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ABSTRACT
We aimed to identify novel circular RNAs (circRNAs) as prognostic competing endogenous RNAs 
(ceRNAs) to serve as genetic biomarkers and therapeutic targets for renal cell carcinoma (RCC). 
High-throughput sequencing data of circRNAs from Gene Expression Omnibus (GEO) and of 
microRNAs (miRNAs) and messenger RNAs (mRNAs) from The Cancer Genome Atlas (TCGA) 
were retrieved to identify differentially expressed RNAs (DERNAs). DEmRNAs were subjected to 
weighted gene coexpression network analysis (WGCNA) to identify prognostic DEmRNA 
(proDEmRNA) modules. Overlapping DEcircRNA-DEmiRNA and DEmiRNA-proDEmRNA interactions 
among the TargetScan, miRanda and RNAhybrid databases were constructed and identified. The 
circRNA-miRNA-mRNA ceRNA network was constructed using mutual DEmiRNAs in two interac-
tion networks as nodes. mRNAs validated as significantly overexpressed in RCC by Oncomine, 
Gene Expression Profiling Interactive Analysis (GEPIA) and quantitative polymerase chain reaction 
(q-PCR), along with the correlative miRNAs, were used for survival analysis. Finally, a ceRNA 
network with 13 upregulated circRNAs, 8 downregulated miRNAs and 21 upregulated mRNAs 
was constructed, in which Anti-Silencing Function 1B Histone Chaperone (ASF1B) and Forkhead 
Box M1 (FOXM1) were considered significant by Oncomine, GEPIA and q-PCR. Survival analysis 
showed that ASF1B, FOXM1 and hsa_miR_1254 were significantly negatively correlated but 
hsa_miR_129-5p was positively correlated with overall survival time. Exploration of the ceRNA 
network revealed the prognostic hsa_circ_0002024/hsa_miR_129-5p/ASF1B axis. Therefore, hsa_-
circ_0002024 was identified as a prognostic ceRNA that might sponge hsa_miR_129-5p to 
regulate ASF1B and affect RCC prognosis. However, further validation is needed.
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1 Introduction

Currently, renal cell carcinoma (RCC) is one of the 
most commonly diagnosed uro-oncological 
diseases, second only to bladder cancer [1]. RCC can 
be histologically classified into three major types: clear 
cell RCC (~80%), papillary RCC (10–15%) and chro-
mophobe RCC (~5%) [2]. Approximately 3–5% of 
RCCs are familial hereditary, and up to 92% of clear 
cell RCCs exhibit inactivation of the Von Hippel- 
Lindau (VHL) gene [3,4]. Several syndromes, includ-
ing VHL syndrome, hereditary clear cell RCC syn-
drome, etc., have been reported to increase the risk of 
RCC; however, the genetic association remains poorly 
characterized [1]. Since the 1970s, the morbidity of 
kidney disease has been increasing worldwide, and 

more than 90% of these deaths are attributed to RCC 
[5,6]. Although multimodal therapeutic approaches 
such as surgery, chemotherapy, radiotherapy and tar-
geted therapy are available, the prognosis of RCC 
remains poor primarily due to the delay in diagnosis 
and high incidence of metastasis and recurrence [7,8]. 
Moreover, most patients with RCC ultimately develop 
drug resistance, even to targeted drugs [9]. As RCC is 
a histologically heterogeneous, genetically complex 
and prognostically poor malignant tumor, exploring 
the molecular mechanism of RCC to discover novel 
genetic biomarkers and therapeutic targets to allow its 
early detection and improve its prognosis is critical.

Recently, a new RNA crosstalk mechanism, named 
a competing endogenous RNA (ceRNA) network, has 
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been a popular topic in cancer research. The ceRNA 
hypothesis, which states that messenger RNAs 
(mRNAs) and noncoding RNAs can communicate 
with each other via microRNAs (miRNAs), was first 
proposed by Salmena et al. in 2011 [10], and its role in 
cancer was further demonstrated by Karreth et al. in 
2013 [11]. Typically, noncoding RNAs can interact 
with miRNAs to block their negative regulatory effects 
on mRNA expression and therefore affect the disease 
phenotype. As an emerging cancer biomarker and 
target, circular RNAs (circRNAs) can also serve as 
ceRNAs to regulate and control cancer progression 
in humans [12,13]. CircRNAs are long noncoding 
RNAs generated in a covalently closed-loop structure 
from introns, exons, untranslated regions or inter-
genic areas in the genome [14]. Studies have demon-
strated that several circRNAs can affect the initiation 
and development of RCC by sponging miRNAs to 
regulate mRNA expression; however, the specific 
mechanism remains unclear [15].

