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Abstract
The study of processes evolving on networks has recently become a very popular research

field, not only because of the rich mathematical theory that underpins it, but also because of

its many possible applications, a number of them in the field of biology. Indeed, molecular

signaling pathways, gene regulation, predator-prey interactions and the communication

between neurons in the brain can be seen as examples of networks with complex dynamics.

The properties of such dynamics depend largely on the topology of the underlying network

graph. In this work, we want to answer the following question: Knowing network connectiv-

ity, what can be said about the level of third-order correlations that will characterize the net-

work dynamics? We consider a linear point process as a model for pulse-coded, or spiking

activity in a neuronal network. Using recent results from theory of such processes, we study

third-order correlations between spike trains in such a system and explain which features of

the network graph (i.e. which topological motifs) are responsible for their emergence. Com-

paring two different models of network topology—random networks of Erdős-Rényi type
and networks with highly interconnected hubs—we find that, in random networks, the aver-

age measure of third-order correlations does not depend on the local connectivity proper-

ties, but rather on global parameters, such as the connection probability. This, however,

ceases to be the case in networks with a geometric out-degree distribution, where topologi-

cal specificities have a strong impact on average correlations.

Author Summary

Many biological phenomena can be viewed as dynamical processes on a graph. Under-
standing coordinated activity of nodes in such a network is of some importance, as it helps
to characterize the behavior of the complex system. Of course, the topology of a network
plays a pivotal role in determining the level of coordination among its different vertices. In
particular, correlations between triplets of events (here: action potentials generated by
neurons) have recently garnered some interest in the theoretical neuroscience community.
In this paper, we present a decomposition of an average measure of third-order
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coordinated activity of neurons in a spiking neuronal network in terms of the relevant
topological motifs present in the underlying graph. We study different network topologies
and show, in particular, that the presence of certain tree motifs in the synaptic connectivity
graph greatly affects the strength of third-order correlations between spike trains of differ-
ent neurons.

Introduction
Analyzing networks of interacting elements has become the tool of choice in many areas of
biology. In recent years, network models have been used to study the interactions between
predator and prey [1], gene interactions [2] and neural network dynamics [3, 4]. A fundamen-
tal question in the study of complex networks is how the topology of the graph on which a
dynamic process evolves influences its activity. A particularly interesting issue is the emergence
of synchronized, or correlated patterns of events. While it is obvious that the presence or
absence of such patterns of activity depends largely on how individual nodes in the network
are connected, it is by no means a trivial task to explain exactly how this happens.

In theoretical neuroscience, the connection between network topology and correlated activ-
ity continues to be an important topic of study. Not only are correlations between neuronal
spike trains believed to have an important function in information processing [5, 6] and coinci-
dence detection [7], but they are also believed to be tied to expectation and attention (see [7]
for details). In addition, it been shown that nerve cells can be extremely sensitive to synchro-
nous input from large groups of neurons [8].

While there has been much work on elucidating the causes and effects of pairwise correla-
tions between spike trains [3], it seems that correlations beyond second order also have a role
to play in the brain. For example, it was indicated that a nonlinear neuron’s firing rate profile
depends on higher-order correlations between the presynaptic spikes [9]. Higher-order corre-
lations have also been reported in the rat somatosensory cortex and the visual cortex of the
behaving macaque [10]. Indeed, it has been suggested that these correlations are inherent prop-
erties of cortical dynamics in many species [11, 12]. As a result, neural data has recently been
intensively investigated for signs of higher-order synchrony using classical means such as max-
imum entropy models [13–18]. In addition, new methods are being developed in order to shed
more light on what seems to be a very important property of networks in the brain [19–21].

In this work, we study the relation between the topology (i.e. synaptic connectivity) and cor-
relations of third order between neuronal spike trains. Our aim was to show how triplet corre-
lations depend on topological motifs in a network with known connectivity. We hope our
results can be used to facilitate thought experiments to relate hypothetical connectivity to
third-order correlations by, for example, assuming specific network topologies and then com-
puting how these assumptions affect the dynamics.

In the following text, the word “connection” is meant to be translated as “synapse”. While
this might be a point of contention, in previous work, it was clearly shown that that a mapping
between synaptically coupled spiking networks (e.g. comprising LIF neurons) and statistical,
point process models, such as Hawkes process exist, with exactly the same underlying connec-
tivity [22]. In addition, it has been demonstrated that synaptic connectivity can be recon-
structed from simulated spike trains with very high fidelity, provided the network has a
connectivity which is not too dense and not too sparse [23]. On the basis of these two results,
we feel enough confidence to claim that in the Hawkes process network models considered
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here “connections” in terms of coupling kernels can be safely identified with “synapses” in a
spiking neuronal network.

However, we would also like to point out that knowing the true connectivity in an experi-
mental setting is close to impossible. Indeed, the connectivity matrices, obtained by statistical
inference methods applied to neural data are rarely more than a proxy for the actual “anatomi-
cal” connectivity. In other words, the existence of a statistical relationship between the firings
of two neural cells (“correlation”) does generally not imply the existence of an actual synapse
between them. In addition, the inference of connectivity from neural data is confounded by
undersampling. One can typically only record from a tiny fraction of all neurons that constitute
the network, while most of the population remains effectively hidden to the experimenter.

Similar work, pertaining to the influence of connectivity on correlations of second order has
already been published [3, 24–26]. In it, the authors dissect the contribution of specific struc-
tural motifs to the emergence of pairwise correlations in a recurrent network of interconnected
point processes, meant to represent neurons communicating via spikes. Interpreting known
mathematical results [27] in an original fashion, they show how the influence of recurrent
input can be disentangled to take into account not only effects of direct connections, but also
indirect connectivity. However, no such result exists in the case of more complex patterns,
stemming from correlations of higher order. With this paper, we aim to fill this gap.

Analogously to [3], we show that measures of third-order correlations (known in the statis-
tical literature as “third-order joint cumulants”) are also heavily influenced by the presence of
certain topological motifs in the network graph. We find that the motifs in question can be
thought of representing “common input to triplets of neurons” and that, in graph theory
terms, they represent rooted trees with three leaf nodes. Furthermore, we obtain an expansion
of the joint third cumulants in terms of a sum of weights of all such subgraphs and show that,
in a regular network (that is, a network with fixed in- and out-degrees), this expansion can be
approximated by a formula that doesn’t depend on the specific adjacency matrix, but rather on
global connectivity parameters, such as the connection probability p. In addition, our result
extends to large random Erdős-Rényi type networks, as they are approximately regular when
the number of nodes grows without bound. We find that the formula we derive is a useful
approximation for quantifying the level of third-order correlations in networks with a narrow
out-degree distribution. In addition, we look at networks of highly interconnected hubs and
show that, in this case, the average joint third cumulant depends strongly on the details of the
connectivity pattern.

