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OBJECTIVE—Recently, results from a meta-analysis of ge-
nome-wide association studies have yielded a number of novel
type 2 diabetes loci. However, conflicting results have been
published regarding their effects on insulin secretion and insulin
sensitivity. In this study we used hyperglycemic clamps with
three different stimuli to test associations between these novel
loci and various measures of -cell function.

RESEARCH DESIGN AND METHODS—For this study, 336
participants, 180 normal glucose tolerant and 156 impaired
glucose tolerant, underwent a 2-h hyperglycemic clamp. In a
subset we also assessed the response to glucagon-like peptide
(GLP)-1 and arginine during an extended clamp (n = 123). All
subjects were genotyped for gene variants in JAZF1, CDC123/
CAMKID, TSPANS/LGR5, THADA, ADAMTS9, NOTCHZ2/
ADAMS30, DCD, VEGFA, BCL11A, HNF1B, WFS1, and MTNR1B.

RESULTS—Gene variants in CDCI123/CAMKI1D, ADAMTSO,
BCL11A, and MTNRIB affected various aspects of the insulin
response to glucose (all P < 6.9 X 10%). The THADA gene
variant was associated with lower (-cell response to GLP-1 and
arginine (both P < 1.6 X 10~?), suggesting lower B-cell mass as
a possible pathogenic mechanism. Remarkably, we also noted a
trend toward an increased insulin response to GLP-1 in carriers
of MTNRIB (P = 0.03), which may offer new therapeutic
possibilities. The other seven loci were not detectably associated
with B-cell function.

CONCLUSIONS—Diabetes risk alleles in CDC123/CAMKID,
THADA, ADAMTS9, BCL11A, and MTNRIB are associated with
various specific aspects of B-cell function. These findings point to
a clear diversity in the impact that these various gene variants
may have on (dys)function of pancreatic B-cells. Diabetes 59:
293-301, 2010
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enome-wide association (GWA) studies have
revealed a large number of novel type 2 diabe-
tes susceptibility loci (1-4). Most of the genes
identified during the first wave of GWA study
results are shown to affect B-cell function, indicated by
lower insulin responses to oral (OGTTs) or intravenous
(IVGTTs) glucose tolerance tests (5). By applying the
hyperglycemic clamp methodology, considered the gold
standard for measurements of 3-cell function, we further
refined the observed B-cell defects to defects in first- but
not second-phase glucose-stimulated insulin secretion
(GSIS) (6) or incretin-stimulated secretion (7). This differ-
entiation is of importance to help resolve the pathogenic
mechanism of the diabetes loci identified by GWA studies.
More recently the Diabetes Genetics Replication And
Meta-analysis (DIAGRAM) Consortium published at
least six additional susceptibility loci, JAZF1, CDC123/
CAMKI1D, TSPANS/LGR5, THADA, ADAMTS9, and
NOTCH2/ADAM30 (8), and three putative susceptibility
loci, DCD, VEGFA, and BCLI11A. Studies using OGTTs
have yielded conflicting results on the effects of these new
loci on B-cell function and insulin sensitivity. Grarup et al.
(9) reported B-cell dysfunction associated with gene vari-
ants in JAZF1, TSPANS/LGR5, and CDC123/CAMKID.
The results for CDC123/CAMKID have only been repli-
cated by Sanghera et al. (10) in Asian Indians but not by
three other studies in Caucasians. All of the other three
studies also failed to replicate the results for JAZFI and
TSPANS/LGR5 (11-13). Furthermore, gene variants in
three other loci have been established as true type 2
diabetes susceptibility loci, HNF1B, WFS1, and MTNR1B
(14-19). Although mutations in HNF1B are associated
with B-cell defects in maturity-onset diabetes of the young,
it is unknown whether the type 2 diabetes—associated
common single nucleotide polymorphism (SNP) is also
associated with reduced B-cell function (14,15). It has
been shown that WFS1 associates with reduced oral
(11,13,20-22) but not intravenous glucose-stimulated insu-
lin secretion (22). Schéfer et al. (22) further demonstrated
that the WFS1 gene affects glucagon-like peptide (GLP)-1-
stimulated insulin secretion during clamps. For the
MTNRIB locus, several studies have shown reduced insu-
lin secretion in response to glucose (17-19,23,24).
In this study 180 normal (NGT) and 156 impaired (IGT)
glucose tolerant subjects originating from three indepen-
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TABLE 1
Clinical characteristics of the individual study samples
Hoorn* Utrecht* NTR Twins*
IGT NGT IGT NGT IGT