In the present study, we performed a systematic 
study combining bioinformatics analysis using the 
Gene Expression Omnibus (GEO), The Cancer 
Genome Atlas (TCGA), Oncomine, and Gene 
Expression Profiling Interactive Analysis (GEPIA) 
databases and experimental validation by quantitative 
polymerase chain reaction (q-PCR) of RCC cells com-
pared to normal kidney cells. Studies have shown that 
ceRNA network construction and weighted gene 
coexpression network analysis (WGCNA) can be 
used to identify RNA crosstalk networks and prog-
nostic gene modules [16,17]. By using these 
approaches as our principal methods, we aimed to 
construct a prognostic circRNA-miRNA-mRNA 
ceRNA network and identify prognostic circRNA- 
miRNA-mRNA axes. Furthermore, multiple valida-
tion analyses were performed to identify novel 
circRNAs as diagnostic biomarkers and therapeutic 
targets for RCC.

The flow chart of the present study is shown in 
Figure 1.

2 Materials & Methods

2.1 Preprocessing of RNA sequencing data and 
collection of clinical information

We searched GEO (www.ncbi.nlm.nih.gov/geo/) 
using the keyword ‘renal cell carcinoma AND circ*’ 

to select high-throughput circRNA sequencing data-
sets of RCC published on or before 11 March 2021. 
The Sequence Read Archive (SRA) files and clinical 
information of the selected datasets were downloaded 
from SRA Run Selector (https://www.ncbi.nlm.nih. 
gov/Traces/study) for further analysis in the Linux 
operating system. Paired-end SRA files were divided 
into two single-end fastq compressed files using the 
Fastq-dump function in sra-tools software (version 
2.10.0) [18]. After adapter trimming using Trim 
Galore (version 0.6.4) (www.bioinformatics.babra 
ham.ac.uk/projects/trim_galore) and removal of low- 
quality reads (N base % > 5% or Q20 < 80%), the 
filtered reads were aligned to the hg19 reference gen-
ome/transcriptome from the UCSC Genome Browser 
(genome.ucsc.edu) with the BWA-MEM function in 
BWA software (version 0.7.17) [19]. CircRNAs were 
identified with CIRI software [20], annotated in the 
CircBase database (www.circbase.org) and finally 
entered into an expression matrix.

Data on miRNAs and mRNAs were retrieved 
from the kidney chromophobe (KICH), kidney 
renal clear cell carcinoma (KIRC) and kidney 
renal papillary cell carcinoma (KIRP) projects in 
the TCGA database (cancergenome.nih.gov) and 
analyzed with R software (version 3.6.1) [21]. We 
used the TCGAbiolinks package (version 2.15.3) 
[22] to download the high-throughput sequencing 
counts of miRNAs and mRNAs as well as the 
relevant clinical information. The miRNA and 
mRNA expression matrices from the above three 
projects were merged.

2.2 Differential expression analysis of circRNAs, 
miRNAs and mRNAs

EdgeR [23] is a package in R that can be used to 
identify differential expression in count-based 
expression data using an overdispersed Poisson 
model and an empirical Bayes method. It was 
applied for normalization and differential expres-
sion analysis of circRNAs, miRNAs and mRNAs 
between RCC tissues and normal kidney tissues. 
We filtered out RNAs with an expression count < 
1, and the counts for duplicate RNAs were aver-
aged. RNAs with a |Log (fold change (FC))|>2 and 
statistical p-value < 0.05 were considered differen-
tially expressed RNAs (DERNAs) and included 
differentially expressed circRNAs (DEcircRNAs), 
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differentially expressed miRNAs (DEmiRNAs) and 
differentially expressed mRNAs (DEmRNAs), 
which were further visualized in volcano plots 
using the ggplot2 package [24].