Methods

The Hawkes process as a model of spiking neural networks
To study higher-order correlations in networks of spiking neurons with a fixed network topol-
ogy, we apply a point process model introduced in [27, 28], which we will refer to as the
“Hawkes process”. As the theory of Hawkes processes is rich and rather technical, we will only
summarize the important definitions and equations needed to present our results. A more for-
mal and thorough treatment of the model can be found in Hawkes’ original papers.

In what follows, we will use capital letters to denote matrices. Vectors will not be explicitly
marked, as their identity will be clear from the context. Individual components of matrices and
vectors are referred to by indices attached to the symbol. Furthermore, note that, from here
onwards, the phrase “third-order correlations” should always be interpreted as referring to
“third-order joint cumulants” (defined below).

Our spiking neuronal network consists of N neurons, of which NE are excitatory and NI are
inhibitory. Spike trains of neuron i, SiðtÞ ¼

P
ndðt � tinÞ, are modeled as realizations of point
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processes with time-dependent firing rates Λi(t). In other words, we have

LiðtÞ ¼ E½SiðtÞjSjðt0Þ; t0 � t; 1 � j � N�; ð1Þ

where E½�� is the (conditional) expectation operator. In the Hawkes process framework, the
vector Λ(t) of instantaneous firing rates (conditional on Si(t0), for t0 � t) is given by

LðtÞ ¼ mþ
Z t

�1
Gðt � t0Þ � Sðt0Þdt0 � mþ ðG ? SÞðtÞ: ð2Þ

The vector μ can be interpreted as the rate of spontaneous activity (due to constant external
input) in the network. The neurons in the network would independently spike at rates, given
by components of vector μ, if there were no synaptic connections between neurons in the
network.

Recurrent synaptic interaction in the network is governed by the matrix of interaction ker-
nels G(t), an N × Nmatrix of causal functions gij(t), describing the influence of a spike in neu-
ron j imposed on the future rate of neuron i. Typically, this is a sparse matrix with most
entries being zero, and only few of them being nonzero. In principle, all of the functions gij(t)
can be different. However, for the sake of simplicity, we will assume that all source neurons in
the excitatory subpopulation have interaction kernels equal to gE(t) to contact their targets,
and all inhibitory neurons have interaction kernels gI(t). Thus, the total synaptic weight of
excitatory neurons equals gE �

R
gE(t) dt and is positive, i.e. gE > 0. Similarly, for inhibitory

neurons, gI �
R
gI (t) dt< 0.

The number gE represents the expected number of extra spikes in the postsynaptic (target)
neuron induced by a spike of the presynaptic (source) neuron. Analogously, for inhibitory neu-
rons, the number gI represents the expected reduction in the total number of spikes produced
by the postsynaptic neuron.

The exact connectivity between neurons in the network is chosen randomly, according to
various rules, as will be explained in the sections to follow.

One important thing to note is that the Hawkes model only allows for pairwise interactions,
and yet possesses correlations of all orders. Furthermore, the Hawkes process is a probabilistic
spike generator and, as such, may exhibit a different behavior than an encoder with a determin-
istic threshold mechanism. It is, however, important to realize that real neurons that are
embedded in a large network possess both stochastic and deterministic features. Another
potential limitation of the Hawkes model is that it provides a good approximation when synap-
ses are weak, but strong synapses may more thoroughly explore neuronal nonlinearities.
Finally, the Hawkes process is formally correctly defined only for positive interaction kernels.
Negative interactions may lead to a rate vector Λ(t) with negative entries, which is of course
not a meaningful configuration. Thus, technically, one should use the rectified rate [Λ(t)]+ as a
basis for spike generation in simulations. In the following, we will assume that the probability
of having negative entries in the rate vector is negligibly low and will ignore the rectifying non-
linearity. The goodness of this approximation is illustrated in Fig 1.

At equilibrium, the expected firing rate vector of the Hawkes process, E½LðtÞ�, no longer
depends on time. We can compute the stationary rate vector, denoted Λ, as follows

L ¼ mþ
Z þ1

�1
LGðt � t0Þdt0 ¼ mþ L

Z þ1

�1
GðtÞdt

� �
; ð3Þ

from which we obtain the stationary rate of the network as

L ¼ ðI� GÞ�1m; ð4Þ
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where we have used G as a shortcut for the matrix of integrated interaction kernels, i.e.G� RG(t)
dt and I denotes theN × N unit matrix. A summary of symbols, used in the text can be found in
Table 1.

In what follows, we will also restrict ourselves to systems in which the spectral radius of the
matrix G (the largest eigenvalue of G), which we denote by ρ(G), is less than 1. Indeed, this con-
dition insures the existence of the matrix inverse in the rate Eq 4. Furthermore, if ρ(G)> 1, it
may happen that no stable equilibrium of the system exists and the spiking activity exhibits
runaway solutions.

Pairwise correlations in the Hawkes process framework
An important result, originally presented in Hawkes’ original work [27, 28], was that the lagged
cross-covariance of spike trains of different neurons can be analytically computed directly
from the matrix of interaction kernels G(t). More precisely, we can formally define the covari-
ance density matrix, denoted by C(τ), as

CðtÞ ¼ E½Sðt þ tÞSðtÞT � � LLT : ð5Þ
As was discussed before, intuitively, the entry (i, j) in C(τ) can be thought of as representing the
probability that a spike of neuron j causes a spike of neuron i after time lag τ, minus the proba-
bility that this happens by chance (which, assuming stationarity, equals ΛΛT). As noted in

