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Abstract: Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain
yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usu-
ally controlled by multiple genes with partial resistance. In this study, a recombinant inbred line
population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to
stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by
genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experi-
ments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe
rust, and explained 8.0–21.2%, 10.1–22.7%, and 11.6–18.0% of the phenotypic variation, respectively.
QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs
identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related
genes were differently expressed between the two parents, and therefore were considered as the
putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput
markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes.

Keywords: wheat; stripe rust; adult plant resistance; candidate gene; KASP

1. Introduction

Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst),
seriously threatens wheat production worldwide [1]. Stripe rust can result in 10–70% wheat
yield losses in susceptible cultivars under prevailing climatic conditions. However, in
severe epidemic years, some fields can have yield losses up to 100% in susceptible cultivars
due to YR infection [2]. Large economic losses caused by YR epidemics usually occur in
the major wheat-producing countries such as Ethiopia, USA, Australia, and China [1]. In
China, YR occurs in about 4.1 million hectares each year, which poses a serious threat to
Chinese wheat production [3].

Application of fungicides can reduce the losses caused by YR; however, develop-
ing YR-resistant cultivars is a more economic, effective, and environmentally friendly
approach [4,5]. The YR resistance can be categorized into all-stage resistance (ASR) and
adult-plant resistance (APR). ASR shows resistance at both the seedling and adult-plant
stages, and the resistance is usually race specific and controlled by major genes. However,
ASR is more vulnerable to new pathotypes from mutation, recombination, or migration [6,7].
APR often exhibits incomplete resistance at the post-seedling growth stages, is non-race
specific or spectrum resistant, and is controlled by multiple quantitative trait loci (QTLs) [8].
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However, most of the cataloged Yr genes (Yr1–Yr83; YrU1) to date are race-specific
ASR [9] due to the complex quantitative inheritance of APR. Many cataloged ASR genes
are no longer effective or likely to have a short duration of effectiveness if widely deployed
in commercial wheat production [10,11]. Thus, APR is drawing more and more attention in
breeding programs to improve YR resistance in wheat [5].

The recent advancement in genome-wide single nucleotide polymorphism (SNP)
genotyping technologies, such as genotype-by-sequencing (GBS) [12] and high-density
SNP chips [13,14], have revolutionized the gene cloning or QTL mapping in wheat, which
facilitates quick APR-gene identification and marker development for YR resistance. In
a recombinant inbred line (RIL) population genotyped by 4662 high-quality GBS-SNP
markers, two QTLs for YR APR on chromosomes 3B and 3D were identified [15]. Two QTLs
for YR APR, QYrto.swust-3AS and QYrto.swust-3BS, were identified in a RIL population
genotyped by 35K SNP arrays [16]. Six QTLs for YR APR located on 1BL, 2AS, 4BS,
5AL, 6DS, and 7BL were detected in a RIL population genotyped by 55K SNP arrays,
and a kompetitive allele-specific PCR (KASP) marker for QYr.hebau-5AL was successfully
developed [17]. The conversion of SNPs into breeder-friendly KASP markers will greatly
underpin the efficiency and cost-effectiveness of marker-assisted selection (MAS) in wheat
breeding [18].

In this study, we developed a RIL population from a cross between the APR landrace
Tutoumai (TTM) and susceptible cultivar Siyang 936 (SY936), and genotyped the population
using GBS-SNPs. The objectives of this study were to (1) map QTLs for YR APR in TTM and
develop closely linked KASP markers for breeding; (2) identify putative genes regulating
YR APR using RNA-seq; and (3) select elite YR-resistant lines as potential germplasm for
wheat breeding.