2.3 WGCNA of the DEmRNAs

WGCNA [25] is an algorithm used for the identifi-
cation, summarization, membership measurement 
and related analysis of correlated gene modules 
(gene modules to gene modules or gene modules to 
external sample traits) and has been widely used to 

identify relevant genes with prognostic value in 
many cancers. Due to the limited quantity of 
DEcircRNAs and DEmiRNAs, we analyzed only 
DEmRNAs in RCC tumor samples using the 
WGCNA package in R language to evaluate gene 
interactions and identify coexpression modules. We 
calculated Pearson correlation coefficients to 
demonstrate the influence of the soft-thresholding 
power value on the scale independence and mean 
connectivity and subsequently chose a soft- 
thresholding power with a corresponding scale-free 
topology fit index reaching 0.95 and a corresponding 

Figure 1. Flow chart of the present study.
GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; circRNAs, circular RNAs; miRNAs, microRNAs; mRNAs, messenger 
RNAs; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; DEcircRNAs, 
differentially expressed circRNAs; DEmiRNAs, differentially expressed miRNAs; DEmRNAs, differentially expressed mRNAs; 
proDEmRNA, prognostic differentially expressed mRNAs; WGCNA, weighted gene coexpression network analysis; GO, Gene ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; GEPIA, Gene Expression Profiling Interactive Analysis; q-PCR, quantitative 
polymerase chain reaction; ceRNA, competing endogenous RNA; ASF1B, Anti-Silencing Function 1B Histone Chaperone. 
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maximum mean connectivity. By transforming the 
adjacency matrix into a topology matrix, applying 
the static tree cut method and setting the minimum 
number of genes in a module to 20, we identified 
coexpression gene modules and differentiated the 
modules by colors. Finally, the clinical information 
related to five prognostic factors in RCC, including 
tumor grade, T stage, N stage, M stage and survival 
time, was used to determine module-trait relation-
ships by calculating the Pearson correlation coeffi-
cient, and the data were visualized in a heat map. 
With the cutoff criterion of p < 0.05, modules sig-
nificantly positively related to tumor malignancy 
(grade and stage) and negatively related to survival 
time were considered prognostic DEmRNA 
(proDEmRNA) modules.

2.4 Gene ontology (GO) annotation analysis and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of the 
proDEmRNAs

Genes in the proDEmRNA modules were sub-
jected to GO [26] annotation analysis and KEGG 
[27] pathway enrichment analysis using the 
clusterProfiler package [28] in R. GO annotations 
are classified in three components, namely, biolo-
gical process (BP), cellular component (CC) and 
molecular function (MF), and GO terms with an 
adjusted p < 0.05 and a gene count >10 were 
considered significant. The cutoff criterion was 
set as an adjusted p < 0.05 in KEGG analysis to 
identify the pathways significantly enriched with 
the DEmRNAs.

2.5 Construction of the circRNA-miRNA-mRNA 
ceRNA network

TargetScan (www.targetscan.org), miRanda (www. 
miranda.org) and RNAhybrid (bibiserv.cebitec. 
uni-bielefeld.de/rnahybrid/) were used to explore 
the network of circRNAs, miRNAs and mRNAs. 
We used the local tools of the three databases to 
explore DEcircRNA-DEmiRNA and DEmiRNA- 
proDEmRNA interactions, and subsequently, the 
Venn web tool (bioinformatics.psb.ugent.be/webt-
ools/Venn) was applied to identify the overlapping 
interactions from the three databases. Finally, 
using mutual DEmiRNAs in two interaction 

networks as nodes and considering the typical 
ceRNA regulation method in which a circRNA 
sponges an miRNA to negatively regulate the 
miRNA and in turn promote the expression of 
the target mRNA (i.e., only upregulated 
circRNAs, downregulated miRNAs and upregu-
lated mRNAs were preserved in the network), we 
constructed a circRNA-miRNA-mRNA ceRNA 
network and visualized it with Cytoscape software 
(version 3.6.1) [29].

