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Abstract

Background: Simple and effective vaccine administration is particularly important for annually recommended influenza
vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could
be an attractive approach to improve influenza vaccination compliance and efficacy.

Methodology/Principal Findings: Solid microneedle arrays coated with inactivated influenza vaccine were prepared for
simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination
activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle
coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both
intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune
responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus.
Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine.
Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to
intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post
challenge.

Conclusions/Significance: The functional integrity of hemagglutinin is associated with inducing improved protective
immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared
to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too.
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Introduction

Influenza virus causes serious respiratory disease, affecting 5—
15% of the world population annually. The dose of currently used
inactivated viral or detergent split vaccines is standardized based
on the content of hemagglutinin of each vaccine strain. The
efficacies of the vaccines in humans are also usually evaluated by
immune responses to the hemagglutinin protein [1]. The
hemagglutinin content was reported to be approximately 29% of
the total purified whole viral proteins [2-4]. The effects of
hemagglutinin functional activity in the influenza vaccines on
inducing protective immunity have not been well studied.

Vaccination is the most cost effective measure to prevent
infectious diseases [5]. Currently licensed inactivated influenza
vaccines are prepared as liquid formulations that are administered
to humans intramuscularly. Vaccination exploiting the skin
immune system has received great attention as an attractive
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immunization site [6-8]. Skin resident Langerhans and dermal
dendritic cells are potent antigen presenting cells [9]. Some clinical
studies indicated that intradermal vaccination could offer dose
sparing effects, although a critical control of an equivalent low
dose intramuscular immunization group was often not included
[1,10-14]. Belshe et al. (2007) reported a well-controlled clinical
study demonstrating that intradermal immunization induced
similar levels of antibody responses as intramuscular immunization
[15]. Importantly, intradermal influenza vaccination was found to
be effective in inducing superior immune responses in elderly
adults [16], which has significant implications since 90% of the
36,000 influenza related deaths in the U.S. each year occur in
seniors [17].

Previous intradermal vaccinations were performed using liquid
injection devices (hypodermic needle, hollow microneedle, jet
injector) [10,16,18-20]. Liquid intradermal immunizations typi-
cally require highly trained personnel and are associated with
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more frequent local reactions at the injection site [1,10,21].
Although a powder form of influenza vaccine was formulated for
epidermal immunization, a special high-velocity injection device
with a high antigen dose and a helium gas cylinder was required
for vaccine delivery [8]. To facilitate intradermal vaccination,
minimally invasive microneedle patches with a length that only
penetrates across epidermis and into the superficial dermis were
fabricated and used to administer small molecules and proteins
into skin [22,23].

Recently, it was demonstrated that microneedle vaccination
with inactivated influenza virus in the skin could induce similar
protective immunity as intramuscular vaccination [24,25]. How-
ever, one of the challenges in microneedle vaccination is a possible
loss of vaccine stability associated with the drying process during
microneedle vaccine formulation. In addition, the effects of
vaccine integrity as assessed i wvitro on inducing protective
immunity i vivo are not well investigated.

In this study, we hypothesized that vaccine integrity as
represented by hemagglutination (HA) activity is a critical factor
in inducing protective immune responses. We investigated the
relationship between vaccine integrity and its immunogenicity, as
well as the immunological differences between microneedle
delivery of solid vaccine to the skin and intramuscular immuni-
zation with influenza vaccine in solution. We found that
maintenance of HA activity in the vaccine was critically important
in inducing isotype-switched antibodies and high levels of
protective immune responses. In addition, results from this study
suggest that microneedle vaccination in the skin using stabilized
antigen provides insights into superior immunity against influenza
infection, which might be applicable to vaccination with other
antigens too.

Results

Microneedle-basede influenza vaccination in the skin

Most vaccines including influenza are administered in liquid
form using a hypodermic needle. In contrast, microneedle-based
vaccination involves coating vaccine onto microneedles using a
drying process, and thus represents the delivery of vaccine in a
solid state (Fig. 1A). This drying process could damage antigen
stability. Using formalin-inactivated whole influenza virus as a
model antigen, we determined HA activity as an indicator of
antigen structural integrity and vaccine stability, after coating
influenza vaccines onto microneedles. As shown in Fig. 1B,
vaccine coated onto microneedles was re-dissolved into PBS
solution by soaking the coated needles in PBS. HA activity of the
reconstituted influenza vaccine was then determined. After the
drying process during coating, the influenza vaccine was found to
lose most of its HA activity when reconstituted in PBS (Fig. 1B).
To address this, we noted in the literature that trehalose, a
disaccharide, was reported to stabilize an influenza subunit HA
vaccine during freeze drying [26]. Guided by this, we found that
the addition of 15% trehalose to the coating solution significantly
mmproved the retention of HA activity of microneedle-coated
vaccines up to 64% compared to an untreated vaccine (Fig. 1C).
These results suggest that drying of the inactivated influenza virus
has a significant damaging effect on vaccine integrity and that the
addition of trehalose can largely stabilize the antigen HA activity
during coating onto microneedles.

