Safety and efficacy of convalescent plasma as a therapy for SARS-CoV-2: A systematic review and meta-analysis

Anirban Hom Choudhuri, Sakshi Duggal, Jotika Singh, Partha Sarathi Biswas¹

Departments of Anaesthesiology and Intensive Care and 'Psychiatry, GIPMER, New Delhi, India

Abstract

Background and Aims: The safety and efficacy of convalescent plasma therapy (CPT) in SARS-CoV-2 is promising but intriguing due to heterogeneity of published studies. We conducted this systematic review and meta-analysis of convalescent plasma use in COVID-19 to identify its safety and efficacy.

Material and Methods: We comprehensively searched the databases - PubMed, Web of Science, Embase, and the Cochrane Library for journal papers published between December 2019 and January 2021 about the use of CPT in SARS-CoV-2, and performed a meta-analysis using random effects models and assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach.

Results: Of 1529 records, 11 studies were eligible (five RCTs, two nonrandomized intervention trials, three prospective observational, and one retrospective), and all were conducted in confirmed patients of SARS-CoV-2. Out of the 11 studies, four investigated the effect of CPT on mortality, three on symptom alleviation, five on duration of hospital stay, four on time to discharge, three on the effect on viral clearance, three on the improvement in antibody titers, two on oxygen requirement, and two on adverse events. The pooled estimate for relative risk of death from SARS-CoV-2 was no different after CPT than control (RR: 0.87, 95% CI: 0.69, 1.10), (p = 0.426) but the relative risk of clinical improvement of symptoms was better after CPT (RR: 1.61, 95% CI: 0.97, 2.70). There was earlier hospital discharge after CPT over control (RR: 1.49, 95% CI: 0.79, 2.80), improved viral clearance (RR: 1.95; 95% CI: 1.07, 3.53), and quicker detection of antibody titer (RR: 1.95; 95% CI: 1.07, 3.53). No difference was observed for adverse effects between CPT and control (RR: 0.92.; 95% CI: 0.63 1.35).

Conclusion: CPT appears to be a safe and promising treatment in moderate to severe SARS-CoV-2 leading to faster clinical improvement, reduced oxygen requirement, early hospital discharge, and quicker emergence of protective antibodies despite having no mortality benefit.

Keywords: SARS-CoV-2, convalescent plasma, meta-analyses

Introduction

The outbreak of SARS-CoV-2 has inflicted a heavy casualty worldwide and the end doesn't seem anywhere near. Till date nearly 123 million patients are affected and 2.7 million deaths have been reported worldwide. Many old and new drugs have

Address for correspondence: Dr. Anirban Hom Choudhuri, Department of Anaesthesiology and Intensive Care, GB Pant Institute of Postgraduate Medical Education and Research, New Delhi -110002, India.

E-mail: anirbanhc@rediffmail.com

Access this	article online
Quick Response Code:	
	Website: https://journals.lww.com/joacp
	DOI: 10.4103/joacp.joacp_309_21

been tried so far with variable success, although any definitive cure is still elusive. $^{\left[1,2\right] }$

Convalescent plasma therapy (CPT) involves collection of antibody-rich blood from SARS-CoV-2 recovered patients and its transfusion to affected patients. The neutralizing antibodies present in the blood bind to the viruses and prevent their entry into the host cell. They stimulate immune phagocytosis by the

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Choudhuri AH, Duggal S, Singh J, Biswas PS.Safety and efficacy of convalescent plasma as a therapy for SARS-CoV-2:A systematic review and meta analysis. J Anaesthesiol Clin Pharmacol2022;38:S22-33.Submitted: 15-Jun-2021Accepted: 29-Aug-2021Published: 15-Jun-2022

host cells leading to the killing of viruses. This therapy has been used earlier during Spanish flu pandemic of 1918 and thereafter during the outbreaks of SARS, MERS, and Ebola viruses. Three systematic reviews consisting of 13 studies (both observational and clinical trials) have so far reported its benefit in SARS-CoV-2, whereas two meta-analyses have found no advantages.^[3-5] Although FDA has approved its use for SARS-CoV-2, the specific treatment criteria are unknown. Most studies included in the earlier systematic reviews and meta-analyses possessed more weaknesses than strengths. The main weakness of the studies were in the lack of uniformity in CPT, inclusion of more patients with severe disease, wide variability in the dosing and timing of CPT, dearth of information about the viral load prior to CPT, and limited data about the neutralizing antibody titers following CPT.

