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ABSTRACT
Pesticide spray drift is potentially a significant source of exposure to off‐target, adjacent aquatic habitats. To estimate the

magnitude of pesticide drift from aerial or ground applications, regulatory agencies in North America, Europe, and else-
where rely on spray drift models to predict spray drift deposition for risk assessments. Refined assessments should ultimately
depend on best‐available data for exposure modeling. However, when developing lower tier “screening” assessments
designed to indicate whether further refinement is needed, regulators often make conservative assumptions with a resulting
increased level of uncertainty in estimating environmental exposure or risk. In the United States, it is generally accepted that,
to ensure conservative regulatory assessments, it is reasonable to assume that the wind speed might be 4.47 m/s (10 miles
per hour [mph]), the relative humidity and temperature are highly conducive to drift, and the wind is blowing directly toward
a receiving water for any given single spray event in a season. However, what is the probability these conditions will all co‐
occur for each of 4 sequential spray events spaced a week apart (common practice for insecticides)? The refined approach in
the present study investigates this question using hourly meteorological data sets for 5 United States Environmental Pro-
tection Agency (USEPA) standard crop scenarios to understand how real‐world data can reduce unnecessary uncertainty for
sequential applications. The impact of wind speeds, temperatures, relative humidity, and wind direction at different times of
day on annual drift loadings has been examined using a stepwise process for comparison with corresponding regulatory
default loading estimates. The impacts on drift estimates were significant; interestingly, the time of day of the applications
impacted variability more than did the selected crop scenario. When all these real‐world factors were considered, estimated
30‐y total drift loads ranged from 2% to 5% greater than the default estimate (2 of 30 cases due to high afternoon wind
speeds) to 51% to 86% reductions (25 of 30 cases) with an overall average reduction of 63%. Integr Environ Assess Manag
2020;16:197–210. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Peri-
odicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
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INTRODUCTION
Spray drift deposition resulting from pesticide applica-

tions is a potential source of exposure to off‐target, adjacent
habitats. To determine the magnitude of off‐target spray
drift that occurs from aerial or ground applications, regu-
latory agencies in North America, Europe, and other parts of
the world rely on spray drift models to predict spray drift as

a part of their environmental risk assessments. As such, both
the development and parameterization of these models are
important for determining the most appropriate off‐target
drift percentages to use in regulatory risk assessments.
Previous field study analyses demonstrated that wind speed
and other meteorological factors have a major effect on
spray drift deposition (Payne and Thompson 1992; Bird
et al. 2002; Teske et al. 2003; Wang and Rautman 2008).
Consequently, in the United States, standard US Environ-
mental Protection Agency (USEPA) Tier II surface water ex-
posure modeling uses default conservative drift‐related
parameters (wind speed, temperature, and relative
humidity) as inputs into the AgDRIFT model (version 2.1.1)
to represent a single high‐exposure condition over a 30‐y
simulation for both single applications and for every aerial
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application of a sequence of pesticide applications during a
season (USEPA 2012; White et al. 2013). As an additional
conservative assumption, all applications are assumed to be
applied with the wind blowing at a relatively high speed
toward the receiving water body. For a single application,
this is probably not an unreasonable hypothesis to ensure
conservative parameterization for a standard exposure
modeling crop scenario. However, the probability of this
combination of circumstances occurring for every one of a
seasonal series of multiple applications (which are common
on many insecticide and fungicide labels) will decrease
significantly as the number of applications within a growing
season increases. In the real world, the likelihood of multiple
sequential aerial applications spaced days apart and all ex-
periencing identical and adverse meteorological conditions
is vanishingly low. Moreover, assuming this co‐occurrence of
sequential spray applications with adverse wind conditions
will happen every year for 30 y is an even less realistic
proposition. For pesticide registrations within the European
Union (EU), the FOrum for the Coordination of pesticide fate
models and their USe (FOCUS) Task Force provides guid-
ance for regulatory exposure modeling (FOCUS 2001, 2014;
EFSA PPR 2013). For an EU regulatory risk assessment with a
sequence of pesticide applications, FOCUS recommends
reducing the drift percent of each individual application as
the number of applications increases (e.g., for corn at a 1‐m
distance to water body, the drift is 2.8% for a single appli-
cation, 2.4% for 2 applications, 1.9% for 4 applications, and
1.5% for 8 applications).
The main objective of the present study was to examine

the conservative USEPA drift assumptions for sequential
aerial applications using a stepwise drift refinement ap-
proach. To achieve this goal, a detailed analysis of the im-
pact of real‐world climatic conditions on estimated annual
drift mass loads from multiple applications for a select set of
USEPA regulatory crop‐specific scenarios using a standard
generic aerial application regime was compared to USEPA
default drift mass loads.
Another objective of the present study was to analyze the

variability of hourly measured climate parameters
throughout the 24‐h day (in 4‐h increments). This evaluation
allowed comparison of how the climate parameters
changed throughout the day across locations and how this
impacted the drift estimated by the AgDRIFT model and the
resulting annual drift mass loadings. According to Hoffman
and Salyani (1996), studies have shown that diurnal timing of
spray applications can have significant effect on off‐target
spray drift due to the variation in climatic factors throughout
the day; and therefore, spray timing is often used to miti-
gate potential drift risk (USEPA 2017). In general, drift loads
are lower for nighttime (lower wind speed and temperatures
and higher relative humidity, which are associated with
lower drift) as compared to daytime (higher wind speed and
temperature and lower relative humidity, which are asso-
ciated with higher drift) (Hoffman and Salyani 1996).
Interestingly, there was not a great deal of data published

on spray drift in the last decade. More recent research on

spray drift has often been focused on spray drift reduction
technologies (Jackson et al. 2012; Hilz and Vermeer 2013;
USEPA 2018a). In addition, model improvement continues
in government organizations in the United States (Teske
et al. 2011, 2018, 2019) and in Canada (Wolf et al. 1993;
Wolf and Caldwell 2001).