2.6 Validation of prognostic markers with 
Oncomine and GEPIA

To further verify the prognostic significance of the 
ceRNA network, we conducted comparative 
expression analysis of the mRNAs in Oncomine 
(www.oncomine.org) [30] and GEPIA (gepia.can-
cer-pku.cn/index.html) [31]. As Oncomine pro-
vides integrated gene expression analysis data of 
multiple datasets, we input ‘renal cell carcinoma 
vs. normal analysis’ in the filter section and 
selected datasets comparing mRNA expression 
between RCC and normal kidney tissues. The 
expression of prognostic mRNAs was compared 
between cancer tissues and normal tissues across 
the above datasets, and the comparison data with 
median ranks and combined p-values were auto-
matically generated. The expression of prognostic 
mRNAs validated in Oncomine was further com-
pared (TCGA RCC tissue vs. TCGA normal kid-
ney tissue + Genotype-Tissue Expression (GTEx) 
project normal kidney tissues) with the cutoff cri-
teria of FC > 1.5 and p-value < 0.01 in the GEPIA 
database for clear cell RCC, papillary RCC and 
chromophobe RCC, separately.

2.7 Cell culture

Three RCC cell lines (A498, 786-O and ACHN) 
and 1 normal kidney cell line (293 T) were pur-
chased from the Chinese Academy of Sciences 
Shanghai Branch (China). RCC and normal kidney 
cells were cultured in different culture media 
(293 T cells in DMEM (HyClone), 786-O cells in 
RPMI-1640 medium (HyClone), and A498 and 
ACHN cells in MEM (HyClone)). All media were 
supplemented with 10% fetal bovine serum 
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(Gibco, Invitrogen, USA) and cultured at 37°C in 
5% CO2.

2.8 RNA isolation and q-PCR

Total RNA from 4 cell lines was isolated with TRIzol 
reagent (Invitrogen, USA), and cDNA was synthe-
sized with an Evo M-MLV RT Kit with gDNA Clean 
for qPCR (Accurate Biotechnology, China). The 
expression of prognostic mRNAs validated in 
Oncomine and GEPIA was evaluated by a SYBR 
Green qPCR assay (Accurate Biotechnology, China) 
in an ABI 7500 Real-Time PCR System (Thermo 
Fisher Scientific, USA). The PCR primers used were 
as follows: Anti-Silencing Function 1B Histone 
Chaperone (ASF1B) forward, GACCTGGAG 
TGGAAGATCATTT; ASF1B reverse, 
GCCTGAAAGACAAACATGTGTC; Forkhead Box 
M1 (FOXM1) forward, GATCTGCGAGA 
TTTTGGTACAC; FOXM1 reverse, CTGCAGAAGA 
AAGAGGAGCTAT.

2.9 Survival analysis

Survival analysis was performed on TCGA data for 
patients stratified by the expression levels of the 
mRNAs verified as significant by Oncomine, 
GEPIA and q-PCR, along with the correlative 
miRNAs in the ceRNA network, using the survival 
package (version 3.1–11) [32]. Typically, mRNAs 
are cancer promoters and are negatively correlated 
with survival outcomes in the ceRNA network, 
while miRNAs have the opposite relationship. 
Therefore, we set p < 0.05 as the significance 
criterion to identify negative prognostic mRNAs 
and positive prognostic miRNAs. CircRNAs that 
sponged positive prognostic miRNAs to upregu-
late negative prognostic mRNAs in the ceRNA 
network were considered negative prognostic 
factors.

3 Results

We analyzed data from GEO and TCGA by differ-
ential expression analysis and WGCNA to identify 
DEcircRNAs, DEmiRNAs, and proDEmRNA 
modules, from which a circRNA-miRNA-mRNA 
ceRNA network was constructed. Via comparative 
mRNA expression analysis of the Oncomine and 

GEPIA databases, q-PCR in RCC and normal kid-
ney cell lines, and survival analysis in TCGA, we 
validated a prognostic circRNA-miRNA-mRNA 
axis and identified a novel circRNA as 
a prognostic ceRNA in RCC.

3.1 Identification of DEmRNAs, DEmiRNAs, and 
DEcircRNAs

The GEO search identified 31 records, among 
which only one dataset, GSE108735 (www.ncbi. 
nlm.nih.gov/geo/query/acc.cgi?acc=GSE108735), 
contained second-generation circRNA sequencing 
data (Table 1). In addition, mRNA data of 1019 
samples (891 RCC and 128 normal kidney tissues) 
and miRNA data of 1031 samples (901 RCC and 
130 normal kidney tissues) were retrieved from 
TCGA. After normalization and differential 
expression analysis of expression matrixes with 
the EdgeR package, 113 DEcircRNAs (all upregu-
lated), 56 DEmiRNAs (upregulated, 39; downregu-
lated, 17) and 3807 DEmRNAs (upregulated, 2865; 
downregulated, 942) were identified and visualized 
in volcano plots (Figure 2).