Effects of trehalose on the immunogenicity of influenza
vaccine

We next investigated the relationship between retention of HA
activity of influenza vaccine and its immunogenicity after
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Figure 1. Coating of influenza vaccines on microneedles. (A) (i)
Comparison of a microneedle array and hypodermic needle (23 gauge).
(i) The circled part of the microneedle array in (i) is shown as a bright-
field micrograph with 5 microneedles coated with inactivated influenza
virus. (B) Experimental design. Microneedles were coated with
inactivated influenza A/PR8 with or without trehalose coating
formulation. Some vaccine coated on microneedles with or without
trehalose was dissolved in PBS for intramuscular injections. (C) HA
activities (% of unprocessed control) were determined after reconsti-
tuting from microneedles coated with or without trehalose formulation.
doi:10.1371/journal.pone.0007152.g001

microneedle vaccination using both solid state formulations
administered using MN or liquid state formulations intramuscu-
larly. Groups of mice (n=12) were immunized with a single dose
of vaccine in the skin after coating the vaccine in the absence (MN)
or presence of trehalose (MN+T) in the coating formulation
(0.4 g of viral protein). Also, to compare with the conventional
intramuscular route of immunization (IM), two more groups
(n=12) were immunized with inactivated viral vaccine that was
coated onto microneedles in the absence (IM) or presence of
trehalose (IM+T), dissolved off the microneedles and then injected
mtramuscularly. A mock immunized control group with micro-
needle vaccination of coating buffer only in the skin was also

included (n=12).
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Figure 2. Influenza A/PR8 specific IgG responses. Mice (n=12 per
group) were immunized with microneedles coated with 0.4 ug of
inactivated A/PR8 vaccine or by intramuscular injection with 0.4 ug of
A/PR8 vaccine reconstituted from coated microneedles. Blood samples
were collected at weeks 1, 2 and 4 after a single vaccination. Virus-
specific antibody responses measured by ELISA are expressed as the
endpoint titers. MN, microneedle vaccine without trehalose; MN+T,
microneedle vaccine with trehalose; IM, intramuscular injection of
reconstituted A/PR8 vaccine without trehalose; IM+T, intramuscular
injection of reconstituted A/PR8 vaccine from trehalose-formulated
microneedles; Mock, microneedles with trehalose coating buffer only
(without A/PR8 vaccine). Statistical significances among groups
compared are as follows: p<<0.005 between MN+T and MN or IM at
weeks 1, 2, and 4. p<<0.05 between IM+T and IM or MN at weeks 1, 2,
and 4. p<<0.05 between MN+T and IM+T at week 4.
doi:10.1371/journal.pone.0007152.g002

We determined vaccine (A/PR8 virus) specific total IgG and
isotypes IgG1, IgG2a and IgG2b antibodies in sera at weeks 1, 2
and 4 after a single IM or microneedle vaccination in the skin.
Trehalose-stabilized microneedle vaccination induced the highest
levels of antibodies among the groups (Fig. 2). Trehalose stabilized
vaccines (MN+T, IM+T) induced significantly higher levels of
virus-specific antibodies than those in the corresponding groups
without trehalose (MN, IM) at weeks 1, 2, and 4 after a single
immunization (p<<0.005). Among the trchalose-stabilized groups,
total IgG antibody responses were higher in the trehalose
microneedle group (MN+T) than those in the trehalose-stabilized
IM group (IM+T) at week 4 post immunization (p<<0.05). For
comparison, the levels of antibody responses after intramuscular
immunization with unprocessed influenza vaccine were similar
regardless of the addition of trehalose to the vaccine (Table 1),
which suggests that trehalose does not behave as an adjuvant, but

Microneedle Skin Vaccination

rather acts to protect the antigen from damage during microneedle
coating.

The pattern of antibody isotypes indicates either T helper type 1
(Thl) or type 2 (Th2) like immune response corresponding to
dominance of the IgG2a or IgG1 isotype antibody, respectively
[27]. When isotype-switched antibodies were examined, we found
a very striking pattern among the groups studied (Fig. 3 and
Table 2). The ratios of IgG2a to IgGl (IgG2a/IgGl) were
analyzed based on isotype antibody levels determined by optical
densities (Fig. 3E) and end-point dilution titers (Table 2). Both
analyses showed similar results. The trehalose-stabilized vaccines
(MN+T, IM+T) induced IgG2a as the dominant isotype (Fig. 3B,
3D, 3E, and Table 2). A similar pattern of IgG2a dominant
immune responses was previously observed in mice intramuscu-
larly immunized with intact influenza vaccine [28,29]. In contrast,
trehalose-negative vaccine groups (MN, IM) showed IgG1 as the
dominant isotype antibody (Figs. 3A, 3C), which resulted in a
switch in IgG1/IgG2a ratio of >1 for trehalose-containing groups
(IM+T, MN+T) to <1 for groups without trehalose (IM, MN).
Therefore, these results suggest that the retention of HA activity by
trehalose in the influenza vaccine significantly affected the
magnitude of humoral immune responses as well as the pattern
of isotype switching.