METHODS AND RESULTS
The USEPA guidance for standard Tier II exposure as-

sessments requires off‐target drift to be computed with the
AgDRIFT model (version 2.1.1) (USEPA 2012) or with
the precomputed drift values in the guidance document
(White et al. 2013). The AgDRIFT model is a modified ver-
sion of the AGricultural DISPersal model (AGDISP) and was
jointly developed by the US Department of Agriculture’s
Forest Service and the Spray Drift Task Force (SDTF).
AgDRIFT is capable of estimating spray drift deposition for
pesticide spray buffer evaluations and was adopted by
USEPA for use in regulatory modeling. Two significant im-
provements involving the step size algorithm and droplet
evaporation assumptions have been made to the AGDISP
model since the adoption of AgDRIFT by USEPA (Teske
et al. 2011, 2018, 2019); however, the latest version 2.1.1 of
AgDRIFT used by USEPA for regulatory modeling has not
been updated with these improvements. Therefore, the
current version of AgDRIFT consistently overpredicts drift
estimates compared to the AGDISP model, which now
better fits the data set developed by the SDTF.

AgDRIFT consists of a Tier I approach for ground, airblast,
and aerial applications and Tier II and Tier III approaches for
aerial applications only. For standard USEPA exposure
modeling, the default droplet size for AgDRIFT Tier I aerial
applications corresponds to those from a nozzle that de-
livers droplets classified as American Society of Agricultural
and Biological Engineers (ASABE, incorrectly referred to as
ASAE in AgDRIFT) Fine to Medium droplet size, assuming
no drift setback buffer resulting in an application with off‐
target drift load of 12.5% of the nominal application rate
entering an immediately adjacent rectangular receiving
water (1 ha; 63.61m × 157.2m). The parameters for the
AgDRIFT Tier I and Tier II aerial (agricultural) simulations are
provided in Supplemental Data Table SI‐1. In order to mit-
igate the predicted off‐target drift from an application,
USEPA may require a drift setback buffer or a specific
droplet size range to be included on a product label. The
AgDRIFT Tier I aerial simulations can be repeated using a
coarser droplet size and/or a setback buffer distance. For
example, when a label mandates a 45.7‐m (150‐ft) drift
setback buffer and an ASABE Medium Coarse droplet size,
then the percent off‐target drift decreases to 1.97%. Thus, it
is possible to use the AgDRIFT Tier I aerial model approach
to take account of common drift mitigation requirements;
however, simple logic suggests that other standard as-
sumptions underlying these model runs (especially those
regarding wind speed and direction) will often contribute
very significant conservatism under real‐world conditions.
The present study utilizes the AgDRIFT Tier II aerial model
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approach to provide a thorough analysis to determine the
potential impact of these assumptions. In standard USEPA
exposure assessments, the drift loading to the standard
pond assumes the following:

1) that the wind is always blowing toward the off‐target
receiving water body,

2) that the wind speed is 4.47m/s (10mph), and
3) that the temperature and relative humidity are 30 °C

(86 oF) and 50%, respectively.

For any single aerial application, although the combination
of circumstances listed above clearly remains a high‐end
exposure case, it is probably not an unreasonable hypothesis
to include in a scenario given that there is a finite probability
that these variables could co‐occur in this adverse manner.
However, the probability of this combination of factors co‐
occurring for each of a sequence of multiple applications
(which are common on pesticide labels and which are
therefore a key element in aquatic exposure assessments for
most crops with potential pest or disease problems) will be-
come increasingly lower as the number of applications within
a growing season increases. This evaluation examines this
hypothesis with 3 steps of drift modeling refinements: 1)
historical climate data including wind speed, temperature,
and relative humidity; 2) historical wind direction data; and 3)
combined wind speed, temperature, relative humidity, and
wind direction data. The progressive impact that these steps
of refined drift modeling have on the mass loading into the
off‐target receiving water body are shown. These 3 climate‐
related analyses were conducted for 5 crop scenarios for a
single generic pesticide which already has droplet size and
no‐spray buffer restrictions.
Although factors such as the pesticide KOC and half‐life in a

water body will often impact the potential time course of
exposure concentrations resulting from drift (and runoff) off‐
target transport, the present analysis was designed simply to
investigate the impact of wind speed, relative humidity,
temperature, and wind direction on estimates of potential
off‐target drift transport. Consequently, the present analysis
standardized the numbers of applications, application inter-
vals, and application rates in order to examine the effect of
real‐world combinations of drift‐related weather parameters
recorded at 5 National Oceanic and Atmospheric Admin-
istration (NOAA) Solar and Meteorological Surface Ob-
servation Network (SAMSON) weather stations (NOAA 2013)
representing different seasonal start dates (due to different
crop emergence dates) and regional climatic regimes.

Default modeling approach

For the present study, 5 USEPA regulatory standard sce-
narios within the Pesticide Water Calculator (PWC, version
1.52) (USEPA 2016) model and their standard crop weather
station locations were selected for the evaluation of the im-
pact of the wind speed, temperature, relative humidity, and
wind direction on off‐target drift mass loadings onto an off‐
target area or water body. The USEPA standard scenarios

utilized in the present analysis were CA Tomato, CA Melon,
FL Turf, IN Corn, and NJ Melon (USEPA 2016). The locations
of the weather stations were Fresno, California (CA Tomato
and CA Melon); Daytona Beach, Florida (FL Turf); Indian-
apolis, Indiana (IN Corn); and Wilmington, Delaware (NJ
Melon), USA; details are provided in the Supplemental Data.
These scenarios were selected for the present study due to
having relatively low erosion vulnerability and reflecting a
range of regional climates. It is important to note that the CA
weather station is the same for both the tomato and melon
scenarios; however, the application timing and associated
weather parameters for each of these scenarios differ due to
the crop emergence date within each scenario (CA Tomato is
March 1st and CA Melon is May 16th).
Modeling simulated a generic pyrethroid active in-

gredient; specific application patterns for each scenario are
provided in detail in Supplemental Data Table SI‐2. The
application pattern for the default assumptions modeling
included 4 sequential aerial applications at a nominal rate of
0.1 kg/ha (similar to pyrethroid label rates) and a 7‐d interval
starting 7 d prior to the crop emergence date specified in
each scenario. For the present study, the default assumption
aerial off‐target drift percent reflects an ASABE medium to
coarse nozzle refinement and a drift setback buffer of 45.7m
(150 ft) resulting in a default drift of 1.97% for each appli-
cation using the standard assumptions about temperature
(30 °C or 86 °F), relative humidity (50%), and wind speed
(4.47m/s or 10mph) and direction (toward the water body).
Annual drift mass loads and the resulting 30‐y drift mass
loads (based on 1961–1990 weather data) were calculated
for each of the 5 scenarios.