Fig 1. Hawkes process theory reproduces rates, correlations and third cumulants in a simulated
network with Erdős-Rényi type random connectivity. Network parameters are N = 1000,NE = 800,NI =
200, p = 0.1, gE = 0.015 and gI = −0.075. Top left: Fluctuating firing rates of 50 randomly chosen neurons
(gray traces) and their average (red line). The average rate only rarely goes below 0 (dashed line). Top right:
Estimated temporal averages of firing rates scattered vs. rates predicted by Hawkes theory. The diagonal
(green line) indicates a perfect match. Note that there is a slight discrepancy between theory and simulation
for very low rates. Bottom left: Estimated integrated pairwise covariances (of all possible neuron pairs)
scattered vs. integrated covariances predicted by Hawkes theory. Bottom right: Estimated integrated joint
third cumulants (see the following sections for a definition) of a 100 randomly chosen neurons, scattered vs.
integrated joint cumulants computed from Hawkes theory. The larger discrepancies are due to finite
simulation time and a relatively small sample size.

doi:10.1371/journal.pcbi.1004963.g001
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[27, 28], it is possible to rewrite C(τ) as

CðtÞ ¼ DdðtÞ þ C0ðtÞ � LLT ; ð6Þ

where D� diag(Λ) is a diagonal matrix, with the entries of the rate vector Λ on the diagonal.
Furthermore, C0(τ) denotes the continuous part of the covariance density matrix, which is the
solution to the matrix convolution equation

C0ðtÞ ¼ GðtÞDþ ðG ? C0ÞðtÞ; t > 0; ð7Þ

where the convolution of two matrix functions F(t) and G(t) equals a matrix function
H(t)� (F ? G)(t) with

HijðtÞ ¼
Z t

�1
Fðt � sÞ � GðsÞds ¼

X
k

Z t

�1
Fikðt � sÞGkjðsÞds; ð8Þ

where � denotes the usual product of two numerical matrices. An important result in [28] is

that the Fourier transform of the covariance density matrix, i.e. ĈðoÞ � R þ1
�1 CðtÞe�iotdt can

be expressed in terms of the Fourier transform ĜðoÞ of the matrix of interaction kernels

Table 1. Symbols used in text (in order of appearance).

Symbol Description

N total number of neurons

NE number of excitatory neurons

NI number of inhibitory neurons

S(t) spike train vector

Λ(t) conditional firing rate vector

G(t), gij(t) matrix of interaction kernels, its components

(gE) gE(t) (integrated) excitatory neuron interaction kernel

(gI) gI(t) (integrated) inhibitory neuron interaction kernel

μ, μi external input vector, external input to neuron i

Λ stationary firing rate vector, L ¼ E½LðtÞ�
G integrated matrix of interaction kernels

C(τ) covariance density matrix

R(t) convolution power series of the matrix G(t)

κijk(t1, t2, t3) third-order joint cumulant density of neurons i, j and k

Ni(T) spike count of neuron i in a bin of size T

κijk(T) third cumulant of spike counts of neurons i, j and k

Ψ(t) CðtÞ ¼ RðtÞ � IdðtÞ
κijk integrated joint third cumulant of neurons i, j and k

B power series of matrix G

C integrated covariance density matrix

Npop(T) population spike count in a bin of size T

�k3 average joint third cumulant

p connection probability

μ(k) average common input, shared by k neurons

~k3 quadratic approximation of the average third cumulant �k3

doi:10.1371/journal.pcbi.1004963.t001
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G(t). More precisely, we have

ĈðoÞ ¼ ðI� ĜðoÞÞ�1DðI� Ĝ�ðoÞÞ�1
; ð9Þ

where � denotes the conjugate transpose of a matrix.
Recently, it has been shown [29, 30] that, component-wise and in the time domain, the pre-

vious equation can be written as

CijðtÞ ¼
XN
k¼1

Lk

Z þ1

�1
RikðuÞRjkðuþ tÞ du; ð10Þ

where Λk is the k-th component of the previously defined stationary rate vector, and the matrix
R(t) is a function of G(t). Namely, we have that R(t) is a “convolution power series” of G(t) or,
more precisely,

RðtÞ ¼
X
n�0

G?nðtÞ: ð11Þ

Here, the matrix G?n(t) denotes the n-th convolution power of the interaction kernel G(t),
defined recursively by

G?0ðtÞ ¼ IdðtÞ; ð12Þ

G?nðtÞ ¼
Z t

�1
G?ðn�1Þðt � sÞ � GðsÞds; n � 1; ð13Þ

where � again denotes a matrix product. We have the following heuristic interpretation of the
matrix elements Rij(t):

RijðtÞ dt � Pfspike of neuron j at 0 causes neuron i to spike at tg: ð14Þ

This heuristic offer an interesting interpretation of Eq 10. Indeed, we can see the product
Λk Rik(u)Rjk(u + τ)du as representing the probability that neuron k, spiking at its stationary
rate Λk, causes neuron i to spike at u and neuron j at u + τ. The covariance density Cij(τ) of neu-
rons i and j at lag τ is then nothing more than this probability, summed over all possible spikes
times of neuron i (hence the integral w.r.t. u) and over all possible “presynaptic” neurons k.
Thus, Cij(τ) can be seen as a sum of all possible ways in which a neuron k can induce activity in
neurons i and j, with spikes that are τ apart.

Moreover, a simple graphical representation of Cij(τ) is now available. As was first shown in
[3], the product Λk Rik(u)Rjk(u + τ) du can be represented as a rooted tree with leaves i and j
(see Fig 2). Then, it can be shown that the lagged cross-covariance of spiking activity between
neurons i and j is a sum of integral terms, each corresponding to a rooted tree with leaves i and
j in the underlying network (for more details, see [3] and [29]).

Higher order cumulants in analysis of network dynamics
We now move on to the problem of analyzing cumulants of higher order in networks of spiking
neurons and introduce the tools necessary to do so. In statistics, a quantifier of third order cor-
relations, analogous to the well-known covariance operator, is the third order joint cumulant,
often denoted as κ3[X, Y, Z]. It measures above-chance level third order dependence in the
same way that covariance does for second order. It is defined, for random variables X, Y and Z,
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as (see S3 Appendix. for a full derivation of the formula)

k3½X;Y ;Z� ¼ E½XYZ� � E½XY �E½Z� � E½XZ�E½Y � � E½YZ�E½X� þ 2E½X�E½Y �E½Z�: ð15Þ

Let i, j and k be three distinct neurons in a recurrent neuronal network. Let further A = {(i, t1),
(j, t2), (k, t3)} denote a spike pattern, where neuron i spikes at time t1, neuron j at t2 and neuron
k at t3. If we now plug in the variables Si(t1), Sj(t2) and Sk(t3) into Eq 15 and denote

kijkðt1; t2; t3Þ � k3½Siðt1Þ; Sjðt2Þ; Skðt3Þ�; ð16Þ

we see that the newly introduced function κijk(t1, t2, t3) measures the likelihood of the pattern
A occurring not due to chance and not due to pairwise correlations.