n 137 64 12 116 7
Sex (male/female) 64/73 15/49 4/8 58/58 0/7
Age (years) 60.5 + 8.6 45.9 + 6.4 495 = 7.7 31.5 + 6.5 31.2 £ 3.2
BMI (kg/m?) 28.1 = 4.0 25.8 = 3.8 26.7 £ 4.1 24.2 = 3.5 24.5 = 3.3
Fasting plasma glucose

(mmol/1) 6.3+ 0.7 4.6 =04 5.1 +04 4.6 =04 4.6 = 0.6
2-h plasma glucose

(mmol/1) 88 £ 1.7 51=x1.0 85 * 1.2 52+ 1.1 81=x0.3
Fasting plasma insulin

(pmol/l) 62 (46-91) 30 (24-42) 66 (42-78) 34 (27-51) 39 (29-60)

First-phase insulin
response (pmol/l)

Second-phase insulin
response (pmol/l)

ISI (umol * min~ ' - kg ! -
pmol '-171

587 (378-895)

255 (176-354)

DI (umol - min~* - kg™1) 65 (42-92) 172 (103-238)
GLP-1-stimulated insulin

release (pmol/l) NA NA
Arginine-stimulated insulin

release (pmol/l) NA NA

885 (644-1,217)

260 (191-365)

678 (461-909) 814 (589-1,162) 795 (693-1,210)

251 (186-307) 218 (162-358) 217 (210-434)

0.108 (0.068-0.164) 0.190 (0.127-0.282) 0.111 (0.082-0.256) 0.227 (0.152-0.323) 0.123 (0.109-0.183)

72 (55-128) 180 (140-234) 138 (82-151)
NA 1,225 (734-2587) 848 (577-1,239)
NA 2,188 (1,526-2,973) 1,673 (1,438-1,908)

Data are means * SD, median (interquartile range), or n. *Original population from which the cohort originated (26,28—-30). NA, not available.

dent studies in the Netherlands were genotyped for vari-
ants in JAZFI, CDCI123/CAMKID, TSPANS/LGRS5,
THADA, ADAMTS9, NOTCH2/ADAMS30, DCD, VEGFA,
BCL11A, HNF1B, WFS1, and MTNR1B. We tested whether
these loci are associated with alterations in -cell function
as assessed by hyperglycemic clamp methodology with, in
a subset, two additional secretagogues, namely GLP-1 and
arginine. Arginine stimulation during hyperglycemia is a
test of (near) maximal insulin secretion and has been
proposed as a proxy for B-cell mass (25).

RESEARCH DESIGN AND METHODS

Hyperglycemic clamp cohorts. Participants originated from three indepen-
dent studies in the Netherlands (26-30). The clinical characteristics of the
study sample are given in Table 1. In short we recruited for this study 137 IGT
subjects from the Hoorn Study (26,29); 76 subjects (64 NGT/12 IGT) from
Utrecht (27,28), and 123 twins and sibs (116 NGT/7 IGT) from the Netherlands
Twin Register (NTR) (30). The NTR twin sample includes 66 monozygotic and
28 dizygotic twins as well as 29 of their nontwin sibs recruited from 50
families. Details of the three individual samples have previously been de-
scribed (6,26-30).