Estimating annual off‐target drift loads

Estimation of annual off‐target drift loads for the higher
tier drift modeling in the present study was conducted in
3 steps. The first investigates the impacts of 3 key climatic
AgDRIFT model inputs (wind speed, ambient temperature,
and relative humidity) on multiple sequences of days. The
second simply evaluates the likelihood that all applications
are made with the wind blowing in the prevalent direction of
the off‐target water body. The third step combines Step 1
and Step 2. The detailed methodology for each of these
steps is provided in the following sections.

Step 1: Drift load analysis: Wind speed, temperature, and
relative humidity. The first refinement investigated was the
combined impact of wind speed, temperature, and relative
humidity as a single parameter. As wind speed and tem-
perature increase, drift increases, and as relative humidity
increases, drift decreases. The default assumption drift
computed from AgDRIFT has a calculated drift of 1.97%.
Examples of the influence of wind speed, temperature, and
relative humidity on off‐target drift are shown in the fol-
lowing list. Keeping other parameters at default values,

• if temperature decreases to 24 °C (75 °F), drift decreases
to 1.84%;

Integr Environ Assess Manag 2020:197–210 © 2019 The AuthorsDOI: 10.1002/ieam.4221

Wind Speed and Wind Direction Impact on Pesticide Drift—Integr Environ Assess Manag 16, 2020 199



• if wind speed decreases to 2.24m/s (5 mph), drift de-
creases to 1.72%;

• if relative humidity increases to 75%, drift decreases to
1.58%; and

• if all of the above variations are combined, drift de-
creases significantly to 0.86%.

All crop scenarios had 7 application sets with 4 applica-
tions at a 7‐d interval; weekly insecticide treatments may be
required for severe infestations and are often permitted on
product labels. To obtain sufficient distributional data to
properly sample the potential combinations of climate data
relevant for each crop–location combination, it was as-
sumed that, in addition to the designated starting applica-
tion date (e.g., 7 d prior to crop emergence) there was a
window of alternative start dates, each 1 d later than the
previous one. For each crop scenario, alternative start dates
were identified until the next day fell on the date scheduled
for the second aerial application corresponding to the
original start date. The first application in Set 1 for CA To-
mato is made on 22 February, CA Melon on 9 May, FL Turf
on 25 January, IN Corn on 8 May, and NJ Melon on 24 April
(see Supplemental Data Table SI‐3 for all application dates
and sets). Consequently, wind speed, temperature, and
relative humidity combinations to be used as inputs for
AgDRIFT were retrieved from the USEPA hourly SAMSON
weather data for the individual weather stations associated
with each standard crop scenario (USEPA 2018b). Temper-
ature data were rounded to the nearest multiple of 5 °F,
relative humidity was rounded to the nearest multiple of
5%, and wind speed was rounded to the nearest integer
speed (mph). Given that these parameters can vary sys-
tematically throughout the day, the effect of time‐of‐day
was examined in each crop scenario analysis using values
separated by 4 h by obtaining the measured wind speed,
temperature, and relative humidity for 6 set times of day
(0400, 0800, 1200, 1600, 2000, and 2400 h) on each of the
prescribed application days to give 6 equivalent time sets of
co‐occurring weather measurements for each sequence of
application days (i.e., applications at 0400 h on every ap-
plication day, at 0800 h on every application day, etc.). An
initial analysis showed the same general pattern of wind
speed and direction for the 6 selected hours versus all 24 h
for each of the scenario’s weather stations, indicating the
6 selected hours are representative of all 24 h for each
scenario. It is important to note that the CA Tomato and CA
Melon scenarios share the same weather station for regu-
latory modeling; however, because their application win-
dows are different, they generated 2 entirely independent
data sets.
Additionally, the frequency and percentage of applica-

tions that occur when wind speeds are exceeding 6.71m/s
(15mph) across each of the same 5 scenarios were eval-
uated. As expected, the results vary considerably across the
scenarios with the highest 6.71m/s (15mph) exceedance
frequencies associated with the midday hours for the FL
Turf, IN Corn, and NJ Melon scenarios. The data for

these analyses is provided in detail in Supplemental Data
Table SI‐4.

The extracted data were processed to produce model
inputs; temperatures below 0 °C (32 °F) were truncated at
0 °C. Wind speeds exceeding 6.71m/s (15mph) were
capped at 6.71m/s due to pyrethroid labels restricting ap-
plications to wind speeds equal to or below 6.71m/s. This
process was repeated for all 30 y of the weather set used for
each crop scenario. Table 1 compares the 30‐y mean cli-
mate parameter values for all 6 application hours of Set 1
application dates for the 5 scenarios with the default regu-
latory assumptions (see Supplemental Data Table SI‐5 for all
sets of data). In general, compared to the 30‐y average
values of drift parameters for those dates for each scenario,
the 4.47m/s (10 mph) wind speed default is slightly over-
estimated, the 30 °C (86 °F) default temperature is consid-
erably warmer, and the 50% relative humidity assumption is
generally an underestimate.

Each time‐period–day combination of wind speed, tem-
perature, and relative humidity for a given year was then
processed using the AgDRIFT model (version 2.1.1) using
the Tier II Aerial option and run with an ASABE Medium to
Coarse droplet size (required on pyrethroid product labels).
The percent of off‐target drift was then calculated by the
“Toolbox‐Aquatic Assessment” using the “EPA‐Defined
Pond” with a 45.7‐m (150‐ft) nonsprayed buffer distance to
the water body. Those setback buffer distance and the
droplet size parameters reflect mandated pyrethroid label
requirements. For Step 1, it was assumed that the wind was
blowing directly toward the water body on each application
day and time. This process was repeated for all 30 y of the
weather set used for each crop scenario.