This systematic review and meta-analyses were conducted to emendate the previous deficiencies and investigate the effects of CPT in SARS-CoV-2, and also unearth the key determinants of this treatment.

Method

Search strategy

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The review was registered in PROSPERO database (CDR 42021274135). The following databases - PubMed, Web of Science, Embase, and the Cochrane Library were comprehensively searched for journal papers published between December 2019 and January 2021, using the keywords "convalescent plasma," "SARS-CoV-2," "COVID-19," "plasma," "serum," "immune," and the related words for publications. Articles published in English language only were searched for analysis. Additionally, the references for selected studies were searched to identify other studies. Following the removal of duplicate entries, a three-stage screening process was adopted to identify eligible studies through the detailed examination of each title, abstract, and full text. Two reviewers independently screened the titles and abstracts of the retrieved citations and then assessed the full-text manuscripts that were considered potentially eligible. In case of disagreement between the two reviews with respect to fulfilment of inclusion criteria, the third reviewer acted as arbitrator.

Study selection

All studies fulfilled the following criteria: i) the population of interest was patients with confirmed diagnosis of SARS-CoV-2 for any age or sex, ii) randomized controlled trials (RCTs), non-randomized single-arm intervention studies, prospective observational studies, retrospective studies were eligible, iii) the intervention measure was CPT therapy, iv) there was reporting of at least two outcomes of interest (mortality, symptom alleviation, hospital length of stay, antibody levels, viral load, effect on oxygen requirement, and v) reporting of adverse events. Only studies in English language were chosen.

The exclusion criteria were: i) reviews, case series, case reports, clinical guidelines, and expert consensus, ii) animal or *in vitro* studies, (iii) studies for which the full text was not available, and iv) studies with insufficient data on clinical information.

Data extraction

The studies retrieved during the searches were screened against the eligibility criteria and those meeting the criteria were included. Data was extracted from the eligible studies using a template by two independent authors and validated by a third. The following information was extracted: authors and country of the study, study design, number of participants, patients condition, time of administration, titers and dosages of CP, concomitant therapy, conclusion of authors, adverse events (AEs), and other results.

Risk of bias assessment

Two researchers independently assessed the potential bias for each selected study. The third researcher was consulted for resolving any difference of opinion. The 'Risk of Bias' 2.0 tool was used to assess the randomized clinical trials, which includes five domains: 'randomization process,' 'deviations from intended interventions,' 'missing outcome data,' 'measurement of the outcome,' and 'selection of the reported results.' The 'Risk of Bias in Nonrandomized studies (ROBINS-I)' was applied to assess the risk of bias in nonrandomized studies of interventions. It comprized seven domains: 'bias due to confounding,' 'selection of participants,' 'classification of intervention,' 'deviations from intended interventions,' 'missing data,' 'measurement of outcomes' and 'selection of the reported results.' The NIH quality assessment toll was used to assess the risk of bias in observational studies. Each domain was judged as 'low,' 'moderate,' 'serious,' and 'critical.' For every criterion, risk of bias was classified as 'high,' 'unclear,' or 'low.'

Quality of the evidence

Two researchers independently assessed the quality of evidence by using the 'Grading of Recommendations Assessment, Development and Evaluation (GRADE)' tool. The GRADE was used to create a 'Summary of findings' table. The quality of evidence of each outcome is classified as 'high,' 'moderate,' 'low,' or 'very low.'

Statistical analysis

The statistical software of SPSS was used for analyses. One researcher entered the data, and two researchers checked their accuracy. For dichotomous outcomes, the number of events and total number of participants in two groups were recorded. Fixed-effects model was used if the result of the Q test was not significant (p > 0.1). The odds ratio (OR) and the RR with 95% confidence intervals (CIs) were assessed for all studies. A Chi-square test with a significance level at $P \le 0.05$ was used to assess heterogeneity of treatment effects between trials. The I2 statistic was used to quantify possible heterogeneity (I2 statistic: 30–60% represented moderate heterogeneity, 75– 100% considerable heterogeneity). If heterogeneity was above 80%, the potential causes were explored through sensitivity and subgroup analyses. If no reason for heterogeneity could be found, meta-analysis was not conducted. Subgroup analyses were performed if appropriate based on the data retrieved.