Hyperglycemic clamp procedure. All participants underwent a hyperglyce-
mic clamp at 10 mmol/l glucose for at least 2 h (26,28 -30). First-phase insulin
secretion was determined as the sum of the insulin levels during the first 10
min of the clamp. Second-phase insulin secretion was determined as the mean
of the insulin levels during the last 40 min of the second hour of the clamp
(80-120 min). The insulin sensitivity index (ISI) was defined as the glucose
infusion rate (M, wmol - min~' - kg~ !) necessary to maintain the hyperglyce-
mic clamp divided by the plasma insulin concentration (Z, pmol/l) during the
last 40 min of the second hour of the clamp (M/I, pmol - min~ ' - kg~ ' - pmol !
-17Y). Mitrakou et al. (31) compared the ISI determined with a hyperglycemic
clamp with insulin sensitivity as determined using the euglycemic-hyperinsu-
linemic clamp in the same subjects and found a good agreement between the
two methods. The disposition index (DI) was calculated by multiplication of
first-phase insulin secretion and ISI to quantify insulin secretion in relation to
the ambient insulin sensitivity (32,33).

Subjects from the NTR twin sample underwent a modification of the
extended clamp using additional GLP-1 and arginine stimulation as described
previously by Fritsche et al. (25). GLP-1-stimulated insulin release was
measured as the mean incremental area under the curve (160-180 min) after
GLP-1 stimulation (1.5 pmol/kg bolus for 1 min at ¢ = 120 min followed by a
continuous infusion of 0.5 pmol - kg~! - min~'). Arginine-stimulated acute
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insulin release was measured by injecting a bolus of 5 g arginine hydrochlo-
ride at t = 180 min as described previously (25). The acute insulin response to
arginine was calculated as the mean incremental area under the curve from
182-185 min.

Genotyping. Based on the available literature regarding the novel type 2
diabetes genes, we selected gene variants in JAZF1 (rs864745), CDCI123/
CAMKID (rs12779790), TSPANS/LGR5 (rs7961581), THADA (rs7578597),
ADAMTS9 (rs4607103), and NOTCH2/ADAM30 (rs2641348) (8); the putative
type 2 diabetes genes DCD (rs1153188), VEGFA (rs9472138), and BCL11A
(rs10490072) (8); and HNF1B (xrs757210) (14,15), WFS1 (rs10010131) (16), and
MTNRIB (rs10830963) (17-19). All SNPs were measured using either the
Sequenom platform (Sequenom, San Diego, California) or Tagman SNP
genotyping assays (Applied Biosystems, Foster City, California) in all individ-
ual subjects. The genotyping success rate was above 96% for all SNPs, and
samples measured in duplicate (~5%) were in complete concordance. All
genotype distributions obeyed Hardy-Weinberg equilibrium (P = 0.05) except
for MTNR1B (P = 0.01). SNP genotypes were recoded as 0, 1, or 2, with the
2 genotype as the at-risk genotype reported in the original publications.
Statistics. The effect of the gene variants on the B-cell responses was
examined with linear regression assuming an additive model unless otherwise
stated. To take into account the family relatedness (i.e., in the twin sample),
empirical standard errors were used (using the generalized estimating equa-
tions). The analyses of first- and second-phase GSIS, GLP-1, and arginine-
stimulated insulin secretion were adjusted for age, sex, BMI, study center,
glucose tolerance status (NGT/IGT), and ISI. For the analysis of ISI and DI, ISI
was removed from the covariates. All outcome variables were log transformed
prior to analysis. In addition to the analysis of the pooled data we also
performed a random-effects meta-analysis of the results obtained in the three
separate cohorts using Comprehensive Meta-Analysis version 2 software
(www.meta-analysis.com). A priori power calculations showed that the design
used in this study would allow the detection of a difference in insulin secretion
of ~15% (glucose) to 30% (GLP-1, arginine) with 80% power (a < 0.05)
depending on the stimulus used and allele frequency of the SNPs. All data are
given as estimated mean (95% CI) unless otherwise stated. After correction for
multiple hypothesis, testing results were regarded significant at P < 0.008 (six
tests). Apart from the meta-analysis, SPSS version 16.0 software (SPSS,
Chicago, Illinois) was used for all statistical analyses.