Next, let Ni(T) represent the number of spikes of neuron i in a time bin of size T. Then,
clearly,

NiðTÞ ¼
Z T

0

SiðtÞ dt: ð17Þ

Now, using Fubini’s theorem, we find that

kijkðTÞ � k3½NiðTÞ;NjðTÞ;NkðTÞ� ¼
Z T

0

Z T

0

Z T

0

kijkðt1; t2; t3Þ dt1dt2dt3: ð18Þ

In other words, while the function κijk(t1, t2, t3) encodes the probability of occurrence of a sin-
gle pattern A, the “integrated cumulant” κijk(T) (that is, the joint third cumulant of spike
counts) measures the probability of the non-chance occurrence of any pattern of neurons i, j
and k in a time bin of duration T. We will call the function κijk(t1, t2, t3) the (3rd order)

Fig 2. Pictorial representation of terms contributing to the pairwise covariance density. Each entry of C
(τ) is a weighted sum of integral terms, corresponding to rooted trees with 2 leaves, i and j.

doi:10.1371/journal.pcbi.1004963.g002
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cumulant density, as one needs to integrate it in order to obtain the 3rd cumulant of spike
counts, i.e. κijk(T).

Assuming stationarity, the density κijk(t1, t2, t3) can be written (with slight abuse of nota-
tion) as a function of only the (two) time lags between spike events at t1, t2 and t3

kijkðt1; t2; t3Þ ¼ kijkðt2 � t1; t3 � t1Þ � kijkðt1; t2Þ; ð19Þ

where we have defined τ1 = t2 − t1 and τ2 = t3 − t1. In that case, we get (see S1 Appendix)

kijkðTÞ ¼ k3½NiðTÞ;NjðTÞ;NkðTÞ�
T

¼
Z T

�T

Z T

�T

kijkðt1; t2Þdt1 dt2: ð20Þ

Thus, we obtain an alternative interpretation of κijk(T): It represents the third joint cumulant
of spike counts of neurons i, j and k in a bin of size T, normalized by the bin size. As such, it is
a quantity that can be easily computed from data, using unbiased estimators of higher-order
cumulants, called k-statistics [31].

Joint third cumulants in the Hawkes process framework
A recent result in the theory of Hawkes processes [29] shows that all 3rd order cumulant densi-
ties κijk(t1, t2, t3) can be computed, just as in the pairwise case, as sums of integral terms, each
corresponding to a relevant topological motif (a subtree of the graph on which the process
evolves), present in the underlying network. However, in the case of triplet correlations, the rel-
evant rooted trees are somewhat more complicated (see Fig 3). Algebraically, we have

kijkðt1; t2; t3Þ ¼
XN
m¼1

Lm

Z þ1

�1
Rimðt1 � uÞRjmðt2 � uÞRkmðt3 � uÞdu

þ
XN
m;n¼1

Ln

Z þ1

�1
Rinðt1 � uÞ

Z þ1

�1
Rjmðt2 � vÞRkmðt3 � vÞCmnðv � uÞdv

� �
du

þ
XN
m;n¼1

Ln

Z þ1

�1
Rjnðt2 � uÞ

Z þ1

�1
Rimðt1 � vÞRkmðt3 � vÞCmnðv � uÞdv

� �
du

þ
XN
m;n¼1

Ln

Z þ1

�1
Rknðt3 � uÞ

Z þ1

�1
Rimðt1 � vÞRjmðt2 � vÞCmnðv � uÞdv

� �
du;

ð21Þ

where Λn (the stationary rate of neuron n) and Rij(t) (the rate change at time t in neuron i
caused by a spike of neuron j at 0) have been defined previously, and

CðtÞ ¼ RðtÞ � IdðtÞ ¼
X
n�1

G?nðtÞ; ð22Þ

which, heuristically, simply means that

CijðtÞ dt � Pfspike of neuron j at 0 causes neuron i 6¼ j to spike at t 6¼ 0g: ð23Þ

Unfortunately, this formula is cumbersome, impractical and difficult to work with. How-
ever, a much more elegant expression is obtained if one considers the previously defined joint
cumulants of spike counts, κijk(T). Formally, considering infinitely large time bins

kijk � lim
T!þ1

kijkðTÞ ¼
Z þ1

�1

Z þ1

�1
kijkðt1; t2Þ dt1dt2; ð24Þ

Topology and Third-Order Correlations
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and letting B � ðI� GÞ�1, where G is the previously defined integrated matrix of interaction
kernels, we have [29]

kijk ¼
X
m

LmBimBjmBkm

þ
X
m;n

LnBimBjmðBmn � dmnÞBkn

þ
X
m;n

LnBjmBkmðBmn � dmnÞBin

þ
X
m;n

LnBimBkmðBmn � dmnÞBjn:

ð25Þ

This can be considered as a generalization of the pairwise correlation result from [3]. Indeed, if

we let ω = 0 in Eq 9 and set C � Ĉð0Þ ¼ R CðtÞ dt, we have
Cij ¼ BDB� ¼

XN
m¼1

LmBimBjm: ð26Þ

The problem, of course, is that the collection of all integrated cumulants {κijk}i, j, k represents a
three-dimensional tensor, and as such cannot be represented in terms of a common matrix
multiplication. For this reason, we must express κijk as weighted sums and double sums of
entries of the matrix B in formula 25.

Populations cumulants as sums of joint cumulants of spike counts
Finally, let us touch upon the link between integrated covariances Cij, cumulants κijk, and
moments of the population count distribution Npop(T) which we define as the sum of activity
of all neurons in the network

NpopðTÞ �
XN
m¼1

NmðTÞ: ð27Þ

Fig 3. Pictorial representation of terms contributing to κijk(t1, t2, t3). Each κijk(t1, t2, t3) is a weighted sum
of integral terms, corresponding to rooted trees with leaves i, j and k (see Eq 21). The first term maps to the
left tree, while the three remaining terms correspond to three possible ways in which three labeled leaves can
be arranged into two groups to form the tree on the right. The first group would represent the daughter nodes
of vertexm, and the second group would be a single child of the root node n.

doi:10.1371/journal.pcbi.1004963.g003
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From the general properties of cumulants [32], one can prove that

lim
T!þ1

Var½NpopðTÞ�
T

¼
X
i;j

Cij: ð28Þ

In other words, the variance of the population activity is equal to the sum of all integrated
covariances, normalized by bin size. Of course, this is only strictly true for infinitely large time
bins, but we have found that Eq 28 is still a very good approximation whenever the size of bin
T is much bigger than the temporal width of any entry in the matrix of interaction kernels G(t).