Using the off‐target drift percent calculated from
AgDRIFT for each application, the resulting drift load esti-
mates (drift percent × 0.1 kg/ha application rate × 1‐ha sur-
face area of pond) were then summed for all aerial
applications in that year separately for each time of day.
These annual drift load estimates from each of the 30 in-
dividual years were each divided by the annual default as-
sumption drift load (4 applications at 0.1 kg/ha with 1.97%
drift). The resulting ratios were then ranked and plotted as
annual exceedance probabilities to produce a set of 6 dis-
tributions of expected annual drift load ratios (one for each
4‐h application time of day). The individual drift loads for
each individual year could then be compared with the drift
load used for default assumption model runs in which 100%
of the theoretical annual maximum AgDRIFT load was
transported to the receiving water on every occasion in
every year. This process was repeated 6 times for each of
the alternative start dates to produce 7 application sets of
output. As an example, Figure 1 shows these results for 4
CA Tomato scenario application sets and Figure 2 shows
Application Set 1 for the other 4 scenarios. Similar figures for
all application sets for each scenario are provided in Sup-
plemental Data Figures SI‐1 to SI‐5.

The off‐target drift load results displayed in Figure 1 and
Figure 2 plot the loads versus the exceedance probability
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Table 1. Example 30‐y average values of climatic drift parameters for CA, FL, IN, and NJ weather stations at 6 times (0400, 0800, 1200,
1600, 2000, and 2400 h) on 4 Set 1 application dates

Weather parameter Scenario

Representative hour (Set 1)a

All times for Set 10400 0800 1200 1600 2000 2400

Wind speed, m/s
(Default= 4.47m/s or 10 mph)

CA Tomato 2.67 2.79 3.45 3.88 2.91 2.70 3.07

CA Melon 3.15 3.41 3.48 4.40 4.74 4.35 3.92

FL Turf 2.86 3.26 5.18 5.35 3.53 3.30 3.91

IN Corn 3.35 4.17 5.13 5.33 4.24 3.74 4.33

NJ Melon 3.61 4.51 5.37 5.57 4.51 3.92 4.58

Temperature, oC
(Default= 30 °C or 86 oF)

CA Tomato 7.6 8.7 15.6 17.7 12.7 9.3 12.0

CA Melon 13.6 18.5 26.0 28.6 23.1 17.1 21.1

FL Turf 11.3 12.2 18.7 19.1 14.8 13.2 14.9

IN Corn 13.4 15.8 20.8 22.2 19.0 15.3 17.8

NJ Melon 10.6 13.6 17.9 18.4 14.8 12.1 14.6

Relative humidity, %
(Default= 50%)

CA Tomato 87.9 82.1 57.7 47.9 68.3 81.9 71.0

CA Melon 70.7 54.3 33.9 26.3 37.7 55.3 46.4

FL Turf 84.8 83.2 61.4 60.0 77.4 82.7 74.9

IN Corn 83.4 76.5 59.9 53.9 62.8 76.0 68.8

NJ Melon 78.7 69.8 55.9 55.6 66.9 75.0 67.0

CA=California, USA; FL= Florida, USA; IN= Indiana, USA; mph=miles per hour; NJ=New Jersey, USA.
aOnly 1 application set (Set 1) is shown (additional application set and scenario data are in Supplemental Data). Averages were computed assuming a maximum
wind speed of 6.71m/s (15 mph) and lower temperature limit of 0 °C (32 °F).
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Figure 1. AgDRIFT estimated drift loadings for sequential aerial applications for 6 application times based on wind speed, temperature, and relative humidity data from
the CA Tomato scenario (only Sets 1–4 are shown; however, similar patterns are seen for Sets 5–7 (see Supplemental Data Figure SI‐1). CA=California, USA.
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(Haan 1977). In the default assumption simulations, every
year generated the same aerial drift load; these default as-
sumption distributions are therefore vertical lines with every
load being 100% of the standard AgDRIFT load. The re-
maining lines reflect the ranked distribution of total aerial
drift loads across 30 y for each of the 6 times of day. As
an example of interpretation, using Application Set 1 in
Figure 1 and considering the 0800 h distribution, the
graphic shows that every other year (50th percentile proba-
bility) the drift load will be below 50% of the load estimated
by the default modeling. For all 30 y, the drift load at 0800 h
is always below the default estimate. The distribution pro-
files for each of the application times across each of the
applications sets appear relatively similar. This indicates that
the climatic variability between sets is not substantial for the
CA Tomato scenario. Likewise, the other crop scenarios had
similar distribution profiles as well across their respective
application sets, and these are shown in the Supple-
mental Data.
By examining each set in Figure 1, it is apparent that if

aerial applications are made at 1200 h or 1600 h, part of the
upper end of the predicted annual drift load distribution
exceeds the estimated default drift load. However, even
where this occurs, the majority of the annual loads (and,
in every case, for the 0400, 0800, 2000, and 2400 h appli-
cation timings) will be below the estimated default

assumption load for the CA Tomato scenario, sometimes by
a very significant margin.

The results of the annual off‐target drift load analyses in
Figure 1 and Figure 2 and the related figures in the Sup-
plemental Data provide some interesting insights, including
a real world data‐based confirmation of the conventional
wisdom that applications made around noon and during the
afternoon hours are more likely to be subject to higher wind
speeds and drift loads.

Table 2 provides the range of annual AgDRIFT drift load
estimates based on wind speed, temperature, and relative
humidity across 30 y (1961–1990) of applications for Set 1 of
each scenario (effectively reflecting the maximum, min-
imum, and mean drift loads for each line plotted in Figure 1
and Figure 2). As expected from the figures, there are a few
maximum annual drift loadings across the application times
and scenarios that slightly exceed the estimated annual drift
load based upon the default assumption. However, when
comparing the mean values, the vast majority of application
times had predicted annual drift loads at or below the de-
fault assumption. Only application times of 1200, 1600, and
2000 h had mean annual drift loading values above the
default estimate for three of the scenarios (CA Melon, IN
Corn, and NJ Melon) which is consistent with wind speeds
typically being higher during the afternoon hours. Table 3
compares the cumulative summed aerial 30‐y drift loads for

Integr Environ Assess Manag 2020:197–210 © 2019 The Authorswileyonlinelibrary.com/journal/ieam