2. Results
2.1. Phenotypic Variation and Correlation

At the seedling stage, both SY936 and TTM were highly sensitive to YR; at the adult-
plant stage, however, TTM became highly-resistant whereas SY936 remained highly sen-
sitive, indicating APR to YR in TTM (Figure 1). TTM were scored 1 for IT, 1–5 for MDS,
and 10–200 for AUDPC; whereas SY936 had an IT of 3–4, MDS of 80–100, and AUDPC
of 500–600. The IT, MDS, and AUDPC of the RILs ranged from 0 to 4, 1 to 100%, and 10
to 1725.5, respectively, under different environments (Figure 2). All three traits showed
continuous distributions with considerable variation in the population, and transgressive
segregation, indicating that the sensitive parent SY936 might also contribute favorable
alleles to YR resistance. Due to the severe epidemic of YR in 2019, the mean IT (3.2), MDS
(59.7), and AUDPC (400.4) in the 2019 experiment was slightly higher than those from the
2016 (IT = 2.3, MDS = 33.8, AUDPC = 224.6), 2017 (IT = 2.1, MDS = 32.0, AUDPC = 216.7),
and 2018 (IT = 2.3, MDS = 28.8, AUDPC = 2051) experiments.

Every YR trait showed moderate to high correlations with each other among the
experiments, with r-values ranging from 0.79 between IT and AUDPC in 2019 to 0.97
between MDS and AUDPC in 2016 (Supplementary Table S1). ANOVA indicated that
genotypes of RILs accounted for most of the phenotypic variations for all the traits, followed
by environment and genotype-by-environment interaction (Table 1). The heritability was
0.83, 0.80, and 0.83 for IT, MDS, and AUDPC, respectively.
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under four environments. 

Trait Factor Df SS MS F-Value p-Value Heritability 

IT Genotype 145 947.0 6.5 22.6 2.9 × 10−138 0.83 

 Environment 3 136.3 45.4 157.5 4.3 × 10−69  

 G × E interaction 435 365.3 0.8 2.9 6.8 × 10−28  

 Replication/Env 3 3.8 1.3 4.4 0.0044  

 Residuals 435 125.5 0.3    

MDS Genotype 145 42,4371.7 2926.7 28.2 3.9 × 10−156 0.80 
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Figure 1. Infection types (ITs) of stripe rust resistance for parents and recombinant inbred lines (RILs).
From left are yellow rust (YR)-inoculated leaves, showing YR symptoms on the parents SY936 and
TTM at the seedling (leaves 1–2) and adult-plant stages (leaves 3–4), and the recombinant inbred
lines, with an IT of 0 (immune), 0′ (near immune), 1 (highly resistant), 2 (moderately resistant),
3 (moderately susceptible), and 4 (highly susceptible) at the adult stage.

Table 1. Analysis of variance of the three stripe-rust-resistance traits evaluated at the adult-stage
under four environments.

Trait Factor Df SS MS F-Value p-Value Heritability

IT Genotype 145 947.0 6.5 22.6 2.9 × 10−138 0.83
Environment 3 136.3 45.4 157.5 4.3 × 10−69

G × E interaction 435 365.3 0.8 2.9 6.8 × 10−28

Replication/Env 3 3.8 1.3 4.4 0.0044
Residuals 435 125.5 0.3

MDS Genotype 145 42,4371.7 2926.7 28.2 3.9 × 10−156 0.80
Environment 3 102,679.6 34,226.5 329.9 1.2 × 10−111

G × E interaction 435 195,868.6 450.3 4.3 4.0 × 10−149

Replication/Env 3 3215.9 1072.0 10.3 1.4 × 10−6

Residuals 435 45,129.7 103.7

AUDPC Genotype 145 25,294,308.9 174,443.5 36.2 4.8 × 10−177 0.83
Environment 3 4,829,528.6 1,609,842.9 334.3 1.7 × 10−112

G × E interaction 435 9,435,447.8 21,690.7 4.5 2.5 × 10−51

Replication/Env 3 347,671.7 115,890.6 24.1 2.0 × 10−14

Residuals 435 2,095,044.3 4816.2
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Figure 2. Distribution of infection types (A), maximum disease severity (B), and area under the
disease progress curve (C) for the RIL population evaluated in four field experiments from 2016–2019.
TTM and SY936 refer to the stripe-rust-tolerant parent Tutoumai and susceptible parent Siyang
936, respectively.