Likewise, one can prove that

lim
T!þ1

k3½NpopðTÞ�
T

¼
X
i;j;k

kijk: ð29Þ

Thus, the sums of all integrated cumulants of order 3 is equal to the third cumulant of popula-
tion activity, normalized by bin size [31]. To understand why it is important to know the third
cumulant κ3[Npop(T)] consider that, for a normally distributed random variable X, all cumu-
lants of order 3 and higher are zero

X 	 N ð0; 1Þ ) kn½X� ¼ 0; for all n � 3: ð30Þ

Therefore, in a sense, non-zero cumulants of order 3 and higher measure the departure from
normality of the variable Npop(T). Furthermore, in statistics, a measure of skewness of the dis-
tribution of a random variable X is defined as the (scaled) third cumulant κ3[X]. As the Gauss-
ian distribution is symmetric about 0 (and thus κ3[X] = 0), any significant deviation of
κ3[Npop(T)] indicates right (negative) or left (positive) skewness.

Simulation and data analysis details
The simulation of linearly interacting point processes was conducted using the NEST simulator
[33]. We simulated a network of 1000 neurons, of which 800 were excitatory and 200 inhibi-
tory. The spikes of each neuron were generated according to a time-dependent rate function Λ
(t), defined by Eq 2. Negative values of Λ(t) were rectified to zero, resulting in no spike output.
Neurons received external Poissonian drive with constant rate of 10 Hz. Incoming spikes
induced an increment of amplitude 1.5 Hz and −7.5 Hz for excitatory and inhibitory spikes,
respectively, which decayed with a time constant of 10 ms. In the Hawkes process framework,
this corresponds to an exponential interaction kernel with total integral gE = 0.015 and gI =
−0.075, respectively. The synaptic delay was set to 2 ms. The simulation time step was 0.1 ms.
The total simulation time was 5000 s = 5 � 106 ms.

Spike data from simulations were sampled in time bins of duration T = 100 ms, producing
5 � 104 bins. We found that the theoretical results concerning infinite sized bins are still largely
valid when the bin size T is at least one order of magnitude larger than the interaction kernel
time constant. The rates, pairwise covariances and joint third cumulants were estimated from a
data matrix with 1000 rows (representing individual neurons) and 50000 columns (represent-
ing time bins) using k-statistics [31], which are known to be unbiased estimators of cumulants
of any order. Note that pairwise covariances are nothing more that joint cumulants of second
order.
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Results

Weights of subtrees in the network determine the strength of triplet
correlations
In this section we explain how recurrent connectivity affects joint third cumulants of triplets of
neurons in a spiking neuronal network. As was mentioned before, the matrix of integrated
interaction kernels G can be interpreted as an effective connectivity matrix, as each entry (i, j)
represents the excess number of spikes in neuron i, caused by an individual spike in neuron j.
With this in mind, let us now take a moment to develop a topological interpretation of Eq 25.
Firstly, as ρ(G)<1 has been assumed, we have a power series expansion for the matrix

B ¼ ðI� GÞ�1, namely B = ∑n G
n. In order to develop intuition, we first consider what happens

to Eq 26 when we plug the power series expansion of B into it (as was done in [3]). The formula
for Cij reads

Cij ¼
XN
m¼1

Xþ1

r¼0

Xþ1

s¼0

LmG
r
imG

s
jm: ð31Þ

We now interpret the matrix Gr in the sense of graph theory, i.e. as a matrix whose entry (i, j)
corresponds to the sum of compound weights of all paths from node j to node i in exactly r
steps. Indeed, a typical entry of matrix Gr equals

Gr
ij ¼

X
k1 ;k2 ;���;kr�1

Gik1
Gk1k2

� � �Gkr�1 j
: ð32Þ

We observe that each of the summands in the above equation is the average number of excess
spikes, caused by an individual length r chain of spiking events, originating in neuron j. The entry
Gr

ijis then the sum over all such chains, i.e. over all possible intermediary neurons k1, k2, � � �kr−1.
Thus, a procedure for computing Cijwould go as follows:

1. Pick a “root neuron”m

2. Create a “spiking chain” from neuronm to neuron i that is r synaptic steps long

3. Create a “spiking chain” from neuronm to neuron j that is s neurons long

4. Compute the weight of the subtree defined in this way by multiplying together the weights
of the branches (given by Gr

im and Gs
jm)

5. Multiply everything by the “weight of the root node”, which we can formally define to be
Λm

Note that r = 0 (s = 0) is a distinct possibility (as the first term in the power series expansion
of B is G0 � I). In that case, we identify neuronsm and i (m and j) and our “two-pronged tree”
becomes a single branch with neuron i (j) on top and neuron j (i) on the bottom.

Our previous discussion shows that the integrated covariance density Cij can be equivalently
expressed as

Cij ¼
X
T2T m

ij

wðTÞ; ð33Þ

where the sum goes over the set T m
ij of all rooted trees T with rootm, containing nodes i and j.

Here, w(T) denotes the weight of tree T, defined as the product of weights of all edges, con-
tained in T, times the weight of the rootm, defined as being equal to Λm.
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Now, since, in the stationary case (see S1 Appendix)

Cij ¼ lim
T!þ1

cov½NiðTÞ;NjðTÞ�
T

; ð34Þ

we have that, for infinitely large time bins, the probability (normalized by bin size) of the non-
chance occurrence of ANY pattern of neurons i and j in a bin of size T can simply be computed
as the sum of weights of ALL possible rooted trees with leaves i and j. Thus, in a nutshell, the
only way pairwise interaction can arise between neurons i and j is through shared input by a
neuron k, that can be arbitrarily far upstream from both i and j. This is the main result of [3].