RESULTS

As previously shown second-phase insulin secretion mea-
sured with the hyperglycemic clamp was only slightly
reduced in the subjects with IGT (P > 0.1), whereas all
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other measures of glucose-stimulated insulin release and
ISI were significantly lower (all P < 0.0001; Table 1) (28).
Genotype distributions for each of the tested gene variants
are given in Table 2. Genotype distributions were compa-
rable with other Caucasian populations.

First, no associations were found with insulin sensitivity
with the sole exception of THADA, where we noted a
significantly lower ISI (P = 6.9 X 10 %) in carriers of the T
risk allele. Five loci, however, significantly affected 3-cell
function. These associations are shown in Table 2 and will
be briefly summarized below. Throughout, reported P
values represent the values obtained for the full model that
includes the genotype of interest and age, sex, BMI,
glucose tolerance status, family relatedness, and insulin
sensitivity (where appropriate) as covariates. A model
without BMI yielded essentially the same results (data not
shown). A meta-analysis of the results in the three sepa-
rate study samples instead of the analysis of the pooled
data yielded virtually identical results (data not shown).
CDC123/CAMK1D. The rs12779790 variant in the
CDC123/CAMKI1D locus was not significantly associated
with first-phase GSIS; however, we do note a significantly
decreased second-phase GSIS in carriers of the at-risk
genotype (Table 2; P = 4.9 X 10%). The response to
GLP-1, arginine stimulation, and insulin sensitivity were
not significantly different, although we do note a trend
toward a reduced response to arginine (—32%; P = 0.015).
THADA. Because the protective C/C genotype of the
rs7578597 SNP is only present in three subjects, we pooled
the CC and CT genotype groups. The TT risk genotype was
not significantly associated with first-phase GSIS (P =
0.77), but all other measures of B-cell function were
reduced (11-37%), although not always statistically signif-
icant: second-phase insulin response (P = 0.019), DI (P =
0.039), GLP-1 (P = 1.6 X 107°), and arginine-stimulated
insulin response (2.3 X 10~% Table 2). As stated above we
also noted a significantly lower ISI (P = 6.9 X 10~?) in
carriers of the at-risk genotype.

ADAMTSS9. Analysis of rs4607103 in ADAMTS9 provided
evidence for an effect on first-phase GSIS. Carriers of the
type 2 diabetes risk genotype CC showed, paradoxically, a
40% increased first-phase GSIS than the nonrisk TT refer-
ence genotype (P = 5.9 X 10~ ?). This effect was similar in
direction in both NGT and IGT subjects (Table 3). Further-
more, the risk allele carriers also showed a higher DI (P =
2.6 X 10~%). Second-phase GSIS, the response to GLP-1 or
arginine, and ISI were not significantly affected by the
ADAMTS9 genotype.

BCL11A. Carriers of the rs10490072 TT risk genotype of
the BCL11A locus had on average a 16% lower first-phase
GSIS (P = 3.1 X 10~?). The DI was also lower, although
not statistically significant (P = 0.010). Other measures of
B-cell function and ISI were not significantly different
(Table 2).

MTNRI1B. The risk allele for MTNR1B was si%niﬁcantly
associated with a decreased DI (P = 1.5 X 10™°) but not
other measures of glucose-stimulated insulin secretion.
Although not statistically significant, there were increased
responses to GLP-1 (30%; P = 0.026) and arginine stimu-
lation (19%; P = 0.037) in carriers of the risk allele for
rs10830963.