Result

Using the predefined key words, the initial literature search revealed 1529 studies from various databases. After pruning the results as per the inclusion and exclusion criteria, a total of 11 studies were selected for analysis as is shown in the PRISMA chart [Figure 1]. The studies included five randomized control studies, two nonrandomized interventional studies, three prospective observational studies, and one retrospective observational study. The study characteristics are displayed under relevant headings [Table 1]. A "Summary of findings" table was also created using the GRADE tool, which was used to assess the quality of evidence [Table 2].

Study inclusion and characteristics

Out of the 11 studies, four studies investigated the effect of CPT on mortality after both moderate and severe COVID. A total of three studies investigated the effect of CPT on symptom alleviation, five studies investigated the effect on duration of hospital stay, four studies on time to discharge after COVID admission, three studies on the effect on viral clearance, three studies on the improvement in antibody titers, two studies on oxygen requirement, and two studies on adverse events.

Risk of bias within the studies

The risk of bias was low in two studies (two randomized controlled studies), moderate in six studies (three randomized controlled studies, two nonrandomized interventional studies, one prospective observational study), and high in three studies (two prospective observational studies, one retrospective observational study)[Table 3].

Figure 1: PRISMA

Table 1: Stud	ly characteristics							
Authors and country	Design	Number of participants (n)	Criteria for enrolment	Time of CPT	Dosage and titers of CPT	Concomitant therapy	Conclusion	Adverse events (AEs) and other remarks
Duan K <i>et al.</i> China	Multi-center pilot observational study	20	Adults>18 years with severe COVID-19 infection, Respiratory distress (RR ≥ 30 beats/min, SpO ₂ <93% at rest, PaO ₂ :FiO ₂ ≤ 300 mmHg	Mean time from disease onset to CP transfusion=16.5 days	200 ml with the neutralizing antibody titers above 1:640 and transfused within 4 hours	Antiviral, Steroids, Antibiotics, Antifungal, anticoagulants	Potential benefit reduced viral load, better clinical outcomes	No serious adverse reactions
Abolghasemi H <i>et al.</i> Iran	Nonrandomized multi-center RCT	189	Confirmed COVID-19 with lung involvement on imaging with symptoms viz. dyspnea, respiratory rate $\geq 20/\min$, fever and cough, SPO ₂ $\leq 93\%$ on room air, ≤ 7 days since disease onset	Within 3 days of hospital admission.	500 ml, repeat transfusion if no improvement occurs after 24 hours.	Antivirals, hydroxychloroquine, antiinflammatory agents	CPT is safe and effective for COVID-19 with improved patient survival & significantly reduced hospitalization and need for intubation	No serious adverse events
Ling Li <i>et al.</i> China	Open-label, multicenter, randomized clinical trial	103	Severe COVID-19 infection with respiratory distress and/or hypoxemia) or life-threatening (shock, organ failure, or requiring mechanical ventilation).	17.4 days (Median)	4 to 13 ml/kg of body weight: 10 ml for the first 15 minutes, then increased to 100 ml/hour	Antiviral, Antibacterial, steroids, human immunoglobulin, Chinese herbal medicines	No significant improvement in time to clinical improvement after 28 days, Early termination of trial	2 patients developed adverse reactions. One case of definite nonsevere allergic transfusion reaction or a probable nonsevere febrile nonhemolytic transfusion. The second patient had severe transfusion associated dyspnea
4. Rasheed <i>et al.</i> Iraq	Randomized controlled trial	49	Critically ill COVID-19 patients, (adults \geq 18 year, SpO ₂ <90% in resting state, on O ₂ or mech vent)	Within first 3 days of ICU admission	400 mL single dose	Hydroxychloquine, Azithromycin, Oxygen therapy, Methylprednisolone, Antibiotics, Anticoagulants	CPT is effective when donors with high level of SARSCoV2 antibodies are selected and when recipients are in the early stage of disease illness	No serious adverse reaction. Single case of mild allergic reaction
5. Simonovich et al., Argentina	Double-blind, placebo-controlled, multicenter trial	ñ	Severe Covid-19 (radiological confirmed pneumonia, plus one of the following $SaO_2 < at$ rest and ambient air, $PaO_2:FiO_2 < 300$, SOFA or modified SOFA score of two or more points above baseline	Symptom onset to enrolment=8 days (IQR=5-10 days)	Median dose - 500 ml (IQR: 415-600) Median titer=1:3200 (IQR: 1:800-1:3200)	Glucocorticoids, Antivirals, Tocilizumab, Ivermectin, Hydroxychloroquine	No differences observed in clinical status or overall mortality between patients treated with convalescent plasma and those who received placebo.	No significant differences in incidence or severity of adverse events. Five patients in test group developed non-hemolytic febrile reactions