Microneedle vaccine with higher HA activity enhances
functional antibodies

Levels of functional antibodies measured as hemagglutination
inhibition (HAI) and/or virus neutralizing activities in immune
sera are known to be better immune correlates for protection
[1,30]. As shown in the Fig. 4, highest titers of HAI and
neutralization activity were induced by microneedle vaccination in
the skin using stabilized vaccine (MN+T). As shown in Fig. 4A,
mice immunized with the trehalose-stabilized vaccines showed
considerably higher neutralizing activities, showing a 6-fold
comparing MN and MN+T groups (270 vs 1620 titers of 50%
plaque reduction, p<<0.005) and 2-fold between IM and IM+T
groups (270 vs 540 titers of 50% plaque reduction, p<<0.05).
Similarly higher HAI titers were observed in the trehalose-
stabilized vaccine compared to corresponding groups without
trehalose in the formulation (Fig. 4B, p<<0.001 between MN and
MN+T; p<<0.05 between IM and IM+T). These results indicate
that microneedle delivery of stabilized vaccines can be superior to
IM immunization in inducing neutralizing and hemagglutination
inhibiting antibodies, and that maintaining HA functional activity
in the influenza vaccine is critical to inducing high levels of
functional antibodies.

Table 1. Effects of trehalose on induction of immune responses to unprocessed influenza vaccine injected intramuscular’.

Vaccines? Week 1 Week 2 Week 4
1gG titers® (x103) 1gG titers (x103) 1gG titers (x103)
PR8I 15.2*5 51.2+20 102.4+28
PR8i + Trehalose 12.8+3 60.8+25 90.4+20
Mock 0.1%+0.05 0.1%£0.05 0.1£0.05

influenza vaccine with or without trehalose.
trehalose).

deviations of naive serum samples.
doi:10.1371/journal.pone.0007152.t001
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"Wirus specific total IgG antibody responses were determined at weeks 1, 2, and 4 after a single immunization of mice (6 BALB/c mice for each group) with inactivated
2Vaccines are unprocessed inactivated whole virus (A/PR8i, 0.4 ug), unprocessed inactivated virus plus trehalose (A/PR8i 0.4 ug + 15% trehalose), or mock (15%

3Virus specific total IgG antibody titers were expressed as the highest dilution having a mean optical density at 450 nm greater than the mean value plus 3 standard
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Figure 3. Effects of trehalose stabilized vaccine on antibody isotype responses. (A) MN group, (B) MN+T group, (C) IM group, and (D) IM+T
group. Kinetics of A/PR8 virus specific isotype antibody responses (IgG1, IgG2a, IgG2b) were determined at weeks 1, 2 and 4 after a single vaccination.
Results are expressed as averages of optical density readings at 450 nm (OD,s50) with 100-fold diluted serum samples in each group of mice (n=12).
(E) Ratios of 1gG2a/lgG1 based on optical density readings with week-4 samples. Groups are described in the legend of Fig. 2.
doi:10.1371/journal.pone.0007152.g003

Table 2. IgG1 and IgG2a titers (x103) in serum before and after challenge’.

Group? IgG1 lgG2a Ratio® (IgG2a/lgG1)
Before After Before After Before After

MN 51.2+6 102.4*=15.5 6.4=x1 12.8*2 0.12 0.12

MN-+T 25.6+5 76.8+8.1 102.4+20 204.8+30 4.0 2.7

M 12.8*2 19.2*4 9.6+2 12.8*5 0.75 0.67

IM+T 9.6+1 6.4+1 25.6+3 25.6*5 26 3

Wirus specific IgG1 and IgG2a antibody responses were determined and compared among groups before challenge (at week 4 post immunization) and after challenge
(at day 4 post challenge). Antibody titers were expressed as the highest dilution having a mean optical density at 450 nm greater than the mean value plus 3 standard
deviations of naive serum samples.

2MN, microneedle vaccine without trehalose; MN+T, microneedle vaccine with trehalose; IM, reconstituted A/PR8 vaccine without trehalose; IM+T, reconstituted A/PR8
vaccine from trehalose-formulated microneedles; Mock, microneedle with trehalose coating buffer only (without A/PR8 vaccine).