3.2 WGCNA, GO annotation analysis and KEGG 
pathway analysis

A total of 889 RCC patients with 3807 identified 
DEmRNAs were included for WGCNA. After calcu-
lation of the soft-thresholding power, a threshold 
power of 3 was found to correspond with a scale-free 
topology fit index reaching 0.95 and the maximum 
mean connectivity and was therefore set as the cutoff 
threshold (Figure 3a). By applying the cutoff threshold 

Table 1. Clinical characteristics of GSE108735.
sample GEO Accession Age gender tumor_stage

normal GSM2912685 63 male \
GSM2912686 64 male \
GSM2912687 53 female \
GSM2912688 60 male \
GSM2912689 53 female \
GSM2912690 60 male \
GSM2912691 61 male \

renal 
cell 
carcinoma

GSM2912692 63 male T1N0M0
GSM2912693 64 male T1N0M0
GSM2912694 53 female T1bN0M0
GSM2912695 60 male T1bN0M0
GSM2912696 53 female Unknow
GSM2912697 60 male T1N0M0
GSM2912698 61 male T1N0M0
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and performing WGCNA, we identified 11 gene coex-
pression modules with more than 20 genes each 
(Figure 3b). Module-trait relationships were identified 
and visualized; the red module, with 50 genes, was 
considered a proDEmRNA module due to its signifi-
cant positive correlation with tumor malignancy 
(pGrade = 1e-26, pT stage = 3e-22, pN stage = 9e-13, 
pM stage = 4e-25) and negative correlation with survival 
time (pSurvival time = 5e-6) (Figure 3c).

The proDEmRNAs were highly related to the cell 
cycle pathway in both the GO and KEGG analyses. 
In the GO analysis, although none of the signifi-
cantly enriched MF terms contained more than 10 
genes, the proDEmRNAs were enriched mainly in 18 
BP terms related to the cell cycle (nuclear division, 

organelle fission, chromosome segregation, etc.) and 
classified in three relative CC terms (chromosome, 
spindle and microtubule) (Figure 4(a,b)). The cell 
cycle was also the most enriched pathway in the 
KEGG analysis (Figure 4c).

3.3 CircRNA-miRNA-mRNA ceRNA network 
construction

After interaction analysis using TargetScan, miRanda 
and RNAhybrid, DEcircRNA-DEmiRNA and 
DEmiRNA-proDEmRNA interaction networks in 
the three databases were constructed. The 
DEcircRNA-DEmiRNA networks contained 1174 
interactions in TargetScan, 1532 interactions in 

Figure 2. Identified DERNAs from GEO and TCGA. (a) 113 upregulated differentially expressed circular RNAs were identified from 
GSE108735. (b) 56 differentially expressed microRNAs with 39 upregulated ones and 17 downregulated ones were identified from 
The Cancer Genome Atlas (TCGA). (c) 3807 differentially expressed messenger RNAs with 2865 upregulated ones and 942 down-
regulated ones were identified from TCGA.

6584 Z. CHEN ET AL.



miRanda and 307 interactions in RNAhybrid. The 
DEmiRNA-proDEmRNA networks contained 871 
interactions in TargetScan, 1136 interactions in 
miRanda and 305 interactions in RNAhybrid. 
Subsequently, 39 overlapping DEcircRNA- 
DEmiRNA interactions and 120 overlapping 
DEmiRNA-proDEmRNA interactions were identi-
fied by Venn diagram analysis of the three databases 
(Figure 5). Using mutual DEmiRNAs in two over-
lapping interaction networks as nodes, we constructed 
the relationships among 26 circRNAs, 17 miRNAs 
and 25 mRNAs. Finally, after removing 9 upregulated 
miRNAs and 17 unconnected nodes (13 circRNAs 
and 4 mRNAs), we retained 13 upregulated 
circRNAs, 8 downregulated miRNAs and 21 upregu-
lated mRNAs to construct the ceRNA network 
(Figure 6).