2.2. QTL Mapping

Three QTLs for YR APR were identified on chromosomes 1BL, 5BL, and 6BL (Figure 3
and Table 2). QYr.sdau-1BL was detected in the 2016, 2017, and 2018 experiments for
all three traits, and explained 8.0–13.8%, 10.8–17.7%, and 9.2–21.2% of the phenotypic
variation for IT, MDS, and AUDPC, respectively. QYr.sdau-5BL was detected in the 2016
and 2018 experiments, with phenotypic variation explained (PVE) of 2.6–4.0%, 2.6–5.9%,
and 3.0–4.6% for IT, MDS, and AUDPC, respectively. QYr.sdau-6BL was detected in all the
four experiments, with a PVE of 16.5–18.0%, 12.1–13.7%, and 11.6–16.4% for IT, MDS, and
AUDPC, respectively. Among the three QTLs, the resistance alleles of QYr.sdau-1BL and
QYr.sdau-6BL were from TTM, while QYr.sdau-5BL was from SY936 (Table 2).
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Table 2. Name, position, LOD score, phenotypic variation explained (PVE), and additive effects of 
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QYr.sdau-1B 126.3–150.7 653.0–682.1 16IT 4.3 8.0 −1.1 

Figure 3. Composite interval mapping (CIM) of QTLs for stripe rust adult-plant resistance on
chromosomes 1B (A), 5B (B), and 6B (C), using phenotypic data collected from the four experiments
from 2016 to 2019. The line parallel to the X-axis is the threshold line for the significant LOD score of
2.5. Genetic distances are shown in centiMorgans (cM). IT = infection type; MDS = maximum disease
severity; AUDPC = area under the disease progress curve.
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Table 2. Name, position, LOD score, phenotypic variation explained (PVE), and additive effects
of quantitative trait loci (QTLs) for stripe-rust resistance at the adult stage in a population of
Tutoumai x Siyang 936 identified using composite interval mapping (CIM) and the phenotypic data
collected from the experiments conducted from 2016 to 2019.

QTL Genetic
Distance (cM)

Physical
Distance (Mb) Year-Trait LOD PVE (%) Add

QYr.sdau-1B

126.3–150.7 653.0–682.1 16IT 4.3 8.0 −1.1
16MDS 7.5 17.7 −21.3

16AUDPC 6.8 21.2 −97.5
17IT 4.2 9.7 −0.5

17MDS 4.2 11.0 −10.8
17AUDPC 2.7 13.5 −76.9

18IT 2.8 13.8 −0.4
18MDS 2.6 10.8 −8.9

18AUDPC 2.8 9.2 −46.5

QYr.sdau-5B

32.2–39.4 617.7–657.4 16IT 4 14.7 0.7
16MDS 5.9 22.7 19.5

16AUDPC 4.6 19.2 129.3
18IT 2.6 10.1 0.5

18MDS 2.6 12.1 12.4
18AUDPC 3.0 13.4 74.1

QYr.sdau-6B

19.2–27.6 500.6–598.5 16AUDPC 2.6 12.1 −87.5
17IT 4.5 16.5 −0.5

17MDS 2.9 12.4 −8.9
18IT 4.5 18.0 −0.7

18MDS 3.2 13.7 −14.3
18AUDPC 3.0 11.6 −69.4

19MDS 3.2 12.1 −14.7
19AUDPC 4.4 16.4 −131.5

2.3. Additive Effect of Identified QTLs

In general, the RILs harboring none of the resistance alleles at the three QTLs were YR
susceptible, with the mean IT, MDS, and AUDPC being 3.1–3.7, 42.5–77.4, and 284.9–534.3,
respectively, across the four years. For the RILs harboring only one of the three QTLs, the
resistance was slightly better than the RILs with none of the resistance alleles, indicating a
single QTL provided only partial resistance. For the RILs with two or three QTLs, the level
of resistance was considerably higher than those with only one resistance allele, and the
mean IT, MDS, and AUDPC for the RILs with all three QTLs were 1.1–2.5, 5.5–36.1, and
48.1–252.7, respectively, across the four years (Figure 4).