Other novel type 2 diabetes loci. Gene variants in the
JAZF1, TSPANS/LGR5, DCD, NOTCH2/ADAM30, and
VEGFA loci were not significantly associated with any of
the B-cell measures or insulin sensitivity (Table 2).

diabetes.diabetesjournals.org

DISCUSSION

The DIAGRAM consortium and others recently showed
that JAZF1, CDC123/CAMKI1D, TSPANS/LGR5, THADA,
ADAMTS9, NOTCH2/ADAMS30, HNF1B, WFS1, MTNRIB,
and possibly also DCD, VEGFA, and BCLI11A should be
added to the list of confirmed type 2 diabetes loci (8,14—
19). In this study we have shown that gene variants in five
of these loci are associated with measures of B-cell
function obtained during hyperglycemic clamps, either in
response to glucose alone and/or in combination with
other B-cell secretagogues during hyperglycemia. In con-
trast to our previous work, which showed that most other
known loci primarily affect first-phase GSIS (6,7,34), the
current set of loci also affected various other aspects of
B-cell function.

CDC123/CAMKID, rs12779790. Previously, Grarup et
al. (9) reported that the G risk allele of rs12779790
CDC123/CAMKI1D was associated with a lower insulino-
genic index, corrected insulin response, and area under
the insulin/glucose curve during OGTTs. They also noted a
lower DI in carriers of the G allele. The B-cell defect was
confirmed in a study of subjects of Asian Indian descent
(10). Three other studies in Caucasians failed to replicate
the observation made by Grarup et al. However, in all
three studies a similar, though not significant, trend to-
ward lower B-cell function could be observed (11-13).
These results are in line with our observation of a lower
insulin response to glucose stimulation. We also noted a
trend toward a reduced insulin response after arginine
stimulation (—32%; P = 0.015). Arginine stimulation during
hyperglycemia is a measure of (near) maximal insulin
secretion and has been suggested as a proxy for B-cell
mass. Given the putative role of CAMKID in granulocyte
function, it seems plausible that this gene variant affects
B-cell function by causing reduced B-cell mass due to
enhanced apoptosis (35). Further research, however, is
needed to verify this hypothesis.

THADA, rs7578597. We have shown that homozygous
carriers of the risk allele have lower levels of various
measures of B-cell function. This was not previously
reported in any of the OGTT-based studies, although
Stancakova et al. showed some evidence for a reduced
early phase insulin response (P = 0.045) (13). THADA,
encoding thyroid adenoma-associated protein, has been
suggested to be involved in the death receptor pathway
and apoptosis (36). Given the fact that the gene variant is
associated with reduced response to arginine stimulation
during the clamp, this could imply that those subjects with
the rs7578597 (T1187A) gene variant in THADA have a
reduced B-cell mass due to increased apoptosis. Again,
further studies are needed to confirm our hypothesis of
increased apoptosis and lower B-cell mass as the underly-
ing disease mechanism. The THADA variant was the only
variant associated with insulin sensitivity; this, however,
was not corroborated by any of the other studies and may
thus be a false-positive association.

ADAMTSY, rs4607103. Remarkably, we noted a signifi-
cantly increased first-phase GSIS and DI in carriers of the
risk allele. The observed increased B-cell function was
present in all separate samples and in NGT and IGT
subjects when analyzed separately, arguing against a
chance finding. Also Lyssenko et al. (11) reported an
increased DI during follow-up in carriers of the risk
genotype. The other studies, however, did not report
any changes in B-cell function or insulin sensitivity
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g% A = i~ (9,10,12,13). Given these counterintuitive results and the
'z S| 258 = g unknown function of ADAMTS9 in type 2 diabetes suscep-
$5E E E g E tibility and/or B-cell function, our data warrant further
= E S IR Bew 5 & replication and studies into the disease mechanism.