Figure 2. AgDRIFT estimated drift loadings for sequential aerial applications for 6 application times based on wind speed, temperature, and relative humidity
data from the CA Melon, FL Turf, IN Corn, and NJ Melon scenarios (Application Set 1 only; remaining sets provided in Supplemental Data Figures SI‐2 to SI‐5).
CA=California, USA; FL= Florida, USA; IN= Indiana, USA; NJ=New Jersey, USA.
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Table 2. Range of annual AgDRIFT drift load estimates (kg) for Application Set 1 for each scenario wind speed, temperature, and relative
humidity data

Crop scenario

Range of annual drift loadings (kg) for Application Set 1 (based on 30 y of
applications)

0400 0800 1200 1600 2000 2400 Default estimatea

CA Tomato Minimum 0.0011 0.0000 0.0022 0.0037 0.0020 0.0009 0.00788

Maximum 0.0068 0.0074 0.0082 0.0098 0.0069 0.0055

Mean 0.0033 0.0036 0.0059 0.0071 0.0043 0.0035

CA Melon Minimum 0.0017 0.0027 0.0060 0.0074 0.0066 0.0049 0.00788

Maximum 0.0070 0.0089 0.0103 0.0126 0.0112 0.0102

Mean 0.0045 0.0060 0.0088 0.0105 0.0090 0.0070

FL Turf Minimum 0.0005 0.0012 0.0060 0.0059 0.0012 0.0018 0.00788

Maximum 0.0071 0.0083 0.0095 0.0097 0.0075 0.0069

Mean 0.0037 0.0042 0.0076 0.0079 0.0048 0.0043

IN Corn Minimum 0.0023 0.0032 0.0055 0.0058 0.0049 0.0034 0.00788

Maximum 0.0080 0.0087 0.0104 0.0099 0.0081 0.0067

Mean 0.0045 0.0058 0.0078 0.0084 0.0066 0.0052

NJ Melon Minimum 0.0015 0.0043 0.0058 0.0060 0.0046 0.0032 0.00788

Maximum 0.0082 0.0086 0.0101 0.0102 0.0088 0.0085

Mean 0.0048 0.0064 0.0082 0.0085 0.0066 0.0054

CA=California, USA; FL= Florida, USA; IN= Indiana, USA; NJ=New Jersey, USA.
aDefault regulatory assumption annual drift mass load= drift fraction × number of applications × rate (kg) (0.0197 × 4× 0.1= 0.00788 kg).

Table 3. Percent difference relative to default modeling of cumulative 30‐y AgDRIFT aerial drift load estimates and those for selecteda

scenario application sets based on real‐world hourly wind speed, temperature, and relative humidity data

Crop scenario Application set

Aerial application hour (percent difference relative to default 30‐y drift load)b

0400 0800 1200 1600 2000 2400

CA Tomato 1 –59% –55% –26% –10% –46% –56%

2 –58% –51% –19% –12% –41% –52%

3 –61% –55% –25% –11% –43% –57%

4 –63% –50% –25% –14% –47% –58%

5 –61% –56% –23% –13% –45% –59%

6 –63% –56% –24% –12% –46% –56%

7 –64% –56% –25% –12% –42% –56%

CA Melon 1 –42% –24% 11% 34% 14% –12%

FL Turf 1 –53% –46% –3% 0% –39% –45%

IN Corn 1 –44% –27% –1% 7% –16% –34%

NJ Melon 1 –39% –19% 4% 7% –16% –31%

CA=California, USA; FL= Florida, USA; IN= Indiana, USA; NJ=New Jersey, USA.
aComplete data are provided in Supplemental Data Tables SI‐6 and SI‐7.
bA decrease from the 30‐y estimated drift mass using default assumptions is represented by a negative percentage and an increase is represented by a positive
percentage.

Wind Speed and Wind Direction Impact on Pesticide Drift—Integr Environ Assess Manag 16, 2020 203



all sets for CA Tomato and Set 1 for the remaining scenarios
with the load estimated using default assumptions. The
values are expressed as percentage differences from the
regulatory default assumption 30‐y total drift mass load of
0.236 kg (30 × 0.00788). As an example of interpretation, for
CA Tomato Application Set 1 0800 h value of –55%, this
indicates a reduction in the 30‐y drift load of 55% from
the default estimate, that is, a reduction factor of 2.2‐fold
((100/100 – 55)= 2.2).
Table 3 suggests that, although there are mass load dif-

ferences between locations for a given application time, the
differences between application times at a given location
may be even greater. However, the range of the difference
is rather small across the application sets (i.e., Sets 1–7)
indicating that, generally, drift‐related parameters vary di-
urnally in similar manner at similar times of the year. This
trend was observed for the other 4 scenarios for which full
tables are provided in the Supplemental Data. It is im-
portant to point out that there are a few occasions (i.e., CA
Melon 1200, 1600, and 2000 h) in which the wind speed,
temperature, and relative humidity generate drift mass
loadings that are slightly higher than the drift mass derived
using default assumptions. These are likely a result of a
combination of higher wind speeds, higher temperatures,
and lower relative humidity (i.e.,>4.47m/s (10mph),>30 °C
(86 °F),<50%, respectively) during those times of the day
with higher wind speed probably being the dominant
factor.

Step 2: Drift load analysis: Wind direction. In addition to the
assumptions about wind speed, ambient temperature, and
relative humidity previously discussed, standard USEPA Tier
II modeling assumes the wind is always blowing toward the
receiving water body, which is clearly conservative for even
a 30‐y simulation of a single application to a single field.
However, in the real world, at the catchment scale, this
default assumption becomes even less probable because
multiple fields will all have different orientations relative to
the receiving water body (or bodies) and thus, even on a
simulated single spray day, the wind is unlikely to direct drift
to the receiving water body from all fields. As with the other
drift‐related parameters examined in Step 1, wind direction
can also vary systematically throughout the day. Therefore,
the effect of time‐of‐day was again accounted for in each
crop scenario using directions separated by the same 4‐h
intervals by obtaining an approximation of the wind direc-
tion (in degrees) for the same 6 times of day (0400, 0800,
1200, 1600, 2000, and 2400 h) on each aerial application
day to give 6 equivalent time sets of sequential wind di-
rections for each application day.
To generate off‐target drift mass loads that account for

wind direction, the prevailing wind direction was abstracted
from the scenario‐specific weather station data used in
Step 1. The methodology used to determine the prevailing
wind direction (expressed as a 90‐degree range) for each
application time (Set 1 only) for each scenario is described in
the Supplemental Data. Table 4 summarizes the variation in

the prevailing wind direction for each application time
across each of the scenarios.