2.4. RNA-Seq Analysis of Two Parents

After removal of the low-quality data, adapter reads, and rRNA, a total of 11.2 Gb
and 11.4 Gb clean sequence data were obtained for TTM and SY936, containing 74,978,480
and 76,031,092 clean reads, respectively. The clean reads from the two samples accounted
for 99.69% of the total raw data with Q30 > 93.56%, and the GC content of 52.81% and
53.42% for TTM and SY936, respectively. By aligning each of the two sets of clean reads
to IWGSC Refseq v 1.1, about 93% of the reads were mapped on the reference sequence
(Supplementary Table S2).

In total, 32,499 SNPs were identified between TTM and SY936, with most of variants
(72.7%) in the coding DNA regions (CDS) and untranslated regions (UTR). The number of
SNPs on each chromosome ranged from 174 on 4D to 3227 on 5B (Supplementary Table S3).
Among the 67,676 genes identified in the two parents, 8097 genes were downregulated
and 7553 genes were upregulated in SY936 (Figure 5A). GO analysis indicated that these
differently expressed genes (DEGs) were mainly involved in cell components, including the
cytoplasmic membrane-bounded vesicle, integral component of membrane, and membrane;
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in molecular functions, including nucleotide binding, protein kinase activity, and the
structural constituent of ribosomes; and in biological processes, including the metabolic
process and oxidation–reduction process (Figure 5B). The KEGG analysis showed that most
of the DEGs were enriched in the pathway of the biosynthesis of secondary metabolites,
followed by plant−pathogen interaction, ribosome, and phenylpropanoid biosynthesis
(Figure 5C). In particular, 525 upregulated and 360 downregulated genes participating in
the plant–pathogen interaction pathways were identified, which suggested key regulatory
genes responsible for YR resistance (Figure 5D).
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Figure 4. The accumulative effects of the QTLs identified in this study. 1B, 5B, and 6B indicate the
three QTLs QYr.sdau-1B, QYr.sdau-5B, and QYr.sdau-6B, respectively. R and S indicate the resistance
and susceptibility alleles of the identified QTLs. IT = infection type; MDS = maximum disease
severity; AUDPC = area under the disease progress curve.

2.5. Enhancing Marker Density in QYr.sdau-1BL Linkage Map

QYr.sdau-1BL was mapped between marker TTM_253857_21 and TTM_542992_8,
spanning a physical interval from 653.0 to 682.1 Mb on chromosome 1BL (Figure 6A). To
further narrow down the interval of QYr.sdau-1BL, five KASP markers were developed
within the region based on the SNPs identified in this interval by RNA-seq (Figure 6B).
Using the linkage map re-constructed using the five RNA-seq-derived KASP markers
together with the GBS-generated markers, QYr.sdau-1BL was further mapped between
KASP_63005 at 655.7 Mb and KASP_19405 at 677.3 Mb on 1BL (Figure 6C). The physical
interval of QYr.sdau-1BL was reduced from 29.1 Mb to 21.6 Mb.
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Figure 5. Gene ontology (GO) analysis of the differentially expressed genes (DEGs) between Tutoumai
(TTM) and Siyang 936 (SY936). (A) Cluster heat map of DEGs between the resistant parent TTM
(P_R) and susceptible parent SY936 (R_S). (B) The most enriched GO terms of the DEGs. (C) Pathway
enrichment of the DEGs. (D) Number of DEGs of the most enriched pathway.
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Figure 6. A physical map of QYr.sdau-1B. (A) The position of QYr.sdau-1B in a genetic mapping.
(B) Five KASP markers developed based on the SNPs in the QYr.sdau-1B region identified from
RNA-seq. (C) Re-mapped location of QYr.sdau-1B after incorporation of the new KASP markers.
(D) The expression profiles of 13 disease-resistance-related genes identified in the region of QYr.sdau-
1B from RNA-seq. The white and black bars indicated the relative expression levels of alleles from
the susceptible parent Siyang 936 and resistant parent Tutoumai, respectively; the x-axis shows the
FPKM value of the genes in the region.

