathematical or 
physics-driven rules in the calculation of physics, and everything is based on CFD or experimental calculations. 
In previous studies, also reported that machine learning methods are assistance tools beside CFD methods for 
faster optimization of the process or finding some connections between inputs and outputs  results18. However, 
there is great potential for this framework to predict some parts of the process. For example, the AI framework 
is an alternative method of the Eulerian method. In this case, one can predict fluid flow with CFD results, and 
solid material can couple with this framework.

In this study, we used a machine learning method in order to generate the artificial intelligence (AI) flow field 
for particle movement in a square shape cavity. The flow field is simulated with the Adams–Bashforth method, 
and through the results of the flow field, the ANFIS method is trained to predict the flow field without having 
exact CFD data. The new method of training is used for learning CFD data throughout the domain in which 
the domain size is classified for each computing node. After the prediction of the fluid flow, the AI flow field is 
used instead of the Euler-Euler method, and then we couple the Lagrangian method with the AI method. After 
coupling these two methods, we simulate particle through the meshless AI method.

Method
CFD method. In this study, a second-order Admas-Bashforth method is employed to determine the fluid 
flow inside a square cavity. The time splitting method is applied to remove the pressure term at the first step, and 
the time is predicted by using the Adams–Bashforth scheme:

where H is the convection term and δt is time step. U∗ Represents velocity at the first step before determining the 
pressure field. Un is the velocity at previous time step. In order to obtain the velocity at time n + 1, first, we need to 
solve the pressure Poisson by using U∗ . Then, the corrected velocity can be calculated from the below equations:

(1)U
∗
= U

n
+ 1.5δtH

n
− 0.5δtH

n−1
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The fluid flow near the moving walls is maximum, and by approaching the center of the domain, the stagnant 
point of flow has appeared. In this case, the large vortex structure is generated throughout the domain. All veloc-
ity components are used for training the machine learning method to mimic the artificial vortex structure in the 

(2)∇ .U
∗
= δt ×∇

2
P
n+1

(3)U
n+1

= U
∗
− δt × δx

−1
×�P

n+1

Table 1.  Description of ANFIS layers.

Layer number Description Layer number Description

1 Implementation of membership functions (Fuzzifica-
tion) 4 Implementation of consequence parameters

2 Firing strengths creation (rule layer) 5 Preparation of the output (Defuzzification)

3 Normalization of firing strengths (Normalization)

Figure 1.  Training error for prediction model of U velocity.

Figure 2.  Training error for prediction model of V velocity.
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cavity. In several studies, the finite volume technique is employed for the discretization of complex equations, 
and with the Eulerian  method2, they solved the fluid flow domain for two-phase flow.

This work studies the behaviour of the particles and their effect on the fluid by employing Eulerian–Lagran-
gian method under the condition of Re = 470, the kinematic viscosity of the liquid (ν) = 0.0372 (kg  m−1 s−1) and 
the wall velocity  (Uo) = 0.175 (m  s−1). The trajectory of a particle with diameter of 3 mm and specific gravity 
1.21 in a grid size of 100 × 100 was calculated. In the Lagrangian term, the 4th order Runge–Kutta method is 
employed to solve the particle  motions14.

ANFIS algorithm. In this study, we utilize ANFIS, which is a combination of neural networks and fuzzy 
approaches and consists of five layers, as shown in Table 1. We implement 202 ANFIS models to predict the fluid 
velocities (101 models for U and 101 models for V velocity). It can be mentioned that the structure of all ANFIS 
models is similar. Each model belongs to a specific width of the cavity, starting from 0 to 100 (101 in total).

Two variables, which are height in cavity and time, are considered as the inputs of the model, and U and V 
velocities are separately considered as the outputs of the model. All CFD simulation results are divided into two 
categories, which are training and test data sets, and every model is trained by training data set for 500 iterations 
in order to reach an appropriate accuracy and convergency. After training, the accuracy of each ANFIS model 
is evaluated by means of the test data set.

Machine learning validation. For faster computational calculations, we use the individual ANFIS method 
for each element in x computing directions. This computational procedure accelerates the overall computing 
ability in the learning process. For validation of the ANFIS algorithm in prediction of flow in the square-shaped 
cavity, we calculate RMSE as a function of the iteration for velocity in x and y directions. Figures 1 and 2 show 
the RMSE for different computational iterations for U and V velocities. The results show that RMSE reduces as 
the iteration rises. For U and V velocity, we need almost 350 iterations to reach convergence.

Implementation of CFD results in AI framework. For this study, the CFD computing method is 
employed to simulate the fluid flow in the cavity domain, and each time step is saved into the memory. In the 

Figure 3.  Schematic figure transformation of CFD results in the AI domain.
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next stage of calculation, the steady-state results are used for the training of AI. In this step, the AI method learns 
the process and provides results for minimal time steps. All results of AI are coupled with Lagrangian calculation 
to show the movement of particles in the square shape domain. Learning CFD results for two layers of fluid is 
shown in Fig. 3. All flow characteristics can be trained in x and y computing directions, and then can be repre-
sented in x and y computing AI structure.