Figure 3 shows the count of years (out of the 30 y eval-
uated) that have a specified number of the 4 applications
made when the wind was blowing within ±45 degrees of the
prevailing wind direction. For example, of all the scenarios,
only CA Tomato had a single year when all 4 applications
were made when the wind was within ±45 degrees of
the prevailing direction. The CA Melon scenario had the
most consistent wind direction with 3 out of 4 applications
within ±45 degrees of the prevailing wind occurring in
14 out of 30 y.

The Step 2 drift mass load analysis was conducted for
each of the application times for 30 y but for Application Set
1 only, given that the Step 1 analysis strongly suggested
that there is little difference between sets within the same
season. If the wind direction for an application was ±45
degrees from the prevailing direction, the drift load was
assumed to be 100% of the default estimated load; if not,
the load was assumed to be 0%. The resulting directional
drift load estimates were then accumulated for each aerial
application in that year for each time period. These summed
drift load estimates from each of the 30 individual years
were each then processed as before to express the data as a
percentage of the default estimated drift load to be plotted
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Table 4. Prevailing wind direction for the 6 application times at
each scenario location over 30 y of applications

Hour

Wind direction (degrees, averaged across all sets)

CA
Tomato

CA
Melon FL Turf IN Corn

NJ
Melon

0400 300 320 320 230 310

0800 110 310 320 230 320

1200 140 290 270 230 320

1600 320 300 20 230 300

2000 310 300 140 200 180

2400 310 310 250 200 300

CA=California, USA; FL= Florida, USA; IN= Indiana, USA; NJ=New Jersey,
USA.

0%

20%

40%

60%

80%

100%

CA Tomato CA Melon FL Turf IN Corn NJ Melon

4 Applica�ons 3 Applica�ons 2 Applica�ons 1 Applica�on 0 Applica�ons

Figure 3. The number of years (out of 30) with annual applications in the
same direction (±45 degrees) of as the prevailing wind for Application Set 1
(0800 h) for 5 crop scenarios based on wind direction data.
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as a probability distribution for comparison with the load
derived from default parameters (100% of the theoretical
maximum AgDRIFT load on every occasion in every year).
This process was repeated for Set 1 of each of the 5 crop
scenarios in the present study (Figure 4). With 4 applications
simulated, there are only 5 possible outcomes from the di-
rectional analysis (0%, 25%, 50%, 75%, or 100% of the de-
fault drift load) depending on the number of applications
that occur when the wind direction approximates the pre-
vailing direction; this causes the stair‐step appearance of the
graphs in Figure 4. Using the CA Tomato Application Set 1
shown in Figure 4 as an example and considering the 0800 h
distribution (a separate graphic of the 0800 h data is pro-
vided for clarity), every other year (50th probability) the drift
load is 50% of the default estimated load. For 29 out of the
30 y of simulations, the drift load at 0800 h is below the
default estimate.

Figure 4 shows that considering wind direction will only
reduce estimates of off‐target drift load relative to the
default assumption that conservatively assumes the wind is
always in the direction of the off‐target water body for
every aerial application in a sequence. The 5 crop scenario
charts indicate that the probability that all 4 applications
will occur when the wind blows in the same direction is low
at any of the times of day. Excluding CA Melon, the
probability of even 3 of the 4 applications occurring with
the prevailing wind direction is less than 25% for each of
the 6 application times. CA Melon is the exception with the
0400, 1600, and 2400 h applications having the wind
blowing in the same direction for all 4 events in approx-
imately 25% to 50% of the 30 y. This might be because the
time of year for the CA Melon applications (May) corre-
sponds to a more consistent prevailing wind than for the
other scenario locations and timing.
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Figure 4. AgDRIFT estimated drift loadings for Set 1 sequential aerial applications (4) for 6 application times of day based on wind direction for 5 crop
scenarios (assuming all other factors affecting drift load remain unchanged).
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Table 5 provides the cumulative summed aerial 30‐y drift
loads for each of the scenarios based upon the default as-
sumptions alongside the relative 30‐y drift load percent
differences for the estimated drift loads for Application Set 1
based on wind direction. For example, the FL Turf 0800 h
load is reduced by 66% indicating a reduction in the 30‐y
drift load of 66% relative to the default estimate (i.e., a re-
duction factor of 2.9‐fold).
Table 5 shows that the natural variation in wind direction

(across 30 y [1961–1990] at each of the locations) for 4 se-
quential weekly applications at a range of times of day re-
sults in substantial reductions compared to the estimated
30‐y drift mass loading derived using default assumptions.
The CA Melon scenario had the smallest percent difference
with reductions of 15% to 46%, with the other 4 scenarios
showing a much greater impact resulting in a range of 49%
to 76% reduction relative to the default.

Step 3: Drift load analysis: Combined climate parameters.
The next step in the present study was to evaluate the
combined impact of wind speed, temperature, and relative
humidity together with wind direction data. Because
the wind direction analysis considered only Set 1 for each
scenario, the combined parameter analysis also examined
only the Set 1 sequence. The process of calculating the drift
load estimates for the combined analysis was the same as it
was for the wind direction analysis, with the following
modifications. Applications made with a wind direction
within ±45 degrees of the prevailing wind direction were
considered as receiving an off‐target drift load estimated on
the basis of the wind speed, temperature, and relative
humidity for that specific application day and time (i.e., the
Step 1 load). If the wind was from any other direction, the
drift load was considered to be zero.
The same process was followed to generate percent dif-

ferences from the default estimated load, and these were
then ranked and plotted as exceedance probabilities (Haan
1977) to produce 6 distributions of expected annual drift
load ratios (Figure 5). Considering the 0800 h distribution

from CA Tomato Application Set 1, the figure shows that
every other year (50th probability) the drift load will be about
20% of the load based on the default model assumptions.
Interestingly, for all 180 estimated loads across 30 y for CA
Tomato, only 1 (1600 h application) exceeds the default drift
load estimate.

Table 6 provides the cumulative summed aerial 30‐y drift
loads for each scenario based upon the default model as-
sumptions alongside the Step 3 relative 30‐y drift load
percent differences estimated for Application Set 1. It shows
that the CA Tomato 0800 h drift load is reduced by 79%,
corresponding to a reduction factor of 4.8‐fold.