2.6. DEGs within the QYr.sdau-1BL Region

Within the region of QYr.sdau-1BL, 445 high-confidence genes were annotated according
to the IWGSC RefSeq v1.1. Among them, 54 genes were deferentially expressed between
the two parents, with 37 downregulated and 17 upregulated genes (Supplementary Table S4).
Among them, 13 genes were involved in the plant–pathogen interaction pathways or
encoding disease-resistance-related proteins, with seven of them upregulated in the re-
sistant parent TTM and six downregulated (Figure 6D). Functional annotation showed
that eight of the 13 genes, TraesCS1B01G438800, TraesCS1B01G439400, TraesCS1B01G447400,
TraesCS1B01G452600, TraesCS1B01G460100, TraesCS1B01G464400, TraesCS1B01G466400,
and TraesCS1B01G466900, encode disease-resistance proteins; three (TraesCS1B01G448700,
TraesCS1B01G451600, and TraesCS1B01G454600) encode receptor-like protein kinases; and
two (TraesCS1B01G440700 and TraesCS1B01G456700) encode a WRKY transcription factor
and a calcium-dependent protein kinase, respectively. Thus, these genes can be putative
candidates of QYr.sdau-1BL (Table 3).
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Table 3. The 13 differently expressed genes (DEGs) in the region of QYr.sdau-1B that relate to
disease resistance.

GeneID Functional Annotation

TraesCS1B01G438800 Disease-resistance protein (TIR-NBS-LRR class) family
TraesCS1B01G439400 Disease-resistance protein (TIR-NBS-LRR class) family
TraesCS1B01G440700 WRKY transcription factor
TraesCS1B01G447400 Disease-resistance protein RPM1
TraesCS1B01G448700 Receptor-like protein kinase
TraesCS1B01G451600 Receptor-like protein kinase
TraesCS1B01G452600 Disease-resistance protein (CC-NBS-LRR class) family
TraesCS1B01G454600 Receptor-like protein kinase, putative, expressed
TraesCS1B01G456700 Calcium-dependent protein kinase
TraesCS1B01G460100 Disease-resistance protein (NBS-LRR class) family
TraesCS1B01G464400 Disease-resistance protein RGA2
TraesCS1B01G466400 Disease-resistance protein
TraesCS1B01G466900 Disease-resistance protein

3. Discussion

During the process of wheat domestication and modern breeding, wheat landraces
conserved much more genetic diversity than modern wheat varieties [19], thus providing a
large source of genetic variability for identification of wheat tolerance or resistance genes to
biotic and abiotic stresses. Many YR resistance genes/QTLs have been identified in wheat
landraces, such as YrHY from the Chinese landrace “Hejiangyizai” [20], Yr81 from the
Australian wheat landrace Aus27430 [21], YrPak from the Pakistani landrace PI388231 [22],
QYr.GTM-5DL from the Chinese landrace Guangtoumai [23], and QYrhm.nwafu-2BC from
the Chinese landrace Humai 15 [24]. In the present study, the landrace TTM shows APR
YR, and two QTLs, QYr.sdau-1BL and QYr.sdau-6BL, were mapped in TTM (Table 2), further
indicating wheat landraces are important genetic resources for the discovery of wheat YR
resistance genes or QTLs to improve YR resistance in breeding.