With our intuition primed by consideration of the simpler, pairwise correlation case, we are
ready to tackle the computation of κijk. Once again, plugging the power series expansion of
matrix B into Eq 25 yields

kijk ¼
X
T2T m

ijk

wðTÞ; ð35Þ

where T m
ijk is the set of all rooted trees with rootm containing nodes i, j, k, and w(�) is the

already defined weight function. As we have that (see S1 Appendix)

kijk ¼ lim
T!þ1

k3½NiðTÞ;NjðTÞ;NkðTÞ�
T

; ð36Þ

the interpretation of the “sum over trees” formula is analogous. In other words, for infinitely
large time bins, the probability (normalized by bin size) of the non-chance occurrence of ANY
pattern of neurons i, j and k in a bin of size T can simply be computed as the sum of weights of
ALL possible rooted trees, containing nodes i, j and k. The only difference from the pairwise
correlation case is that the topological motifs contributing to triplet correlations are different
and more numerous.

What are the subtrees, contributing to κijk? We can get our first hint by comparing the for-
mula 25 and the trees in Fig 3. Indeed, the first term in Eq 25 corresponds to the left, “three-
pronged” tree in Fig 3—in fact, it is the combined weight of all such structures found in the
graph with adjacency matrix G, summed over all possible identities of the root nodem and
over all possible lengths of the tree branches terminating at i, j and k. However, as any of the
three branches can also be of length 0, the left tree in Fig 3 actually represents 4 different contri-
butions to κijk, one corresponding to the tree depicted, in which case all of the branches are of
length at least 1, and three other “two-pronged” trees obtained by collapsing one of the three
branches and identifying the nodem with node i, j or k (see first row of Fig 4). Algebraically,
this can also be seen by replacing one of the Bmatrices in the first row of formula 25 by the
identity matrix I. Indeed, placing I instead of B in any of the tree slots yields three possible
contractions.

In the right tree in Fig 3, each of the last three terms in Eq 25 corresponds to one copy of it,
the only difference among them being the label of the rightmost node. Indeed, the second term
represents a tree in which the rightmost node is labeled k, for the third term the rightmost
node is i, and for the last one it is j. Each of these terms contains three Bmatrices, and thus,
each of these three terms will yield three additional trees whose weight will contribute to the
overall sum, defining κijk (see the second row of Fig 4). Like before, all of these are obtained by
replacing one of the Bmatrices with the identity matrix I and performing the corresponding
summation.

Notice that the last three terms in Eq 25 also depend on entries of the matrix B� I. This sig-
nifies the fact that the link between nodes n andm in Fig 3 can only “telescope out”, i.e. it
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cannot be contracted to 0 (indeed, it corresponds to the power series ∑n � 1 G
n in which the

term of order 0 is not present). For reasons as to why this branch does not allow contractions,
see [29].

To summarize, the six different tree shapes depicted in Fig 4 all contribute terms that, when
summed up, yield κijk. Likewise, as was mentioned previously, each branch, incident to each of
the trees pictured, can have arbitrarily many intermediate nodes in between the two vertices
shown.

Average third cumulants in large random networks depend on the
presence of a particular subtree
We are interested in computing the average third cumulant in the network, defined as

1

N3

X
i;j;k

kijk; ð37Þ

where κijk represent the integrated joint third cumulants of neurons i, j and k, considered previ-
ously. From Eq 29, we have that the previous sum equals

lim
T!þ1

k3½NpopðTÞ�
TN3

; ð38Þ

the third cumulant of population activity for an infinitely large time bin T, normalized by net-
work size and bin width.

Note that the sum in Eq 37 goes over ALL indices i, j and k. Thus, we have three distinct
cases:

1. The three indices are all distinct (i 6¼ j, j 6¼ k, k 6¼ i);

Fig 4. The pictorial representation of all terms, contributing to κijk. The tree shapes depicted in this figure were obtained from
those in Fig 3 by performing all possible contractions of branches (see text).

doi:10.1371/journal.pcbi.1004963.g004
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2. the three indices are all equal (i = j = k);

3. two of three indices are equal, with the third being distinct (i = j and j 6¼ k, or a permutation
thereof).

The number of summands in the first case is equal to N(N − 1)(N − 2), in the second case it
is simply N, and in the third one it equals 3N(N − 1). Thus, we have

�k3 ¼
1

N3

X
i;j;k

kijk þ
X
i;j

kiij þ
X

i

kiii

" #
: ð39Þ

In the limit of large networks, the first term becomes dominant, as

lim
N!þ1

3NðN � 1Þ
N3

¼ 0; lim
N!þ1

N
N3

¼ 0; but lim
N!þ1

NðN � 1ÞðN � 2Þ
N3

¼ 1: ð40Þ

Therefore, in all calculations that follow, we will assume that i, j and k are all different

�k3 ¼
1

N3

X
i 6¼j6¼k

kijk: ð41Þ

Furthermore, we assume the following about the underlying network topology:

1. (Random network condition) Every node j has probability p of forming a connection with
any of the other N − 1 nodes.

2. (Generalized Dale’s law) To each node j we assign a type l 2 L such that, for a fixed j we have
8i, gij = gl.

In other words, the probability of a directed connection between any pair of nodes is equal
to p, and each node is of a single type l and as such, only makes outgoing connections of type l.
Here, L denotes the set of type labels.

The derivations that follow can still be done under these general assumptions. Also, note
that, even though the first assumption allows for random topologies, the results obtained in
this section hold true for regular networks as well, as very large random networks are approxi-
mately regular. However, in the interest of concreteness, we will assume that L = {E, I}. In
short, each node j can either be of type E (excitatory) or type I (inhibitory). Thus, for a given
“excitatory” node j, gij is either 0 (with probability 1 − p) or gE (with probability p), for every
neuron i. Likewise if the neuron is inhibitory (in that case, gij equals gI).

We now compute the average input to a neuron, embedded in the network. First, we note
that, mathematically, the total input to node i can be computed as ∑j Gij. Given our previous
considerations, we have that the total input equals

pðNEgE þ NIgIÞ ¼ Np
NE

N
gE þ

NI

N
gI

� �
� Nmin; ð42Þ

where NE and NI are the numbers of excitatory and inhibitory neurons in the network, respec-

tively. We have also μin as p NE
N
gE þ NI

N
gI

� �
, the average strength of the total input to a neuron.