Table 6 shows that the impact of all 4 drift‐related climate
variables across each of the scenarios and application times
was a substantial reduction of the estimated 30‐y drift mass
loading in all cases except the 1600 h and 2000 h applica-
tion times of the CA Melon scenario. The percent difference
relative to the default 30‐y drift mass load estimate for the
other 4 scenarios ranged from 50% to 86% reduction across
all times of day, whereas the range for CA Melon was a
slight increase of 5% to a reduction of 53%. Despite sharing
the same weather station, the CA Tomato and CA Melon
simulations generated appreciably different drift loads due
to the differing application windows.

Wind speed and direction analysis

The present study also investigated relationships between
wind direction and wind speed given that any correlation
between these factors could systematically impact drift load
estimates. Wind rose plots demonstrating those relation-
ships are provided in the Supplemental Data. The CA Melon
and CA Tomato had very different wind roses even though it
was the same weather station indicating the variability of
wind direction throughout the year. The results suggest that,
for a given location, winds with speeds >4.47m/s (10mph)
(i.e., those likely to cause higher off‐target drift) may be
more strongly associated with just one or a few directions
than slower speed winds. This would be expected to make
wind direction an even more significant variable for the
higher drift load events.

DISCUSSION AND CONCLUSIONS
The results from the present analysis demonstrate the

impact that real‐world climatic data (wind speed, temper-
ature, relative humidity, and wind direction) can have on the
estimation of off‐target drift mass deposition across
5 USEPA standard crop scenarios, especially when com-
pared to estimates based on regulatory default assump-
tions. Step 1 showed that incorporating wind speed,
temperature, and relative humidity data results in greater
reductions in estimated off‐target drift deposition for
morning and evening application times due to lower wind
speed and temperatures and higher relative humidity. Esti-
mated drift loads for 7 sequences of 4 applications spaced
7 d apart, but which started on 7 successive days, gave very
similar 30‐y drift loading patterns. This suggests that
weather patterns are consistent within a monthly period
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Table 5. Percent difference relative to default modeling of
cumulative 30‐y aerial AgDRIFT drift load estimates for Application

Set 1 based on wind direction

Crop
scenario

Aerial application hour (percent difference
relative to default 30‐y drift load)a

0400 0800 1200 1600 2000 2400

CA Tomato –71% –58% −58% −49% −54% −66%

CA Melon −24% −46% −46% −26% −15% −15%

FL Turf −66% −66% −70% −64% −68% −67%

IN Corn −73% −65% −64% −56% −63% −63%

NJ Melon −69% −76% −75% −70% −61% −72%

CA=California, USA; FL= Florida, USA; IN= Indiana, USA; NJ=New Jersey,
USA.
aA decrease from the 30‐y default assumption drift mass is represented by a
negative percentage, and an increase is represented by a positive percentage.
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when examined on a 30‐y time scale. Wind direction also
has a considerable impact on the estimated 30‐y drift mass
loading across almost all scenarios and times of day. When
all 4 parameters are used as model inputs, their combined
effect is increased. For 4 scenarios, the estimated drift loads
were reduced from 50% to 86% relative to the regulatory
default estimate. However, for CA Melon, 2 times of day
generated estimates very slightly higher than the default
(2% and 5%), whereas the remainder showed reductions
between 19% to 53%. Further analyses indicated that wind
speed and direction at a given location and season may be
associated, which would further increase the significance of
wind direction for some higher risk events.
Current USEPA modeling methodology for assessing

regulatory ecological or drinking water exposure uses de-
fault drift‐related parameters (wind speed, temperature, and
relative humidity) to estimate off‐target drift deposition

representing a single high‐exposure condition for every
application of a sequence of pesticide applications over a
30‐y simulation (Teske et al. 2003; USEPA 2012). Addition-
ally, every application simulation assumes the wind is
blowing directly toward the receiving water body. Results
from the present analysis show that, when there are multiple
applications in a sequence, the cumulative likelihood of the
high‐exposure condition applying to all applications is much
lower. The present study shows how using realistic climate
data to estimate off‐target drift loading reduces un-
necessary uncertainty and substantially reduces the ex-
pected drift mass loading compared to using regulatory
defaults. Given the range of scenarios evaluated in the
present analysis, it is reasonable to assume similar impacts
across all USEPA crop scenarios.
The AgDRIFT model includes a multiple application as-

sessment (MAA) tool for estimating the probabilistic impact
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Figure 5. AgDRIFT estimated drift loadings for Application Set 1 sequential aerial applications for 6 application times of day based on combined climate data
for 5 crop scenarios.
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of wind speed and direction changes on sequential appli-
cations to the same spray area (USEPA 2012). However, this
tool is not currently considered by USEPA for regulatory
risk assessments. The MAA tool computes a drift fraction
based on the weather station location (using wind speed,
temperature, and relative humidity), wind direction, and
number of applications. For example, in Fresno, California
with 4 applications in February and March, maximum wind
speed of 7 m/s (15.7 mph), medium to coarse droplets, and
45.7‐m (150‐ft) setback there was a drift of 0.62% from the
Tier II Aerial MAA tool compared to 1.97% drift from the
USEPA default approach. This results in a reduction of 68%
drift mass over the sequence of 4 applications each year
over 30 y, which is similar to the CA Tomato Step 3 anal-
yses (71% reduction). Interestingly, this comparison be-
tween MAA output and the results from the present study
suggest that the MAA tool already included in AgDRIFT
would be a simple way to incorporate refined approaches
associated with wind speed and direction into spray drift
risk assessments.
Another study, which was conducted at the watershed

level (Winchell et al. 2018), investigated the impact of in-
corporating several site‐specific parameters in a stepwise
approach (i.e., annual application data, field‐scale applica-
tion data, observed wind direction and speed, and stream
geometry) as refined modeling inputs from a screening‐level
approach. The resulting concentrations were compared to
observed field data, and the greatest model improvements
were associated with the wind speed and wind direction
parameters (Winchell et al. 2018).
The present study approach only considers the effect of

real‐world conditions for multiple applications; refined drift
simulations must also incorporate other factors such as
mandated spray nozzle impacts on droplet size distributions,
aerial application boom specification, the inclusion of
droplet size modifying adjuvants, and requirements for no‐
spray buffers.