3.4 Comparative mRNA expression, q-PCR and 
survival analyses

Fifteen comparative analysis datasets were found 
in Oncomine, and the expression of 21 mRNAs 
was assessed in these datasets. Eighteen mRNAs 
showed no statistically significant difference 
between RCC and normal kidney samples, while 
three – ASF1B (p = 0.012), Ribonucleotide 
Reductase Regulatory Subunit M2 (RRM2) 
(p = 0.002) and FOXM1 (p = 0.024) – were con-
sidered significant (Figure 7). The expression data 
of the three significant mRNAs was further pre-
sented as boxplots in GEPIA, which showed that 
only ASF1B and FOXM1 were significantly over-
expressed in all 3 subtypes of RCC (Figure 8). 
Figure 9 confirms the higher mRNA abundance 

Figure 3. WGCNA of the DEmRNAs. (a) Analysis of network topology for different soft-thresholding powers. (b) 11 coexpression gene 
modules of more than 20 genes each were demonstrated in the clustering dendrogram with assigned module colors. (c) In the 
correlation of mRNA coexpression network modules with clinical prognostic factors of RCC, red module had a significant positive 
correlation with tumor malignancy (grade and stage) and negative correlation with survival time.
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of ASF1B and FOXM1 in RCC cell lines (ASF1B in 
A498, 786-O and ACHN cells; FOXM1 in 786-O 
and ACHN cells) than in the normal kidney cell 
line 293 T.

Survival curves for patients stratified by the 
expression levels of two significant mRNAs and 
four correlative miRNAs (hsa_miR_129-5p, 
hsa_miR_193a-5p, hsa_miR_1254 and 
hsa_miR_4433a-5p) in the ceRNA network were 
constructed with R software. The survival analyses 
for mRNAs included 889 RCC patients and the 
survival analyses of miRNAs involving 860 RCC 
patients were conducted. While both mRNAs were 
significantly negatively correlated with overall sur-
vival time (all p < 0.001), hsa_miR_129-5p was the 
only positive prognostic miRNA (p = 0.0212) 

(Figure 10). Therefore, we explored the circRNA- 
miRNA-mRNA interactions in the ceRNA net-
work and identified hsa_circ_0002024 as 
a negative prognostic factor that acts by sponging 
and suppressing hsa_miR_129-5p to promote 
ASF1B expression in RCC. The prognostic hsa_-
circ_0002024/hsa_miR_129-5p/ASF1B axis is 
marked with a dashed ellipse in Figure 6.

4 Discussion

As mRNAs encode proteins that participate in 
various BPs, any factor that interferes with the 
normal expression of mRNAs can possibly cause 
abnormal cell proliferation and differentiation and 
eventually lead to carcinogenesis. MiRNAs bind to 

Figure 4. GO annotation analysis and KEGG pathway enrichment analysis of proDEmRNAs. (a)Terms enriched in biological processes 
of Gene ontology (GO) enrichment analysis were as follows: nuclear division, organelle fission, mitotic nuclear division, chromosome 
segregation, regulation of mitotic nuclear division, regulation of nuclear division, sister chromatid segregation, nuclear chromosome 
segregation, mitotic sister chromatid segregation, regulation of mitotic cell cycle phase transition, cell cycle checkpoint, cytokinesis, 
regulation of cell cycle phase transition, cell cycle G2/M phase transition, positive regulation of cell cycle process, negative regulation 
of mitotic cell cycle, negative regulation of cell cycle process, positive regulation of cell cycle. (b) Terms enriched in cellular 
components of GO enrichment analysis were as follows: condensed chromosome, spindle, microtubule. (c) Pathways enriched in 
Kyoto Encyclopedia of Genes and Genomes analysis were cell cycle, oocyte meiosis and progesterone-mediated oocyte maturation.
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specific 3�-untranslated regions (3�-UTRs) of 
mRNA transcripts to cause mRNA degradation 
and regulate downstream signaling pathways 
[33,34]. As a newly discovered RNA species, 
circRNAs are considered to have multiple 

functions, such as protein translation, participating 
in circRNA–protein interactions and, most impor-
tantly, acting as ceRNAs [35]. The structural sta-
bility of the closed loop of circRNAs provides 
natural resistance to exoribonucleases, which 

Figure 5. Overlapping interactions derived from the intersection analysis of TargetScan, miRanda and RNAhybird. (a) Networks of 
differentially expressed circular RNAs (DEcircRNAs) to differentially expressed microRNAs (DEmiRNAs) contained 1174 interactions in 
TargetScan, 1532 interactions in miRanda and 307 interactions in RNAhybird. A total of 39 overlapping interactions of DEcircRNAs to 
DEmiRNAs were identified with Venn intersection analysis. (b) Networks of DEmiRNAs to prognostic differentially expressed 
messenger RNAs (proDEmRNAs) contained 871 interactions in TargetScan, 1136 interactions in miRanda and 305 interactions in 
RNAhybird. A total of 120 overlapping interactions of DEmiRNAs to proDEmRNAs were identified with Venn intersection analysis.