Although hundreds of QTLs for YR resistance have been reported [25], identifying the
APR QTLs or genes are of importance for wheat production as the APR genes are more
durable than race-specific genes, and especially in the Yellow and Huai River Valley Wheat
Zone and Northern Winter Wheat Zone in China, the YR epidemics mainly happen at
the adult-plant stage. In this study, we identified three QTLs for APR to YR on the three
chromosomes: 1BL, 6BL, and 5BL.

QYr.sdau-1BL was mapped on 1BL in this study. Previously, multiple QTLs for APR
to YR have been reported in the same position, such as QYr.ucw-1BL [26], QYr.hebau-
1BL.1 [17], and QYr.cim-1BL.1 [27]. These QTLs are most likely Yr29 for APR [28]. In a more
recent study, QYr.ucw-1BL was further mapped to a 332-kb region between 669,902 kb and
670,234 kb [29], but the causal gene has not been identified.

QYr.sdau-6B was identified on chromosome 6B in this study. Using the integrated
genetic map of chromosome arm 6BL, six YR APR genes or QTLs were mapped at the
similar position, including QYr.pav-6BL [30], QYr.inra-6BL [31], YrLM168a [32], QYrdr.wgp-
6BL.2 [33], QYr.ucw [34], and QYr.nwafu-6BL [35]. Among those reported QTLs, YrLM168a,
QYr.pav-6BL, QYr.inra-6BL, and QYrdr.wgp-6BL.2 overlapped with the QYr.sdau-6B between
500.6 Mb and 598.5 Mb (Table 2), thus they are most likely the same QTL for YR resistance.

QYr.sdau-5B was mapped to the region between 617.7 and 657.4 Mb on 5BL in this
study (Table 2). Several studies previously also mapped QTLs for APR to YR on 5BL. For
instance, QYr.nwafu-5BL was mapped at 670–672 Mb [36], QYr.saas-5BL was mapped to
564–572 Mb [37], QYr.AYH-5BL was mapped to 521.71–539.02 Mb [38], and QYr.YBZR-5BL
was mapped to 519.0–542.7 Mb [39]. These QTLs were mapped in the genomic regions
different from QYr.sdau-5B; therefore, QYr.sdau-5B is more likely a novel QTL for APR to
YR. Interestingly, the favorable allele of QYr.sdau-5B is from the susceptible parent SY936,
suggesting a sensitive parent can also contribute a favorable allele to YR resistance.
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The advancement of next-generation sequencing greatly facilitates the high-throughput
SNP genotyping and marker development in wheat. In this study, after QTL mapping using
low-density GBS-derived markers, we further conducted RNA-seq to detect polymorphic
SNPs to finely map the target QTL and to identify the candidate genes by analyzing the
DEGs. The region of QYr.sdau-1BL was reduced from 29.1 Mb to 21.6 Mb by adding five
RNA-seq-derived KASP markers. Moreover, RNA-seq identified 13 disease-resistance-
related genes in the QYr.sdau-1BL region that were differently expressed between the
parents TTM and SY936. Interestingly, one differentially expressed disease-resistance gene
(TraesCS1B01G454600) was mapped within the 332-kb candidate region of Yr29 reported
by Cobo et al. [29]. This gene encodes a putative receptor-like protein kinase (RLK) and
was downregulated in TTM (Table 3 and Figure 6D). RLKs are important proteins related
to disease resistance, involving pathogen-associated molecular pattern (PAMP)-triggered
immunity in plants [40]. Hence, these DEGs provided additional information for the identi-
fication of candidate gene of QYr.sdau-1BL. Our result demonstrated that QTL mapping
combined with RNA-seq is effective for marker development and identification of the
candidate genes underlying a QTL.