3Isotype antibody ratios (IgG2a/lgG1) based on antibody titers before challenge (Week 4) and after challenge (Day4). Before, serum samples (n=12) collected at week 4
after a single immunization; After, serum samples (n=6) collected at day 4 after challenge.

doi:10.1371/journal.pone.0007152.t002

). PLoS ONE | www.plosone.org 4 September 2009 | Volume 4 | Issue 9 | e7152



Microneedle Skin Vaccination

A. Neutralizing activities B. HAI
120 500
X 100 - —&—O6—4
< SR 400
S 807 \ \
T | 2 300
3 O e \ £
g 40 1 I 200
g 20 - 100
(1]
a 0]
v . B f f v 0 4
O o0 410 gAD 20 400
0 0 910 540,520 4o o @&\:\ o \Wf\ \4«06*

Serum dilution

Figure 4. Trehalose stabilized vaccine enhances functional antibody responses. Serum neutralizing titers (A) and hemagglutination
inhibition (HAI) titers (B) were determined at week 4 after a single vaccination (n=12). Neutralizing activities were expressed as the percentage of
plague reduction compared to a naive serum control. Significant differences were found among groups of mice: For neutralizing titers at the 540
dilution for plaque reduction, p<<0.005 between MN+T and MN or IM. At the serum dilution 270, p<<0.05 between IM+T and IM or MN. For HAl titers,
p<<0.001 between MN+T and MN or IM, and p<<0.05 between IM+T and IM or MN.

doi:10.1371/journal.pone.0007152.g004

Maintaining HA activity of influenza vaccines improves

the efficacy of protection

To determine whether vaccine stability measured by HA
activity or the routes of immunization (i.e., microneedle versus
intramuscular) affects protective immunity, vaccinated mice
including a mock control were challenged with a lethal dose of
A/PR8 virus (20x LDsg) at 5 weeks after a single microneedle
vaccination in the skin or intramuscular immunization (Fig. 5). All
mock-immunized control mice rapidly lost body weight and died
by day 6 post lethal-challenge. Groups of mice immunized with
either inramuscular or microneedle vaccination without trehalose
formulation (MN and IM) showed significant illness as deter-
mined by loss in body weight up to 15 to 17% whereas the
intramuscular group with trehalose (IM+T) showed a only
transient body weight loss of 5%. Importantly, the trehalose-
microneedle group (MN+T) did not show any loss in body weight.
As expected from body weight changes, survival rates of groups
without trehalose were lower (70% for MN and 80% for IM) than
those groups with trehalose, which showed 100% survival
(MN+T, IM+T). Therefore, these results support the conclusion
that stabilization of influenza vaccine by trehalose during
microneedle coating is critically important for inducing protective
immunity.

Microneedle delivery of stabilized vaccine provides
effective viral control

To better appreciate the efficacy of protection, we determined
the viral titers and inflammatory cytokine levels in lungs at day 4
post challenge infection. The groups of mice with microneedle or
intramuscular vaccination (MN, IM) had lower lung viral titers by
20- and 75-fold compared to those in the mock-immunized control
(p<<0.01), but still showed lung viral titers in a range of from
2.9x10° to 1x10° pfu/g lung tissue (Fig. 6A). The IM immunized
group with trehalose (IM+T) showed lung wviral titers of
2.4x10° pfu/g lung tissue, 100-fold lower compared to the mock
control (Fig. 6A, p<0.005). Levels of lung viral titers in the group
of microneedle delivery with trehalose (MN+T) were lowest and
were under the detection limit (<270 pfu/g lung tissue).

Acute infection by pathogenic influenza virus causes severe lung
inflammation [31,32]. Thus, levels of inflammatory cytokines can
be used as an additional parameter in evaluating protective
efficacy. The control mice showed the highest levels of interferon-y
(IFN-y) and interleukin-6 (IL-6) pro-inflammatory cytokine levels
in lungs at day 4 post challenge. Microneedle delivery of trehalose
stabilized vaccine (MN+T) was found to be most effective in
lowering inflammatory cytokines whereas high levels of inflam-
matory cytokines were detected in the trehalose-negative micro-
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Figure 5. Trehalose stabilization of vaccine improves protective efficacy. At week 5 after a single vaccination, mice (n=12) were challenged
with a lethal dose (A/PR8 virus, 20 x LD50) and were monitored daily to record body weight changes (A) and survival rates (B). Groups of mice are

described as in the legend of Fig. 2.
doi:10.1371/journal.pone.0007152.g005
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Figure 6. Trehalose-stabilized microneedle vaccine improves control of lung viral replication. Lungs from individual mice in each group
(n=6 out of 12 mice per group) were collected on day 4 post-challenge, weighed, and extracted in media. Slight variations in lung tissue weight
recovered from individual mice were adjusted (0.25 g lung tissue/ml). Virus titers (plaque forming units, pfu) in log10 (A), or IFN- v (B) and IL-6 (C)
cytokines in nano-grams (ng) per gram (g) lung tissue are expressed as geometric mean values. IFN-y and IL-6 in lung extracts were determined by
ELISA. Groups of mice are described in the legend of Fig. 2. Naive is an uninfected mouse control.