Journal of Anaesthesiology Clinical Pharmacology | Volume 38 | Supplement 1 | 2022

Contd...

Table 1: Con	td							
Authors and country	Design	Number of participants (<i>n</i>)	Criteria for enrolment	Time of CPT	Dosage and titers of CPT	Concomitant therapy	Conclusion	Adverse events (AEs) and other remarks
Gharbharan <i>et al.</i> Netherlands	Multicenter open-label randomized clinica l trial	86	Adults >18 years with positive RT-PCR) test in last 96 hours.		300 ml, neutralizing titers of at least 1:80. Seond dose after 5 days in patients without a clinical response and a persistently positive RT-PCR	Chloroquine, Azithromycin, Antivirals, Tocilizumab	Most COVID-19 patients already have high neutralizing antibody titers at hospital admission. Screening for antibodies and prioritizing convalescent plasma to risk groups with recent symptom onset will be key to identifying patients that may benefit from convalescent plasma.	No serious adverse events
7. Agarwal <i>et al.</i> BMJ October 2020, India	Open label, parallel arm, phase II, multicenter, randomized controlled trial.	Total=464 (Test=235 vs. Control=229)	Adults >18 years age with moderate covid-19, PaO/FiO : 200-300 mm Hg or a respiratory rate >24/ min, SpO ₂ ≤93% on room air)	Not mentioned	Two doses of 200 mL convalescent plasma, transfused 24 hours apart, levels of neutralizing antibodies not measured	Antivirals, antibiotics, immunomodulators, supplemental oxygen	Convalescent plasma was not associated with a reduction in progression to severe covid-19 or all cause mortality. This trial has high generalizability and approximates convalescent plasma use in real-life settings with limited laboratory capacity. A <i>priori</i> measurement of neutralizing antibody titres in donors and participants might further clarify the role of convalescent plasma in the management of covid-19	One patient in each group developed minor adverse events (painat the infusion site, chills, nausea, bradycardia, and dizziness)
8. Liu <i>et al.</i> Nature Medicine November USA	Retrospective, propensity score- matched case- control study	Total=39. Retrospectively propensity-score matched to control patients (1:2 to 1:4)	severe or life-threatening COVID-19 at	Median time from admission to transfusion=4 days (range 0–7 days)	Not mentioned	Corticosteroids, Azithromycin, Interventional Antivirals, IL-6 inhibitors	Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed.	No serious transfusion-associated adverse events,
9. Li <i>et al.</i> JAMA, August 2020, China	Open-label, multicenter, randomized clinical trial	Total=103 (Test=52 vs. Control=51)	Adults >18 years, with positive PCR within 72 hours of admission with Severe (respiratory distress and/or hypoxemia) or life-threatening (shock, organ failure, or requiring		4 to 13 mL/kg	Antiviral, Antibacterial Steroids, Human immunoglobulin, Chinese herbal medicines	Among patients with severe or life-threatening COVID-19, convalescent plasma therapy did not result in a statistically significant improvement in time to clinical improvement within	Two participants reported transfusion-related adverse events following convalescent plasma transfusion. One patient in the severe COVID-19 group nonsevere allergic
								Contd

Table 1: Contd								
Authors Design and country		Number of participants (<i>n</i>)	Criteria for enrolment	Time of CPT	Dosage and titers of CPT	Concomitant therapy	Conclusion	Adverse events (AEs) and other remarks
			mechanical ventilation) COVID-19 infection				28 days. Interpretation is limited by early termination of the trial	transfusion reaction, other patient, who was in the life-threatening severe transfusion associated dyspnea.
10. Zeng et al. Observati 2020 prospectiv	ional, ve	N=6	COVID-19 and respiratory failure	21.5 days (median)	8 ml/kg	Antiviral, Steroids, anticoagulants	Five out of six died; no benefit	No side-effects
11. Liu <i>et al.</i> Observati 2020 prospectiv	ional, ive	N=23	COVID-19, respiratory failure, On HFNC/NIV	12 days (median)	300 ml	Steroids, anticoagulants	Eight died; 15 survived; mortality benefit (<i>P</i> =0.03)	Mild allergic reaction in three patients