Now, if we set the external input μ to 1, the stationary rate of neuron i can be seen to equal

Li ¼
X

j

X
n

Gn

" #
ij

¼
X

j

ðdij þ Gij þ G2
ij þ � � �Þ ¼ 1

1� Nmin
� �L: ð43Þ

Unsurprisingly, since the external input to all neurons is the same, the stationary rates are all
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equal (Li ¼ �L; 8i). The computation of the average cumulant �k3 can be done in much the
same way (for details, see S2 Appendix). Note that, to simplify derivation, we assume that all
neurons (irrespective of their type) have the same in-degree and out-degree. The final formula
then reads

�k3 ¼ �
�L
N3

N4p2mð3Þ

ð1� mð1ÞNÞ3 þ
3�L
N3

N3pmð2Þ

ð1� mð1ÞNÞ2 �
3�L
N3

N4pmð1Þmð2Þ

ð1� mð1ÞNÞ3

� 6�L
N3

N4pmð1Þmð2Þ

ð1� mð1ÞNÞ3 þ
6�L
N3

N3½mð1Þ�2
ð1� mð1ÞNÞ2 þ

3�L
N3

N5p3½mð2Þ�2
ð1� mð1ÞNÞ4 ;

ð44Þ

where each term in the equation corresponds to one of the tree shapes in Fig 4. We have chosen
not to perform any simplifications in the formula, as we feel that this would obscure the corre-
spondence each term has to its tree counterpart. Here, we have defined μ(k) as the average com-
mon input, shared by k neurons, equaling

mðkÞ ¼ p
NE

N
gkE þ

NI

N
gkI

� �
: ð45Þ

Note that in this formalism, μ(1) is the “average common input shared by one neuron”, equal to
μin, the average total input to a neuron. The precise nature of this relation between formula 44
and the topology of specific trees is covered in S2 Appendix. However, heuristically, the rela-
tionship is as follows

• The exponent of N in the formula counts the number of nodes of a particular tree

• The exponent of p is one less than the number of leaves of the tree

• The μ(�) terms each correspond to an internal node of the tree (that is, a node that is not a
leaf). The number in parenthesis in the superscript denotes the out-degree of that particular
internal node. Thus, for example, μ(3) indicates that the particular tree has an internal node
with out-degree 3.

• The power k of the normalization factor 1
ð1�mð1ÞNÞk encodes the number of edges in the tree

Eq 44 can be used as an approximation whenever the degree distribution of the network in
question is narrow–formally, it is only exactly true for a regularnetwork, in which all neuron
have the same in- and out-degrees. For large random networks of the Erdős-Rényi type, this is
true as the resulting Binomial distributions have a standard deviation that vanishes with
increasing network size. The numerical efficacy of such an approximation can be found in the
following section.

A final thing to note about Eq 44 is what happens when N! +1. Firstly, note that, once
we perform all possible cancellations of terms in eq 44, we find, after rearranging

�k3 ¼ 3p3 mð2Þ� �2
N2 �L5 � 9pmð1Þmð2Þ þ p2mð3Þ� �

N �L4 þ ð3pmð2Þ þ 6½mð1Þ�2Þ�L3: ð46Þ

Thus, in the limit of large networks, the most important term is the one corresponding to tree
T6 in Fig 4

~k3 �
3�L
N3

N5p3 mð2Þ½ �2
ð1� mð1ÞNÞ4 ¼ 3p3 mð2Þ� �2

N2 �L5; ð47Þ
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since we have 1=ð1� mð1ÞNÞ ¼ �L. More precisely, we obtain the relation

�k3 ¼ ~k3 þ OðNÞ þ Oð1Þ: ð48Þ

As is now evident, the contributions from all trees of this shape to �k3 grows as a quadratic func-
tion of N. The reason for this is that, in large networks, the number of “more complicated” sub-
graphs grows faster than the number of simpler ones. To see why this is true, consider
counting all possible trees with k nodes and k − 1 edges in a random graph. Since each edge is
generated independently, the number of such trees equals

N

k

 !
pk�1ð1� pÞ k

2ð Þ�kþ1
; ð49Þ

Thus, as long as k� bN/2c, the number of tree structures with k nodes in a random graph of
size N will increase with increasing k. This is, in a nutshell, why the most relevant contribution
to �k3 comes from the “most complicated” tree, i.e. T6.

With the previous discussion in mind, one may expect that, for N! +1, the quadratic
term ~k3 is a good approximation for �k3. Indeed, Fig 5 illustrates this. Thus, we are able to con-
clude that, in the limit of large networks, the dominating contribution to the average joint third
cumulant �k3 comes from the trees of topology T6 present in the network. One more thing to

note is that the leading term ~k3 is proportional to a power of the stationary rate �L. Let us briefly

consider what happens to �L in very large networks, for N! +1. We have

�L ¼ 1

1� Np NE
N
gE þ NI

N
gI

� �! 0; N ! þ1; ð50Þ

assuming we keep all other parameters fixed. As a result of this, the product N2 �L5 in ~k3, will
decay to zero with increasing network size. Thus, when the size of the network considered
grows without bounds, two things happen:

• The leading term ~k3 becomes a better approximation of the average third cumulant �k3 but,
at the same time,

• The average third cumulant �k3 itself goes to 0.

The second point shouldn’t be too surprising. Indeed, once we remember that �k3 is propor-
tional to the skewness of the population activity (defined as the sum of spike counts of all neu-
ronsin the network, in a bin of size T), its asymptotic vanishing is a straightforward
consequence of the Central Limit Theorem. As N increases, the population activity is behaving
more and more like a Gaussian random variable and, as a consequence, its skewness inevitably
decays to zero. This effect is reflected by the horizontal asymptote in Fig 5.