Figure 6. The circRNA-miRNA-mRNA ceRNA network.
The competing endogenous RNA network was constructed with 13 upregulated circular RNA RNAs, 8 downregulated microRNAs and 
21 upregulated messenger RNAs, in which the identified prognostic axis of hsa_circ_0002024/hsa_miR_129-5p/Anti-Silencing 
Function 1B Histone Chaperone (ASF1B) is marked with a dashed ellipse. 
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makes circRNAs highly stable in the cytoplasm 
[36]. Given their natural stability, circRNAs have 
been described as reliable potential regulators in 
multiple cancers and could possibly serve as 
a promising biomarker and novel therapeutic tar-
get [37].

The ceRNA hypothesis describes an intricate 
interplay among mRNAs, miRNAs and noncoding 
RNAs such as long-noncoding RNAs, pseudogenes 
and circRNAs [38], in which circRNAs function as 
a sponge-like endogenous competitive factor for 
miRNAs to regulate the expression of mRNAs 
and thereby contribute to tumor proliferation 
and invasion [39,40]. Unlike miRNAs, the regula-
tory mechanism through which circRNAs function 
as miRNA sponges remains unclear, despite 
numerous studies [41]. Many miRNAs (miR- 
216b [42], miR-488 [43], miR-193a-3p and miR- 
224 [44]) and circRNAs (circ_0001368 [45], 

circ_0039569 [46] and hsa_circ_0054537 [47]) 
have been suggested to be crucial for the prolifera-
tion and invasion of RCC cells.

This systematic study combining bioinformatics 
analysis and experimental validation was per-
formed to identify novel prognostic circRNAs as 
diagnostic biomarkers and therapeutic targets for 
RCC. We used differential expression analysis to 
identify DERNAs and then applied WGCNA to 
identify the red proDEmRNA module. A ceRNA 
network was constructed among the DEcircRNAs, 
DEmiRNAs and red module, in which two 
mRNAs, ASF1B and FOXM1, were validated as 
significant by Oncomine, GEPIA and q-PCR. The 
two validated mRNAs, along with the four corre-
lative miRNAs (hsa_miR_129-5p, hsa_miR_193a- 
5p, hsa_miR_1254 and hsa_miR_4433a-5p) in the 
ceRNA network, were used for survival analysis to 
identify the positive survival-related mRNAs 