Mortality outcomes

The pooled estimate for relative risk of death from COVID was not statistically different after CPT than control (RR: 0.87, 95% CI: 0.69, 1.10), (p = 0.426). The mortality outcomes were influenced by the studies of Zeng et al.^[6] (RR: 0.89, 95% CI: 0.61, 1.31, 38.04%) and Abolghasemi et al.^[7] (RR: 0.61; 95% CI: 0.34, 1.10; 15.72% for severely ill COVID patients. However, Duan et al.^[8] found mortality benefit with CPT (RR: 0.65; 95% CI: 0.29, 1.46; 8.59%) in patients having moderate to severe disease. All the studies had low risk of bias. Additionally, Abolghasemi et al. found the risk of endotracheal intubation to be 7% in CPT as against 20% in the control group, although the study was not powered to detect such difference.^[7] CPT was found to be cost effective as well. [Figure 2] Among others, Li et al. and Agarwal et al.^[9] failed to observe any difference in the 28-day mortality after CPT.^[10]

Clinical improvement

The pooled estimate for relative risk of clinical improvement of symptoms was better after CPT than control (RR: 1.61, 95% CI: 0.97. 2.70). Some studies considered both clinical and microbiological recovery. All the studies investigating symptomatic improvement with CPT showed a positive association. Li *et al.* (RR: 1.85; 95% CI: 0.91, 3.77; 22.92%) and Simonovich *et al.* (RR: 2.10; 95% CI: 1.66, 2.66; 37.47%) showed improvement in both moderately and severely ill patients whereas Agarwal *et al.* (RR: 1.16; 95% CI: 1.02, 1.33; 39.61%) found benefit in moderately ill patients.^[9-11] However, there was significant heterogeneity between the studies (I2 = 90.9%, P < 0.0001) [Figure 3]. Rasheed *et al.*^[12] demonstrated a decreased recovery time for the critically ill COVID-19 patients who received CP.

Discharge from hospital

The pooled estimate showed a relative risk for earlier discharge after CPT over control (RR: 1.49, 95% CI: 0.79, 2.80). This was most notable in the studies by Zeng *et al.*^[6] (RR: 2.50; 95% CI: 0.18, 33.83; 5.14%) and Abolghasemi *et al.*^[7] (RR: 3.47; 95% CI: 1.40, 8.62; 22.04%) where early discharge was noted in severely ill patients after CPT. It was also observed by Li *et al.*^[10] (RR: 1.42; 95% CI: 0.90, 2.24; 33.41%) in severely ill patients. However, the same was not reported by Simonovich *et al.* (RR: 0.90; 95% CI: 0.76, 1.06; 39.41%). There were significant heterogeneity among the four studies (I2 = 78.1% P = 0.003) [Figure 4].^[11]

Viral clearance

CPT improved viral clearance in all studies (RR: 1.95; 95% CI: 1.07, 3.53). Zeng *et al.*^[6] demonstrated increased clearance in severely ill patients (RR: 3.30; 95% CI: 1.47, 7.42; 23.78%) whereas Li *et al.*^[10] (RR: 2.33; 95% CI:

Outcome	Illustrative com	parative study	Relative	Number of	Quality of evidence	Comments
	Assumed risk (SC)	Corresponding risk (CP)	effect (95% CI)	participants in CP (studies)	across the studies (GRADE)	
Death (total	Moderate to seve	erely ill patients	0.87 (.69-1.10)	407 (4)	Low to moderate	The end points
all cause) after treatment	22.02 per 100	67.96 per 100			00	are 28 days mostly. Studies are open level.
Improvement	Moderate to	o severe ill	1.61 (.97-2.70)	462 (3)	Moderate	No blinding in
of symptoms (WHO 6 points ordinal scale for breathlessness) after treatment	50.74 per 100	76.19 per 100			000	one study.
Improvement	Moderate to	o severe ill	1.61 (.97-2.70)	501 (3)	Moderate to High	Wide CI. One
in detectable antibody titer (third day)	57.08 per 100	73.94 per 100			000	open level study.
Improvement in	Moderate to	o severe ill	1.08 (.92-1.27)	317 (2)	Low to moderate	Either open
requirement of O_2 support	14.03 per 100	80.01 per 100			00	level or partial blinding
Viral clearance	Moderate to	o severe ill	1.95 (1.07-3.53)	226 (2)	Low to moderate	Open level study
after treatment	50 per 100	72.56 per 100			00	
Hospital stays	Moderate to	severely ill	0.11 (0124)	591 (4)	Low to moderate	Dissociation of
in days after treatment	8.45±1.87-13.5±1.33	4.52±2.35-14.25±1.5	i		00	results between severely and moderately ill.
Early discharge	Moderate to	severely ill	1.49 (.89-2.80)	400 (4)	Low	Incongruence of
(within 5-28 days of CP treatment)	39.34 per 100	48.75 per 100			۵	results because of methodological difference.
Adversity in	Moderate to	severely ill	0.92 (.63-1.35)	388 (2)	High	Deterioration of
course after treatment	15.26 per 100	11.85 per 100			0000	symptoms.

Table 2: Sum	nary of findings using the GRADE tool f	or quality asses	sment
Outcome	Illustrative comparative study	Relative	Nu

Table 3: Risk of b	ias assessment	
Authors	Type of study	Risk of Bias
Kai Duan et al.	Prospective, observational	High
Hassan Abolghasemi <i>et al</i> .	Nonrandomized Interventional	Moderate
Ling Li et al.	Multicenter, RCT	Moderate
Rasheed et al.	Multicenter, RCT	Low
Simonovich et al.	Multicenter, RCT	Moderate
Gharbharan et al.	Multicenter, RCT	Moderate
Agarwal et al.	Multicenter, RCT	Low
Liu et al.	Retrospective, observational	High
Li et al.	Nonrandomized RCT	Moderate
Zing et al.	Prospective, observational	Moderate
Liu et al.	Prospective, observational	High

1.54, 3.52; 35.2%) and Agarwal et al.^[9] (RR: 1.23; 95% CI: 1.04, 1.46; 41.02%) in both moderate and severely ill patients. Significant heterogeneity was found between these studies (I2 = 83.9% P = 0.002) [Figure 5]. Both Li *et al.* and Agarwal et al. showed significantly faster conversion from positive to negative RT PCR in the CPT group over control. In the study by Li et al., the sero-negative conversion was 72 hours in the severe disease group, whereas the same was on day seven of enrolment in the study by Agarwal et al.^[9,10]

Antibody titer

The pooled estimate for relative risk of detectable antibody titer was higher after CPT than control (RR 1.44, 95% CI: 0.72, 2.88). Significant improvement in titers was seen in severely ill patients by Rasheed et al. (RR 3.33; 95% CI: 1.84, 6.03; 28.98%) and in moderate to severe patients by Simonovich et al. (RR: 1.38; 95% CI: 1.03, 1.85; 34.59%).^[11,12] Study by Agarwal et al. showed no improvement in detectable antibody titers in moderately severe patients (RR 0.78; 95% CI: 0.68, 0.88; 36.43%). Significant heterogeneity was found between these studies (I2 = 94%)P < 0.0001) [Figure 6].^[9]

Simonovich and colleagues observed higher antibody titers on day 2 of CP transfusion, but no significant difference was noted at day seven or day 14. Agarwal et al.^[9] did not find any difference altogether in the level of antibody titers and suggested no benefit of CP transfusion on protective antibody levels.[11,12]

Requirement of oxygen

A decreased oxygen requirement was seen after CPT in severely ill patients by Abolghasemi et al.^[7] (RR: 1.17;

Figure 2: Mortality outcome after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

Figure 3: Clinical improvement with Convalescent plasma therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

95% CI: 1.03, 1.32; 51.51%). Simonovich and workers showed no decrease in Oxygen requirement in moderate to severe patients (RR: 0.99; 95% CI: 0.86, 1.14, and 48.49%). The overall pooled estimate for relative risk of requirement of oxygen support showed no difference with CPT (RR: 1.08, 95% CI: 0.92, 1.27).^[11] The heterogeneity between these two studies was not significant (I2 = 67.2%,