doi:10.1371/journal.pone.0007152.g006

needle group (MN), showing a correlation between lung viral titers
and inflammatory cytokines (Fig. 6B and 6C). Also, groups of mice
immunized intramuscularly with trehalose-stabilized vaccine
(IM+T) showed moderate or low levels of cytokines compared to
the trehalose-negative groups (p<<0.05) (Fig. 6B and 6C). In
summary, these results show that microneedle delivery of stabilized
influenza vaccine induced superior protective Immunity in
controlling lung viral replication of challenge virus compared to
microneedle delivery of unstabilized vaccine and to intramuscular
immunization using stabilized or unstabilized vaccine.

Stabilized microneedle vaccine provides rapid recall
immune responses

To better understand the significantly improved viral clearance
in the hemagglutinin-stabilized microneedle group (MN+T), we
determined virus-specific antibody levels in lungs and sera at day 4
post challenge infection (Fig. 7). Interestingly, the group of mice
that received microneedle vaccine formulated with trehalose
(MN+T) showed highest levels of both IgG1 and IgG2a antibodies
specific to virus in lungs at day 4 post challenge infection
(p<<0.001) (Fig. 7A). Microneedle vaccination without trehalose
(MN) induced moderately high levels of IgG1l antibody as a
dominant isotype in this group. In contrast, inramuscular
immunized groups (IM, IM+T) did not induce significant levels
of recall antibody responses specific to virus in lungs.

Higher levels of both recall serum IgG1 and IgG2a antibodies
were also observed in the group immunized by microneedle
delivery with trehalose-formulated vaccine (MN+T) than those in
the corresponding inramuscular immunization groups (p<<0.05
between MN+T and IM+T for both IgG1 and IgG2a) (Fig. 7B and
Table 2). Increases in serum IgG1 antibodies were also prominent
in the group immunized by microneedle delivery after challenge
infection (p<0.005 between MN and IM or IM+T for IgGl,
Fig. 7B).

To determine T cell responses, spleen cells were harvested from
immunized mice at day 4 post challenge infection. After i vitro
stimulation of splenocytes with A/PR/8/34 hemagglutinin-
specific MHC 1 or MHC II peptides, cytokine secreting cells
were quantified (Fig. 7C). The microneedle vaccine formulated
with trehalose (MN+T) showed the highest levels of MHC II
peptide-specific IFN-y secreting splenocytes (p<<0.05 among the
immunized groups). In the inramuscular groups (IM, IM+T), there
were no significant differences in levels of IFN-y secreting
splenocytes with or without trehalose formulation.

@ PLoS ONE | www.plosone.org

The lung is the primary site for replication of influenza virus, and
neutralizing antibodies in lungs are expected to play a significant
role in clearing the viruses. Thus, neutralizing titers were
determined in lung samples collected at day 4 post challenge
(Fig. 7D). The highest neutralizing titers of 45 with 80% plaque
reduction were detected in lung samples after microneedle
vaccination with trehalose formulation (MN+T), which was more
than 3-fold higher compared to those in the corresponding
unstabilized or other groups. Without trehalose stabilization, both
mnramuscular and microneedle groups (IM, MN) showed lower
levels of neutralizing titers in lungs. These lung neutralizing titers
showed correlations with lung viral titers post challenge as shown in
Tig. 6A. These results suggest that microneedle delivery of vaccine
stabilized by trehalose is superior in inducing rapid recall mucosal
and systemic immune responses upon challenge infection compared
to microneedle delivery of unstabilized vaccine and to intramuscular
immunization using stabilized or unstabilized vaccine.

Discussion

In the present study, we investigated microneedle vaccination
via the skin and the effects of loss of HA activity of the influenza
vaccine on its immunogenicity. Coating microneedles with
mactivated influenza virus caused loss of HA activity of the
vaccine whereas addition of trehalose to the coating buffer
significantly improved the maintenance of HA activity. Immuni-
zation of mice with unstabilized influenza vaccine via microneedle
or intramuscularly showed significantly lower levels of IgG2a
antibody, and decreased levels of functional antibodies and
protective efficacies compared to those induced by trehalose-
stabilized influenza vaccines. These results indicate the importance
of maintaining influenza vaccine HA activity in inducing
protective immunity. Also, immune responses were different in
quantities as well as qualities depending on the HA activities of
influenza vaccine and the route of vaccine delivery. Particularly,
microneedle vaccination in the skin was significantly more effective
than intramuscular immunization in controlling challenge virus
replication and in inducing recall immune responses.