%”;; % ) ::g ::g ) = BCL11A, rs10490072. For carriers of the risk allele in

E2 2FL S 3 BCL11A we noted a significant reduction in first-phase

g & Soo < . GSIS. Only Staiger et al. (12) included BCLI11A in their

analyses, and they did not corroborate our results.
BCLI11A, encoding B-cell CLL/lymphoma 11A, has been
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222| 88%g 2B B85 2Z<  on genes like BCL6, COUP-TF, and SIRTI (37). Sirtuins
~Z & 2T8s s & S| 288 £ like SIRTI have been implicated in several processes
= E = g g g5g2 directly linked to type 2 diabetes (38), and one may
O T _ _ 2 t8E speculate that BCL11A gene variants exert their effect via
_ BN < e the regulation of SIRTI expression.
%D ol = MTNRIB, rs10830963. Recently, the melatonin receptor
: o, ow — o e 3 E 2 o 1B gene has been identified as a novel type 2 diabetes and
ST bEAR —OF wI¥—~ | 553 E fasting plasma glucose gene (17-19). Also in this study the
= 2 =D risk allele was associated with increased fasting plasma
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~ = E @“: glucose levels (P = 0.004). Several studies have shown
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= O — < QI < NS < Q § é 8 tically significant due to the smaller sample size, we
= — —— — g o5 surprisingly also noted increased insulin responses toward
. P PR . | SE é’ G GLP-1 (30%) and arginine stimulation (19%). This seems to
T e SAR = ™ E 5 '§ contradict the observed decreased insulin response to oral
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& g~ g’ %' @l &! %! @' %' %I %l s = = known that the insulin response to oral glucose is in part
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RE o | CORE S<OT Zood CER T erefore be regarded exploratory, and we fully subscribe
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is demanding for both researchers and participants. How-
ever, our current results clearly justify these investments.

A further limitation is the inclusion of a mix of NGT and
IGT subjects. It is well known that subjects with IGT often
have insulin resistance and/or insufficient 3-cell function
to maintain normal glucose homeostasis and are thus at
high risk to develop type 2 diabetes. One may argue that
the observed associations with decreased {3-cell function
are thus due to the known association with type 2 diabetes
and the risk implied by the IGT state. However, our data
analyzing NGT and IGT subjects separately showed that
the direction of the effects for the gene variants we found
to be associated was in general similar in both groups and
not mainly driven by the IGT subjects, arguing against this
potential bias. Furthermore, we used a random-effects meta-
analysis approach to test whether the relationship between
the genes and the outcome variables is homogeneous over
the three cohorts. Also, this analysis yielded virtually identi-
cal results, providing further evidence that our data are not
influenced by the inclusion of the IGT subjects. However,
although the associations we found are resistant to the
above-described analyses and present in both NGT and IGT
subjects, we cannot exclude that for other genes/loci this
would not be the case.

In conclusion, we found novel associations between
gene variants in THADA, ADAMTS9, and BCL1 1A loci and
various aspects of B-cell function. In carriers of the
THADA variant we observed decreases in both GLP-1- and
arginine-induced insulin release hinting at lower (3-cell
function and/or mass. Carriers of gene variants in AD-
AMTS9 and BCL11A show alterations in first-phase GSIS,
suggesting they may primarily affect processes involved in
the rapid recruitment and release of insulin from insulin
granules.

In addition to the above-mentioned associations we
have confirmed that a gene variant in CDC123/CAMKID is
associated with reduced f-cell function, and our data
suggest it may do so via a reduced B-cell mass. Further-
more, our data suggest that carriers of the MTNR1B risk
allele may be more sensitive toward the stimulatory effects
of GLP-1, which may offer therapeutic possibilities if
confirmed. These findings point to a clear diversity in the
impact that these various gene variants may have on
(dys)function of pancreatic 3-cells and justify the use of
the hyperglycemic clamp methodology, especially with
additional secretagogues, to resolve the pathogenic mech-
anisms of these loci.
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