All the three QTLs identified in this study showed partial YR resistance. When the lines
carried at least two of the three QTLs (QYr.sdau-1B, QYr.sdau-5B, and QYr.sdau-6B), the lines
exhibited higher resistance to YR than the single gene lines did (Figure 4), indicating these
QTLs are additive, and pyramiding of these QTLs in a single line can obtain a high level of
APR. A previous study also found that epistatic interaction between Yr29 and QYrCW357-
2AL facilitated to enhance resistance to stripe rust [41]; thus, combining multiple APR QTLs
was necessary for improvement of YR resistance in wheat MAS breeding. The markers
linked to the QTLs also are useful for selecting YR resistance at the adult-plant stage in
breeding. KASP has been widely used in routine MAS breeding in many breeding programs
worldwide [42]. In this study, we found five KASP assays for QYr.sdau-1BL, which can be
used to further finely map QYr.sdau-1BL for map-based cloning of the underlying gene,
and in marker-assisted selection of QYr.sdau-1BL to improve YR resistance.

The resistant parent TTM carries the resistant alleles at QYr.sdau-1B and QYr.sdau-6B,
but is a landrace processing many adverse agronomic traits, such as a tall plant, small
kernel size, and low yield potential, which limit its direct application in breeding. The
parent SY936 is a modern cultivar with a semi-dwarf stature and improved grain yield
traits; the novel QTL in SY936 may be easier to use directly in breeding. However, the two
QTLs in TTM can be further transferred into locally adapted cultivars to develop improved
parents with these resistance QTLs for further breeding. The resistant RILs carrying two
or three of the identified QTLs with improved agronomic traits—similar to or better than
SY936—also can be the valuable QTL donors to be directly used as parents in breeding to
improve YR resistance.

4. Materials and Methods
4.1. Plant Materials

The plant materials used for mapping comprised of 155 RILs from the cross between
TTM and SY936 were developed by single-seed descent [43]. TTM is a Chinese landrace
that is sensitive to Pst races at the seedling stage but highly resistant at the adult-plant
stage, expressing the typical APR to YR; in turn, SY936 is an adapted high-yield cultivar
that is highly susceptible to Pst races at the seedling and adult-plant stages. The sensitive
cultivar Huixianhong (HXH) was used as susceptible control.

4.2. Seedling Stage YR Resistance Evaluation

The YR resistance of the RILs, TTM, SY936, and HXH were evaluated at the seedling
stage. Around 15–20 seeds per line were sown in 50-well plastic trays (5 cm × 5 cm ×5 cm
in dimension). Seedlings at the two-leaf stage were inoculated by injecting the mixture
of five Chinese Pst races (CYR29, CYR31, CYR32, Su11, and Su14), which were obtained
from the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing,
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China. After inoculation, the seedlings were placed in a dew chamber at 10 ◦C with 100%
relative humidity for 24 h and then moved to a temperature-controlled microclimate growth
room with a daily cycle of 16 h of light at 15 ◦C and 8 h of darkness at 10 ◦C. Seedling YR
responses were recorded at 18–22 days after inoculation based on a 0–9 scale [44].

4.3. Evaluation of Adult-Stage YR Resistance

To evaluate YR resistance at the adult-plant stage, the RILs, TTM, SY936, and HXH
were planted in four consecutive seasons in the YR nursery at the Experimental Station
of Shandong Agricultural University, Tai’an, China, from 2015 to 2019. All experiments
were arranged in a randomized complete block design (RCBD) with two replicates. The
plant materials were seeded in 2-m-long one-row plots with 5 cm between plants and 25 cm
between rows. HXH was planted on every 20 rows as the susceptible control and we spread
the rows to aid the fungal spread within the trial. The standard local cultivation practices
were followed. Plants were inoculated every spring at the joining stage (Zadoks stage of
Z33) [45] by injecting a mixture of the five prevalent Chinese Pst races, including CYR29,
CYR31, CYR32, Su11, and Su14. The YR resistance of each RIL was scored for infection types
(ITs) and disease severity (DS) at the adult-plant stage (Z70 stage). IT was scored using a
0–4 scale, where 0 = no visible infection or chlorosis/necrosis; 0′ = no visible uredinia with
minute chlorotic/necrotic; 1 = minute or trace of restricted uredinia; 2 = small uredinia
with slight sporulation; 3 = medium uredinia with moderate sporulation; and 4 = large
and severe uredinia with high sporulation [46]. IT and DS were scored in 5-day intervals,
from rust pustule eruption to the maximum disease severity (MDS) of YR reached on HXH
(around 25 May). The area under the disease progress curve (AUDPC) was computed
according to the following formula [47]:

AUDPC =
n

∑
i
(Xi + Xi+1)(Ti+1 − Ti)/2

where n refers to the total number of investigations, i represents the i survey, Ti+1 indicates
the i + 1 survey, Ti indicates the i survey, Xi+1 indicates the severity of the plants surveyed
in the i + 1 survey, and Xi indicates the severity of the plants surveyed in the i survey.

4.4. Statistical Analysis

Pearson’s correlation coefficients (r) were calculated for IT, MDS, and AUDPC across lo-
cations and years using SPSS version 20 (http://www.spss.com (accessed on 5 Dec. 2021)).
ANOVA of the phenotypic data and heritability were analyzed using the “aov” module
implemented in QTL IciMapping V4.1 software [48].

4.5. Linkage Map Construction and QTL Mapping

Genotyping of the RIL population by GBS and SSR markers has been described pre-
viously [43,49]. A linkage map with combined SNP and SSR markers was constructed by
Lin et al. [43] and used to map the QTLs for YR resistance in this study. The composite
interval mapping function in WinQTLCart v2.5 was used for QTL analysis [50]. Signif-
icant QTLs were claimed if the LOD scores were above the thresholds determined by
1000 permutations.

4.6. RNA-Seq

When TTM and SY936 showed significant differences in YR resistance in the 2016–2017
field experiment, their leaves were collected independently to extract the total RNA using
the Illumina TruSeq RNA Sample Prep Kit (Illumina, Inc., San Diego, CA, USA). RNA-
Seq samples were sequenced using the Illumina HiSeq 4000 platform (Beijing Southern
Genome Research Technology Co., Ltd., Beijing, China). The raw reads generated were
filtered by Trimmomatic v0.36 software [51]. The clean RNA-Seq reads were aligned to
the Chinese Spring reference genome RefSeq v1.1 [52] (http://www.wheatgenome.org/

http://www.spss.com
http://www.wheatgenome.org/
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(accessed on 20 Dec. 2018)) using Hisat [53]. SNPs and Indels were called using GATK [54].
The differently expressed genes (DEGs) were identified by DEGseq [55] based on FPKM
analyzed by HTseq [56]. The genes with a difference fold ≥ 2.0 and Q-value ≤ 0.01 were
considered as DEGs between parents. The analysis of the enriched gene ontology terms
(GO) was conducted using GOseq [57].

4.7. KASP Assays

Resistance-related polymorphic SNPs were converted into KASP markers using Poly
Marker (http://www.polymarker.info/ (accessed on 10 Sep. 2019)), and were screened in
the RIL population. Protocols for preparation of the KASP reactions followed the KASP
manual (https://biosearch-cdn.azureedge.net/assetsv6/Analysis-of-KASP-genotyping-
data-using-cluster-plots.pdf (accessed on 10 Nov. 2019)). Assays were carried out in
384-well plates with 6 µL PCR reaction volumes consisting of 3 µL of a 2× KASP master
mix, 0.0825 µL of a KASP primer assay mix, and 3 µL of genomic DNA at a concentration
of 20 ng/µL. The PCR was conducted with a hot start at 94 ◦C for 15 min, followed by
10 touchdown cycles (94 ◦C for 20 s; touchdown at 65 ◦C initially and decreasing by
0.8 ◦C per cycle for 25 s), followed by 30 additional cycles of denaturation (94 ◦C for
10 s) and annealing/extension (57 ◦C for 60 s). The KASP end-point fluorescent images
were visualized using the FLUOstar Omega microplate reader (BMG Labtech, Durham,
NC, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23179662/s1.
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