Recent studies reported that microneedle immunization with
10-pg inactivated influenza virus provided comparable immune
responses and protection as the conventional intramuscular
immunization, although stabilities of the microneedle vaccines
were not investigated [24,25]. We found that the stability of
influenza vaccines significantly influenced the pattern of antibody

September 2009 | Volume 4 | Issue 9 | e7152



Microneedle Skin Vaccination

A. Lung antibodies B. Serum antibodies
1600
$ lgG1 40000 IgG1
8 < 30000 B gG2a
o’ —
S 800 2
2 = 20000
s ©
2, 400 2
L= L 10000
0 [-Lh T - T F- T r-. T I'—-_‘ 0 ': i L—!
MN  MN+T M IM+T - Mock MN  MN+T 1M IM+T  Mock
©» C. Spleen IFN-gamma D. Lung neutralizing titers
g 300 120
S 250 | £100 -MN
¥ 200 5 80 - MN+T
-— &)

8 150 - £ 60 oM
E 100 | @ 40 - IMET
=

-A+-Mock
E 50 a 20
oD
Z 0 °
L

15 45 135 405 1215
Titers/g tissue

Figure 7. Higher recall immune responses induced by trehalose stabilized microneedle vaccine. Lung, serum, and spleen samples were
collected from individual mice in each group (n=6) at day 4 post challenge. (A) Virus specific IgG1 and IgG2a antibodies in lungs (ng/g tissue: ng
antibodies per g lung tissue). (B) Virus specific IgG1 and IgG2a antibodies in sera (ng/ml: ng antibodies per ml sera). (C) IFN- v secreting splenocytes
(spots/1x10° spleen cells) after stimulation with hemagglutinin-specific MHC | and Il peptides. (D) Neutralizing activities in lung. Serial dilutions of
lung samples were incubated with infectious influenza viruses and percentiles of plaque forming units were determined. Titers/g tissue: dilution
factors per g lung tissue from the lung extracts (0.25 g/ml). Groups of mice are the same as in Fig. 5. Significant differences were found among the
groups: For lung IgG2a antibody (A), p<<0.001 between MN+T and other groups; for lung IgG1 (A), p<0.001 between MN+T and IM or IM+T. For
serum IgG2a antibody (B), p<<0.001 between MN+T and other groups; for IgG1 (B), p<<0.005 between MN and IM or IM+T, p<<0.05 between MN+T and
IM or IM+T. For spleen IFN-y secreting cells (C), p<<0.05 between MN+T and other groups. For lung neutralizing titers, p<<0.05 between MN+T and
other groups at 15x dilution.

doi:10.1371/journal.pone.0007152.g007

isotypes, indicating the types of immune responses: IgG1l and The functional integrity of hemagglutinin in the influenza
IgG2a isotypes are indicative of T helper type 2 (Th2) and type 1 vaccine might be important for effective interactions with
(Thl), respectively. The quality of the immune response induced receptors of target cells such as Langerhans cells, dermal dendritic
by vaccination also seems to be important for inducing protective cells, keratinocytes, and/or other immune cells. Receptor-
immunity. Natural virus infection is known to induce IgG2a mediated entry of whole inactivated influenza vaccines into the
isotype as the dominant antibody [33-35]. The Fc domain of target cells can deliver their single-stranded RNA molecules, an
IgG2a antibody interacts more efficiently with complements in activator for toll-like receptor-7 (TLR?7), resulting in the induction
serum and Fc receptors on immune cells resulting in activation of of Thl type immune responses [9,42]. However, the expression of
the complement system, antibody-mediated cellular cytoxicity, TLR7 was observed in keratinocytes and in certain lineages of
and clearance of opsonized virus by macrophages [36,37,38—41]. dendritic cells but not in the Langerhans cells [42,43], indicating
Clonsistent with previous studies, this study suggests that the that the TLR7 signaling pathway is not the main contributor for
induction of high levels of IgG2a antibodies together with IgG1 activating skin resident Langerhans cells. An alternative possibility
antibodies by stabilized microneedle vaccination contributed to is that immune cells were activated by interactions between intact
effective control of challenge virus replication. hemagglutinin of vaccines with sialic acid or other receptors on
One of the interesting observations from the present study is the immune cells via an activation pathway independent of TLR7. A
fact that the functional integrity of hemagglutinin is a critical recent study demonstrated that fusion activity of inactivated
determining factor for inducing IgG2a isotype antibody after influenza vaccine was required for its superior immunogenicity to
microneedle or intramuscular delivery of vaccine as well as for split and subunit vaccines and that the immune responses could be
inducing antibody responses to influenza. Also, trehalose itself was mediated by either TLR signaling dependent or independent
found not to significantly affect host immune responses to activation of the innate immune system [42].
influenza, and therefore does not appear to play a significant role Our data suggest that the functional integrity of hemagglutinin
as an adjuvant. On this basis, it is likely that the major role of in the influenza vaccine may influence the types of antigen
trehalose formulation is to stabilize HA activity and thereby presenting cells. Thl type immune responses are known to be
maintain influenza vaccine integrity. induced most likely by pathogen interactions with receptors on
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host innate immune cells [42-45]. Some dendritic cells are more
likely to induce Thl type immune responses whereas macrophage
cells induce Th2 type responses affecting the pattern of antibody
isotypes [46]. In comparing groups with and without trehalose-
mediated HA stabilization of influenza vaccine, microneedle
groups showed 6- to 9-fold differences in HAI and neutralizing
titers (MN versus MN+T) whereas intramuscular groups showed
approximately 2-fold differences in functional antibody induction
(IM versus IM+T). Thus, maintenance of influenza vaccine HA
activity had a greater impact on microneedle vaccination in the
skin. The underlying mechanisms how the immune system
differentially induces immune responses to influenza vaccines
depending on the vaccine HA activities remain to be determined.