Figure 7. Pooled comparative analysis of the mRNA expression in Oncomine database.
* The rank for a gene is the median rank for that gene across each of the analyses. †The p-Value for a gene is its p-value for the 
median-ranked analysis.1. Hereditary Clear Cell Renal Cell Carcinoma vs. Normal; Beroukhim Renal, Cancer Res, 20092. Non- 
Hereditary Clear Cell Renal Cell Carcinoma vs. Normal; Beroukhim Renal, Cancer Res, 20093. Clear Cell Sarcoma of the Kidney vs. 
Normal; Cutcliffe Renal, Clin Cancer Res, 20054. Clear Cell Renal Cell Carcinoma vs. Normal; Gumz Renal, Clin Cancer Res, 20075. 
Chromophobe Renal Cell Carcinoma vs. Normal; Higgins Renal, Am J Pathol, 20036. Clear Cell Renal Cell Carcinoma vs. Normal; 
Higgins Renal, Am J Pathol, 20037. Granular Renal Cell Carcinoma vs. Normal; Higgins Renal, Am J Pathol, 20038. Papillary Renal Cell 
Carcinoma vs. Normal; Higgins Renal, Am J Pathol, 20039. Chromophobe Renal Cell Carcinoma vs. Normal; Jones Renal, Clin Cancer 
Res, 200510. Clear Cell Renal Cell Carcinoma vs. Normal; Jones Renal, Clin Cancer Res, 200511. Papillary Renal Cell Carcinoma vs. 
Normal; Jones Renal, Clin Cancer Res, 200512. Clear Cell Renal Cell Carcinoma vs. Normal; Lenburg Renal, BMC Cancer, 200313. 
Chromophobe Renal Cell Carcinoma vs. Normal; Yusenko Renal, BMC Cancer, 200914. Clear Cell Renal Cell Carcinoma vs. Normal; 
Yusenko Renal, BMC Cancer, 200915. Papillary Renal Cell Carcinoma vs. Normal; Yusenko Renal, BMC Cancer, 2009 
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Figure 8. Box-plots of mRNA expression between RCC and normal kidney in GEPIA database.
The message RNAs expression of Anti-Silencing Function 1B Histone Chaperone (ASF1B), Ribonucleotide Reductase Regulatory 
Subunit M2 (RRM2) and Forkhead Box M1 (FOXM1) between renal cell carcinoma (RCC) and normal kidney in Gene Expression 
Profiling Interactive Analysis (GEPIA) database using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression 
(GTEx) was demonstrated. Fold change > 1.5 and p value < 0.01 were considered significant and only ASF1B and FOXM1 showed 
significant overexpression in clear cell RCC, papillary RCC and chromophobe RCC. 
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(ASF1B and FOXM1) and negative survival- 
related miRNA (hsa_miR_129-5p). Based on the 
interactions in the ceRNA network, the hsa_-
circ_0002024/hsa_miR_129-5p/ASF1B axis was 
identified; thus, hsa_circ_0002024 was revealed to 
be the prognostic ceRNA in RCC.

ASF1B, a subtype of ASF1, encodes a histone 
H3-H4 chaperone protein, which is the substrate 
of the tousled-like kinase family of cell cycle- 
regulated kinases and may catalyze the assembly 
and disassembly of the nucleosome structure of 
chromatin. When the nucleosome structure of 
chromatin is not appropriately modulated, dis-
eases such as cancers occur [48,49]. Studies have 
demonstrated that ASF1 regulates chromatin func-
tion and promotes cancer development, especially 
the ASF1B subtype, which has been reported as 
a promoter of multiple cancers [50]. Both ASF1B 
and hsa_miR_129-5p have been demonstrated to 
contribute to the same cancers, for example, breast 
cancer [51,52], prostate cancer [53,54] and RCC 
[50,55], although no interactions have been estab-
lished. However, both Zhou et al. [50] and Chiang 
et al. [55] found that ASF1B and hsa_miR_129-5p 
were involved in AKT signal transduction pathway 
activation in RCC. The AKT signal transduction 
pathway regulates many cellular processes, such as 
survival, proliferation, growth, metabolism, angio-
genesis and metastasis [56], and its hyperactivation 

has been abundantly demonstrated to be involved 
in the initiation, progression, and drug resistance 
of many cancers; thus, it is a therapeutic target in 
cancer [57]. Collectively considering the evidence 
that the AKT pathway plays a critical role in 
malignant tumors with the results of the present 
study, we can hypothesize that hsa_circ_0002024 
sponges hsa_miR_129-5p to regulate ASF1B and 
increase the occurrence, metastasis and fatality 
rate of RCC via the AKT pathway.

This study has several limitations, such as metho-
dological bias, data heterogeneity, experimental sim-
plicity and lack of in vivo experimental validation. 
These limitations contribute to the differences in the 
results and impact the reliability of this study.

5 Conclusion

In summary, we identified hsa_circ_0002024 as 
a novel diagnostic biomarker and therapeutic target 
ceRNA. Hypothetically, hsa_circ_0002024 can 
sponge hsa_miR_129-5p to impact its binding to 
ASF1B, thereby resulting in overexpression of 
ASF1B and eventually leading to cell cycle dysregu-
lation and an aberrant nucleosome structure in chro-
matin. These events play a role in the occurrence and 
development of RCC, possibly via the AKT signal 
transduction pathway. However, further biological 
studies are necessary to verify our research findings.

Figure 9. Relative expression of ASF1B and FOXM1 in q-PCR.
In comparison with normal kidney cells 293 T, Anti-Silencing Function 1B Histone Chaperone (ASF1B) was with higher message RNA 
(mRNA) abundance in A498, 786-O and ACHN, and Forkhead Box M1 (FOXM1) was with higher mRNA abundance in 786-O and 
ACHN. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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