P = 0.081) [Figure 7]. Agarwal *et al.* demonstrated no difference in the overage inspired oxygen requirement between the different trial arms.^[9]

Adverse effects

The occurrence of adverse effects following CPT transfusion was assessed in various studies [Table 4]. No difference was observed in the pooled estimate of RR for adverse effects

Figure 4: Discharge from hospital after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

Figure 5: Viral clearance after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

following CPT and control arm (RR: 0.92.; 95% CI: 0.63 1.35). Both Simonovich *et al.* (RR: 0.88, 95% CI: 0.42, 1.82; 26.81%) and Agarwal *et al.* (RR: 0.94; 95% CI: 0.61, 1.47; 73.19%) found insignificant difference in the incidence of adverse events in moderate to severe and moderately severe COVID-19 patients, respectively. No heterogeneity was observed in the studies (I2 = 0.0%, P = 0.854)^[9,11] [Figure 8].

Discussion

Our meta-analysis did not find any evidence of mortality benefit in SARS-CoV-2 following CPT. A similar systematic review and meta-analysis on severe acute respiratory syndrome (SARS) reported high-mortality benefit (OR, 0.25; 95% CI, 0.14 to 0.45; I2 = 0%) in comparison to

Figure 6: Antibody titer after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

Figure 7: Effect on oxygen requirement after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

placebo or no therapy.^[13] But, the said meta-analysis lacked information about the donor status and the severity of illness in the recipients. Another recent systematic review on CPT in SARS-CoV-2 patients reported mortality benefit with CPT, but relied heavily on case reports and case series, and not on observational studies or clinical trials. They were also unable to explain the variable efficacy of CPT in SARS-CoV-2 due to paucity of quantitative information.^[3] Most of the earlier systematic reviews were based on low quality evidence, whereas our review has moderate quality of evidence. This has been possible in our review due to assessment of bias risk for all determinants, unlike other studies. Another systematic review that failed to elicit any mortality benefit of CPT but concluded it as safe considered the increased oxygen requirement as detrimental to patient safety in the absence of pulmonary involvement. However, the studies demonstrated

Figure 8: Adverse effects after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

Table 4: Adverse events afte	er CPT
Events	Incidence
Skin rash (Red rash)	1/20 (Rasheed et al., 2020); 1/10 (Duan et al., 2020);
Serious events (anaphylaxis, other allergic reaction)	54/228(CP) and 19/105(SC) (Simonovich <i>et al.</i> , 2020)
Transfusion-related adversity (pain, chill, nausea, bradycardia, dizziness)	5/235 (Agarwal <i>et al.</i> , 2020); 2/52 (Li <i>et al.</i> , 2020); 1/115 (Abolghasemi <i>et al.</i> , 2020)
No serious events	Liu et al., 2020; Gharbharan et al., 2020; Zeng et al., 2020

significant increase in the requirement of oxygen in many patients with extrapulmonary involvement. The same effect was not weighed separately through discrimination tests. But, the most important factor was that the meta-analysis was based upon the CPT use on other severe viral respiratory infections also and the conclusions drawn about SARS-CoV-2.^[14]

We were also able to gather evidence with regard to early clinical improvement and faster viral clearance after CPT unlike other reviews. Another systematic review reported a significant decrease in viral loads and improvement in clinical symptoms within three to 26 days posttransfusion. But, they included patients with very high volume of plasma transfusion. It is known that too much plasma volume can dilute the concentration of the therapeutic drugs and affect recovery, which can delay viral clearance.^[15] Most of the earlier meta-analyses failed to limit the volume of plasma transfusion because of high heterogeneity. Moreover, the criteria of donor being symptom free for 14 days after recovery from SARS were not reviewed in many meta-analyses. Our review found no difference in the oxygen requirement of patients undergoing CPT as against control, and the evidence was moderate. There was no heterogeneity among the studies. But the fact that CPT improves the host microenvironment and promote endogenous repair by inhibiting the overactive immune system can raise expectation about reduced oxygen requirement. Our review suggests the involvement of more complex mechanisms in the genesis of hypoxemia, which CPT alone may fail to redress.