Intradermal influenza vaccination has attracted widespread
interest. However, detailed immunologic studies have not been
carried out. Vaccines delivered intradermally were effective
against rabies, BCG, hepatitis B, and influenza antigens [15,47].
These vaccines were delivered in liquid formulations using
hypodermic needles, hollow microneedle, or jet injector devices.
In contrast, our study used microneedles coated with inactivated
virus in a dry state for vaccination to the skin. Use of solid state
vaccine may affect antigen uptake and presentation, in addition to
providing a stable formulation that does not require reconstitution
before administration.

Microneedle-based delivery differs from intramuscular injection
not only in the route of administration, but also in the preparation
of the vaccine. To isolate out the effects of potential antigenic
changes during microneedle vaccine preparation independent of
the route of administration, we reconstituted vaccines from coated
microneedles and injected them intramuscularly for comparison of
immunogenicity and protective efficacies with microneedle
vaccination to the skin. Using a trehalose formulation, micronee-
dle vaccination in the skin was significantly more immunogenic
than intramuscular immunization as evidenced by a range of
different immunologic assays: binding and functional antibodies,
post-challenge lung viral titers and inflammatory cytokine levels,
and recall mucosal and systemic responses to influenza. Among
the range of immunologic data, the recall immune responses to
influenza in the microneedle group (MN+T) with a single
vaccination to the skin were significantly stronger than intramus-
cular immunization (IM+T). After taking up intradermally
delivered antigens, skin-derived dendritic cells are known to
migrate to the systemic and mucosal compartments [48-50],
which might be involved in rapid recall immune responses after
microneedle vaccination in the skin as demonstrated in this study.
Therefore, our detailed immunologic study provides deeper
explanations for potential improved protective efficacies by
vaccine delivery to the skin.

In summary, this study demonstrates that the integrity of
influenza vaccine as represented by HA activities is a critically
important factor for determining antibody isotypes, inducing
functional antibodies, and providing effective protective immunity
as well as recall immune responses to influenza. Also, our study
provides insight into formulating a vaccine maintaining structural
and conformational integrity through the use of trehalose as a
stabilizer. Immunologic data from this study offers a partial
explanation for improved protection by delivering vaccines to the
skin. Finally, the results show that a solid formulation of an
enveloped virus antigen with biologically active glycoproteins can
be at least as effective as a liquid form of vaccine if an optimized
stabilizer is used. In addition to possible immunologic advantages,
solid microneedle vaccination may offer logistic advantages such as
possible self-administration, less dependence on a cold-chain and
highly trained medical personnel, and less pain compared to the
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conventional intradermal or intramuscular delivery of liquid form
vaccines.

Materials and Methods

Preparation of influenza virus

Influenza virus, A/PR/8/1934 (HIN1, abbreviated as A/PR8),
was grown in 10-day old embryonated hen’s eggs and purified
from allantoic fluid by using a discontinuous sucrose gradient
(15%, 30% and 60%) layers. The purified virus was inactivated by
mixing the virus with formalin at a final concentration of 1:4000
(v/v) as previously described [51,52]. Inactivation of the virus was
confirmed by plaque assay on confluent monolayer Madin-Darby
canine kidney (MDCK) cells and inoculation of the virus into 10-
day old embryonated hen’s eggs. Inactivated whole virus vaccine
(A/PRS8) was used to coat solid metal microneedles for vaccination
in the skin. For use in challenge experiments, mouse adapted A/
PR8 virus was prepared as lung homogenates from mice infected 4
days earlier [53,54].