In the real world, at the catchment scale, this default
assumption regarding wind direction becomes even less
probable because multiple fields growing the crop of in-
terest will all have different orientations relative to any
receiving water bodies and thus, even on a simulated
single spray day, the wind (which will have a uniform di-
rection at the catchment scale) is extremely unlikely to
direct drift to the receiving water body from all fields
being treated.

Even though the present study approach refines the re-
alism of off‐target drift mass loadings, these estimates
should still be considered conservative due to additional
factors. These factors include natural wider buffer areas,
natural wind breaks, the effect of trees and brush at fil-
tering droplets, water surface in receiving waters being
below land level and uncropped roadways, and the fact
that multiple fields on the same farm are unlikely to be
sprayed simultaneously. For example, a spatial analysis
examining some of these factors was previously evaluated
in the high cotton‐producing Yazoo County, Mississippi,
USA (Hendley et al. 2001). Results from that study show
92% of ponds in this region have no cotton grown within a
60‐m buffer area, and only 2% of the ponds have cotton
present in all directions around the ponds and within a 120‐
m buffer area (Hendley et al. 2001). Results also show that
the composition of these buffer areas found between ag-
riculture and water bodies were comprised of 78% to 87%
dense trees, sparse trees, or brush, depending on the type
of water body, thus reducing the expected loading of off‐
target drift into nearby water bodies (Hendley et al. 2001)
due to filtering of the drift before entry. Similar results were
obtained for orchard terrestrial environments in Europe
(Thomas et al. 2016).

Additionally, the significance of drift entry may be over-
estimated relative to runoff because it is extremely episodic
and will occur only for those fields that are near water on a
few days of each year and then only when conditions are
adverse (i.e., in cases where a field is near a water body, and
wind speed is significant and blowing toward the pond with
no natural vegetation in the way). In contrast, runoff will
occur from all fields, and the resulting runoff (albeit without
a lot of deposited sediment) will reach “receiving waters” on
potentially many more occasions each year.

The present analysis was limited to the AgDRIFT mod-
eling input parameters used by USEPA in standard regu-
latory risk assessments; however, other parameters such as
type of aircraft, nozzle types, release heights, swath widths,
and other environmental conditions could be evaluated for
potential impact on off‐target drift deposition as well. The
authors speculate an analysis of these other parameters
would result in similar conclusions that the uncertainty as-
sociated with the conservative approaches used in USEPA
regulatory modeling could be improved with the use of site‐
specific real‐world data.
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Table 6. Percent differences from default assumption modeling of
summed 30‐y aerial AgDRIFT drift load estimates for Application

Set 1 based on the Step 3 analysis for 5 crop scenarios

Crop
scenario

Aerial application hour (percent difference from
default estimate 30‐y drift mass load)a

0400 0800 1200 1600 2000 2400

CA Tomato −82% −79% −68% −50% −69% −80%

CA Melon −51% −53% −36% 5% 2% −19%

FL Turf −80% −78% −70% −66% −81% −79%

IN Corn −86% −76% −63% −51% −69% −75%

NJ Melon −81% −78% −71% −67% −67% −77%

CA=California, USA; FL= Florida, USA; IN= Indiana, USA; NJ=New Jersey,
USA.
aA decrease from the 30‐y default estimated drift mass is represented
by a negative percentage and an increase is represented by a positive
percentage.
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Figure SI‐1. Ranked Sets 1 to 7 AgDRIFT estimated drift

loadings for sequential aerial applications for 6 application
times of day based on historical wind speed, temperature,
and relative humidity data across 30 y for the CA Tomato
scenario.
Figure SI‐2. Ranked Sets 1 to 7 AgDRIFT estimated drift

loadings for sequential aerial applications for 6 application
times of day based on historical wind speed, temperature,
and relative humidity data across 30 y for the CA Melon
scenario.
Figure SI‐3. Ranked Sets 1 to 7 AgDRIFT estimated drift

loadings for sequential aerial applications for 6 application
times of day based on historical wind speed, temperature,
and relative humidity data across 30 y for the FL Turf
scenario.
Figure SI‐4. Ranked Sets 1 to 7 AgDRIFT estimated drift

loadings for sequential aerial applications for 6 application
times of day based on historical wind speed, temperature,
and relative humidity data across 30 y for the IN Corn
scenario.
Figure SI‐5. Ranked Sets 1 to 7 AgDRIFT estimated drift

loadings for sequential aerial applications for 6 application
times of day based on historical wind speed, temperature,
and relative humidity data across 30 y for the NJ Melon
scenario.
Figure SI‐6. CA Tomato 30‐y wind rose plots for all sets

for 0400, 0800, 1200, 1600, 2000, and 2400 h.
Figure SI‐7. CA Melon 30‐y wind rose plots for all sets for

0400, 0800, 1200, 1600, 2000, and 2400 h.
Figure SI‐8. FL Turf 30‐y wind rose plots for all sets for

0400, 0800, 1200, 1600, 2000, and 2400 h.
Figure SI‐9. IN Corn 30‐y wind rose plots for all sets for

0400, 0800, 1200, 1600, 2000, and 2400 h.
Figure SI‐10. NJ Melon 30‐y wind rose plots for all sets for

0400, 0800, 1200, 1600, 2000, and 2400 h.
Table SI‐1. AgDRIFT Tier I/Tier II aerial simulation

parameters.
Table SI‐2. Application use pattern modeling inputs.
Table SI‐3. Aerial application timing regimes for all

scenarios.
Table SI‐4. Number and percentage of days when hourly

wind speed exceeds 6.71m/s (15 mph) across 30 y.

Table SI‐5. Thirty‐year averages for wind‐related drift
parameters for CA, FL, IN, and NJ weather stations at
6 hours.
Table SI‐6. Cumulative 30‐y aerial AgDRIFT drift loads for

all scenario application sets based on historical wind speed,
temperature, and relative humidity.
Table SI‐7. Percent difference relative to default modeling

of cumulative 30‐y aerial AgDRIFT drift load estimates for all
scenario application sets based on historical wind speed,
temperature, and relative humidity data.
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