The lack of adverse effects found low evidence in our meta-analysis that is similar to other reviews and meta-analyses because mild allergic reactions that are very common after CPT are excluded by majority of studies. There can be diagnostic dilemma for effects like fever, chills, circulatory overload, and so on, which are common during natural progression of SARS-CoV-2.^[16,17]

Limitations

Our meta-analysis has several limitations. First, certain outcome variables like clinical improvement, duration of hospital stay, discharge from hospital, and viral clearance showed considerable heterogeneity (I² statistic: 75–100%). So, defining the source of heterogeneity as clinical, methodological, or statistical is important to substantiate these findings.

Second, we did not weigh the criteria for donor selection before CPT and therefore the level of protection achieved in the recipient varied with changing titers in the donor plasma during CPT. This can also influence mortality besides affecting symptomatic clinical improvement. In other words, conclusive evidence was lacking in these aspects. Lastly, our review relied on evidences collected from moderate to severe patients, and mild to moderate patients were missed. Much evidence accounts for timely and effective administration of CPT in mild SARS-CoV-2 resulting in early recovery and discharge sparing time, effort, and resources for other cases. A detailed subgroup analysis of moderate and severe cases can account for more details.

Conclusions

CPT appears to be a safe and promising intervention in the management of moderate to severe SARS-CoV-2 till date. Despite lacking evidence for any mortality benefit, it can result in faster clinical improvement, diminished oxygen requirement, shorter hospital stay, and earlier discharge thereby sparing resources and manpower for sick patients. Being safe and possessing high ability for viral clearance, its predictability can be used to treat SARS-CoV-2 in severe patients. However, donor selection and timing of CPT administration can be decisive.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- 1. Saxena S, Manchanda V, Sagar T, Nazia N, Siqqiqui O, Yadav A, *et al.* Clinical characteristics and epidemiological features of SARS-CoV2 disease patients from a COVID 19 designated hospital in New Delhi. J Med Virol 2021;93:2487-92.
- Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, *et al.* Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis 2020;98:115094.
- Wang Y, Huo P, Dai R, Lv X, Yuan S, Zhang Y, *et al*. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Int Immunopharmacol 2021;91:107262.
- 4. Vegivinti C, Pederson JM, Saravu K, Gupta N, Evanson KW,

Kamrowski S, *et al*. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A living systematic review. J Clin Apher 2021;1:1-13.

- Chai KL, Valk SJ, Piechotta V, Kimber C, Monsef I, Doree C, et al. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Cochrane Database Syst Rev 2020;10:CD013600.
- Zeng H, Wang D, Nie J, Liang H, Gu J, Zhao A, *et al.* The efficacy assessment of convalescent plasma therapy for COVID-19 patients: A multi-center case series. Sig Transduct Target Ther 2020;5:219.
- Abolghasemi H, Eshghi P, Cheraghali AM, Imani Fooladi AA, Bolouki Moghaddam F, Imanizadeh S, *et al.* Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apher Sci 2020;59:102875.
- Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, *et al*. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020;117:9490–6.
- Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P, *et al.* Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020;371:m3939.
- 10. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, *et al.* Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA 2020;324:460-70.
- 11. Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV, Vallone MG, Vazquez C, *et al.* A randomized trial of convalescent plasma in COVID-19 severe pneumonia. N Engl J Med 2021;384:619-29.
- 12. Rasheed AM, Fatak DF, Hashim HA, Maulood MF, Kabah KK, Almusawi YA, *et al.* The therapeutic potential of convalescent plasma therapy on treating critically ill COVID-19 patients residing in respiratory care units in hospitals in Baghdad, Iraq. Infez Med 2020;28:357-66.
- Sarkar S, Soni KD, Khanna P. Convalescent plasma is a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J Med Virol 2020;1:1-8.
- 14. Devasenapathy N, Ye Z, Loeb M, Fang F, Najafabadi BT, Xiao Y, *et al.* Efficacy and safety of convalescent plasma for severe COVID-19 based on evidence in other severe respiratory viral infections: A systematic review and meta-analysis. CMAJ 2020;192:E745-55.
- 15. Sun M, Xu Y, He H, Zhang L, Wang X, Qiu Q, *et al*. A potentially effective treatment for COVID-19: A systematic review and meta-analysis of convalescent plasma therapy in treating severe infectious disease. Int J Infect Dis 2020;98:334-46.
- Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-65.
- Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: Lessons from past coronavirus outbreaks. Clin Microbiol Infect 2020;26:1436-46.