Microneedle vaccine preparation

Stainless steel microneedles of approximately 700 um in length
(Fig. 1A) were fabricated by laser cutting and electro-polishing
technology as described previously [23]. A manual dip-coating
device was used to coat a vaccine onto microneedles by dipping
and air-drying six times at 25°C [23,55]. The vaccine coating
solution was composed of 1% (w/v) carboxymethylcellulose
sodium salt (Carbo-Mer, San Diego, CA), 0.5% (w/v), Lutrol F-
68 NF (BASF, Mt. Olive, NJ), and inactivated virus (A/PRS,
1 mg/ml based on total protein contents) in phosphate-buffered
saline (PBS) with or without 15% (w/v) trehalose (Sigma Aldrich,
St. Louis, MO). Half of the microneedles coated with inactivated
virus vaccine were de-coated to reconstitute vaccines in PBS for
intramuscular immunization controls and the other half were used
for microneedle immunization (Fig. 1B).

To determine the amount of inactivated virus vaccine coated on
microneedles, vaccine-coated microneedles were incubated in PBS
for 12 h at 4°C and the total protein content of the reconstituted
vaccine from an array of five microneedles was measured by a DC
protein assay kit (Bio-Rad, Irvine, CA). The retained HA activities
were also determined in the reconstituted vaccines. Dissolved
vaccines in PBS (50 pl) was serially diluted in 50 ul of PBS mixed
with an equal volume of a fresh 0.5% suspension of chicken red
blood cells (Lampire Biological Laboratories, Pipersville, PA) and
incubated for 1 h at 25°C. The titers were determined as the
endpoint dilutions inhibiting the precipitation of red blood cells.

Immunization and challenge infection

Female inbred BALB/ ¢ mice (Charles River, Wilmington, MA)
aged 6 to 8 weeks were used. Groups of mice (12 mice per group)
were immunized with coated microneedle vaccine (0.4 pg total
protein) for delivery to the skin or reconstituted vaccines (0.4 ug
protein/100 pl) for intramuscular immunization in the upper
quadriceps muscles of mice (both legs each with 50 pl). The four
groups of immunized mice were designated as trehalose-negative
formulated microneedle vaccine (MN), trehalose-positive formu-
lated microneedle vaccine (MN+T), trehalose-negative reconsti-
tuted vaccine (IM) and trehalose-positive reconstituted vaccine
(IM+T) for intramuscular injection. For microneedle delivery,
mice were anesthetized with ketamine (110 mg/kg, Abbott
Laboratories, Chicago, IL) mixed with xylaxine (11 mg/kg,
Phoenix Scientific, St. Joseph, MO). Hair on the dorsal surface
of mice was removed by a hair-removing cream (Nair, Church and
Dwight Company, Princeton, NJ) with a moisturized cotton stick.
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After cleaning with a soaked cotton ball (70% ethanol) and drying
with a hair dryer, an array of vaccine-coated microneedles was
inserted into the skin and left in place for 10 min for release of the
vaccine antigen from the microneedle.

For challenge infections, mice lightly anesthetized with
isoflurane were intranasally infected with a lethal dose of A/PR8
virus (20x LD50) in 50 pl of PBS at 5 weeks after a single dose
immunization. Mice were observed daily to monitor changes in
body weight and to record mortality. Mice with >25% loss of
body weight were sacrificed to prevent undue suffering. These
studies were approved by Emory University IACUC.

Antibody responses and hemagglutination inhibition
(HAI) titer

Influenza virus-specific antibodies of different isotypes (IgG,
IgG1, IgG2a and IgG2b) were determined by enzyme-linked
immunosorbent assay (ELISA) plates coated with A/PR8 viral
antigen and by using anti-mouse IgG isotype specific secondary
antibodies as described previously [30,54]. Antibody concentra-
tions (ng per g lung tissues or ng per ml sera) were determined
using standard curves for mouse IgG1 and IgG2a antibodies. For
determination of hemagglutination-inhibition (HAI) titers, serum
samples were first treated with receptor destroying enzyme (Denka
Seiken, Kayabacho,Chuo-ku,Tokyo) by incubation overnight at
37°C, and then incubated 30 min at 56°C. Sera were serially
diluted, mixed with 4 HA units (HAU) of influenza A/PR8 virus,
and incubated for 30 min at room temperature prior to adding
0.5% chicken red blood cells. The highest serum dilution
preventing hemagglutination was scored as the HAI titer as
described [30].

Neutralization, lung viral titer and lung inflammatory

cytokine assays

Virus neutralization assay was performed using MDCK cells
(American Type Culture Collection, VA, USA) following a
previously described procedure [30,54]. The neutralization
activity was expressed as the percentage of plaque reduction.
Lung viral titers at day 4 post challenge were determined by
counting plaques formed on the MDCK cells as previously
described [30,54]. Inflammatory cytokines (IL-6, IFN-y) in lungs
collected at day 4 post challenge were analyzed by Ready-Set-Go
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