Boundary condition and physical problems. In this work, the square shape cavity domain is simu-
lated by the CFD technique. The top wall moves from left to the right side, and other walls are fixed as a no-slip 
boundary condition. In this condition, a larger vortex is generated in the center of the domain with zero velocity 
at the center and solid walls, and maximum velocity near the moving walls. All computing nodes at the initial 
condition contain zero values by running the CFD algorithm, and the interaction between computing nodes, the 
solution is generated for each local node.

Results
The flow pattern in the square shape cavity is solved by the Adams–Bashforth approach. The evolution of the fluid 
nodes as a function of time is trained with the ANFIS method as a machine learning approach. After training 
the flow field, the artificial flow field is created by the intelligent algorithm, and solid particles can be coupled 
into the new field. This new combination of AI and CFD can provide the new framework of modeling that leads 
to faster computing of particle motion in a fully resolved AI flow field.

In the first layer of the ANFIS model, four different membership functions are implemented by using time 
and Y values. Figures 4 and 5 portray the plots of membership functions in ANFIS models to predict U and V 
velocities, respectively.

Figure 6a shows the comparison of CFD and AI modeling for simulation of the flow pattern in the cavity at 
the beginning of CFD simulation, 500-time steps. The liquid flow has maximum velocity near the moving walls, 
and during the prediction of AI, we also observe the maximum velocity near the moving walls. While near the 
center of the cavity, one large vortex is generated with zero velocity in the center of the vortex structure. It is also 

Figure 4.  Plots of membership functions for time (input 1) and Y (input 2) as inputs of U prediction model.

Figure 5.  Plots of membership functions for time (input 1) and Y (input 2) as inputs of V prediction model.
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indicated the evolution of vortex generation in AI and CFD methods. As the velocity of the top wall increases, 
the fluid layer near the wall migrates to the right, and eventually, other layers of fluid are following the first layer 
near the top walls and move to the right side. The velocity from the top to the center of the domain decreases, 
and therefore, we achieve to stagnation point where the fluid flow has zero velocity. AI structure can accurately 

Figure 6.  Flow pattern at iteration number 500 (a), 2500 (b) and 5000 (c).
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predict this fluid–structure on the top and center of the domain. The evolution of the vortex structure over time 
is fully predicted by AI. Figure 6b,c depict that the AI can follow the movement of the vortex structure that 
moves to the right side. However, near the walls, the AI cannot fully recognize the wall boundaries, and we need 
filtration for this boundary condition.

After the prediction of fluid flow by the Euler-Euler method, we use a fluid flow data-set to train the ANFIS 
method, and then as a result of training this method, we can represent artificial Euler-Euler fluid flow domain. 
In this case, we couple the Lagrangian framework with the AI method, and we add solid particles through the 
domain. After adding particles in the AI domain, a particle can move near the moving wall, and then it migrates 
to the center of the domain. Figure 7 also shows flow patterns for different number of iterations. In this case, the 
flow pattern changes from 3000 to 4000 iteration, and the center of vortex structure changes. The AI method and 
CFD method both can show the flow structure near the walls and center of the domain.

For validation of this new framework, we fully simulate particle in CFD, and then we compare results with 
AI- Lagrangian method (Fig. 8). The results indicate that there is a great agreement between the Euler-Lagrangian 
and AI-Lagrangian. As this domain is independent of CFD generation mesh and CFD time step, the particle can 
freely move in the AI space and time. Additionally, in the method of AI-Lagrangian, we can capture more details 
of particle dynamics as we can provide very fine time step and space.

Figure 7.  Flow pattern at iteration number 3000 (a) and 4000 (b).
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Movement of solid materials based on AI fluid can explore more details of particle movement, and the 
interaction between solid and fluid flow, as the AI domain, is not limited to time step and numerical issues and 
instabilities. Figure 8 shows that the particle can cover more space in the field because of the very fine timestep 
of AI simulations. However, in CFD changing time step causes numerical instability or very high computational 
expenses. Compared to previous works, AI structure plays a computing rule, not optimization of the process 
based on CFD results. In this case, the AI method can take care of all flow calculations, and use this information 
for solid material dynamics for movement of particles.

Conclusions
The simulation of the flow inside the cavity by CFD methods can be computationally expensive. In contrast, by 
the development of AI methods and learning algorithms, CFD methods can transfer their rules to AI and only 
participate in the learning process. In this study, the Adams–Bashforth approach is used to simulate the flow field 
in the cavity, and the ANFIS method learns the information of the flow field in the domain. The new learning 
process is used to determine the flow field in which the ANFIS method learns all x computing direction nodes 
during the training process. The calculated flow field with AI follows the same direction of the CFD method near 
the moving walls and center of the domain. This new combination of CFD and AI has the potential to picture the 
vortex structure in the middle of the cavity. However, the prediction of the flow behaviour near the solid walls 
is not similar to the CFD study, and we need to define these boundary conditions in the AI method separately 
or filter data near the solid walls. The AI method is used beside the Lagrangian framework to simulate particle 
movement in the fluid flow. This AI- Lagrangian method can predict particle motion in a shorter time step in 
a meshless environment. The results also show that particle in AI fluid flow has a similar behaviour as Euler 
framework. This combination of CFD and AI also causes faster computational interactions to predict the flow 
field in the cavity. AI model enables us to memorize all fluid flow characteristics in a short computer memory, 
which is useful for storing many fluid flow characteristics information.
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