The signs of tree motif contributions to the third cumulant in regular
networks depend on their topological structure
In this section, we will analyze the contributions of terms, corresponding to tree shapes in Fig 4
with fixed branch length. More precisely, let us consider once again Eq 25, plugging in the
power series expansion of matrix B and exchanging the order of summation over “branch
length” (i.e. summation over powers of the Gmatrix) and summation “over nodes” (i.e.
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summation over i, j and k, used to define �k3), we get

�k3 ¼
�L
N3

X
l1 ;l2 ;l3

X
i;j;k;m

Gl1
imG

l2
jmG

l3
km

" #

þ 3�L
N3

X
l1 ;l2

X
i;j;k

Gl1
ikG

l2
jk

" #

þ 3�L
N3

X
l1 ;l2 ;l3

X
i;j;k;m

Gl1
imG

l2
jmG

l3
mk

" #

þ 6�L
N3

X
l1 ;l2 ;l3

X
i;j;k;n

Gl1
ij G

l2
jnG

l3
kn

" #

þ 6�L
N3

X
l1 ;l2

X
i;j;k

Gl1
ij G

l2
jk

" #

þ 3�L
N3

X
l1 ;l2 ;l3 ;l4

X
i;j;k;m;n

Gl1
imG

l2
jmG

l4
mnG

l3
kn

" #
:

ð51Þ

Fig 5. Efficacy of the quadratic approximation to �3 (Eq 47) for different network sizesN. All four panels: �3 and its quadratic approximation, ek3,
plotted for different values of the connection probability p. Each panel corresponds to a network of a given size.

doi:10.1371/journal.pcbi.1004963.g005
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The terms in the square brackets can be interpreted as the total weight of all relevant trees (see
Fig 4) present in the network, with lengths of all branches fixed. Under the regularity assump-
tion, i.e. if all neurons have the same in-degree and out-degree, it is straightforward to conclude
that the “square bracket term” of a tree T with n nodes and l leaves, embedded in a network of
size N, can be computed as (see S2 Appendix)

Nnpl�1
Y
v

mðkvÞ mð1ÞN
� �l1þ���þln�1�nþ1

; ð52Þ

where the product is over all internal nodes (i.e. nodes that are not leaves) of T and kv is the
out-degree of node v. The numbers l1, . . ., ln−1 encode the lengths of branches of T , of which
there are exactly n − 1 in a tree with n nodes. In fact, it is this result that greatly simplifies the
“summation over branch lengths” one needs to perform in order to obtain Eq 44.

Furthermore, from formula 52 we see that the only relevant characteristics of a tree T that
determine the weight of the contribution are the number of its nodes n, the number of its leaves
l and the out-degrees of its internal nodes. Note that the root counts as an internal node here.
Trees with a large total branch length contribute relatively little to �k3. Indeed, as

jmð1ÞNj ¼ jp NEge þ NIgIð Þj < 1; ð53Þ

we have that, when the total length of all branches tends to infinity (i.e. when the sum
sn � l1 + � � � + ln−1 grows beyond all bounds), the corresponding term ðmð1ÞNÞsn decays to zero.

Lastly, we consider the issue of determining the signs of various contributions to �k3. This
can be done by once again closely analyzing formula 52. First, note that the common input
terms μ(k) are positive for even and negative for odd k. Indeed, as we assume that underlying
network in inhibition-dominated (that is, if we assume that the total input to a neuron is nega-
tive) we have, in mathematical terms that

NEgE þ NIgI < 0 , gI < �NE

NI

gE: ð54Þ

Thus,

mð2rþ1Þ ¼ p
NE

N
g2rþ1
E þ NI

N
g2rþ1
I

� �

< p
NE

N
g2rþ1
E þ ð�1Þ2rþ1 NE

N
NE

NI

� �2r

g2rþ1
E

 !
:

Therefore,

mð2rþ1Þ < p
NE

N
1� NE

NI

� �2r
" #

g2rþ1
E < p 1� NE

NI

� �2r
" #

g2rþ1
E < 0; ð55Þ

since gE > 0, NE > NI and 0� p� 1. In the same way, one can show that μ(2r) > 0. Therefore,
the out-degree sequence of the internal nodes of the tree affects the sign of the corresponding
contribution. If, for example, the tree has two internal nodes, with out-degrees 1 and 2, respec-
tively, this will contribute an overall negative sign to the term. However, the out-degree
sequence alone does not completely determine the sign of the contribution. Another factor is
the parity of the total length of all branches, i.e. the sum sn � l1 + . . . + ln−1. To see why, note
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that Nμ(1) < 0, by our previous discussion, and likewise

mð1ÞN
� �sn�nþ1 ð56Þ

is either negative or positive, depending on whether sn = 2r + 1 or sn = 2r. (Note that sn� n − 1.)
To summarize, the resulting sign of the total contribution to the average third cumulant, of

a specific tree with n nodes, l leaves, a given out-degree sequence and branch lengths depends
on both the parity of the product of the internal node out-degrees and the parity of the total
branch length. What this means in practice is that the presence of certain trees increases the
overall level of third order correlation, while the existence of others can actually have the oppo-
site effect. Whether the latter or the former is the case depends solely on the tree’s topological
structure, i.e. how the internal nodes branch and how many edges it contains. As an illustra-
tion, the signs and sizes of contributions of two sample trees in a recurrent random network
are depicted in Fig 6. One can clearly see which trees increase third-order correlations in the
network, and which trees actually decrease them.

Fig 6. Contributions of some tree structures to the average third cumulant in a random network. Top: Theoretical (narrow out-degree
distribution approximation) and sample contributions to the average third cumulant of T6 (see Fig 4) tree topologies with fixed branch lengths. Ticks on
the x-axis code for the lengths of the four branches of the tree. The ordering of the indices in the tick labels is done in a top-to-bottom and left-to-right
fashion. More precisely, the first number corresponds to the length of the “leftmost” branch emanating from the root node, and so forth. The sample
contributions were computed as averages of 3 independent realizations of a random network. Bottom: Theoretical and sample contributions to the
average third cumulant of T1 tree topologies with fixed branch lengths.

doi:10.1371/journal.pcbi.1004963.g006
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One last thing to note is how quickly the contributions, involving higher matrix powers of G
(i.e. those trees with higher total branch length) decay to zero as the total branch length
increases. This behavior is essentially governed by the spectral radius ρ(G) of the connectivity
matrix. For example, in a large random network of both excitatory and inhibitory neurons, the

spectrum consists of a single eigenvalue of size Nmð1Þ ¼ Np NE
N
gE þ NI

N
gI

� �
and a bulk spectrum,

contained within a circle in the complex plane [34]. Its radius r is asympotically given by

r2 ¼ Npð1� pÞ NE

N
g2E þ

NI

N
g2I

� �
: ð57Þ

While, as was already mentioned, the quantity Nμ(1) corresponds to the total average input to a
neuron, the radius r of the circle encompassing the bulk spectrum corresponds to the variance
of this input. Thus, if the variance of the total input to a neuron in a random network is not too
big (r< 1), it will exhibit the aforementioned decay of contributions from trees with higher
total branch lengths.

Excitatory hubs in the network increase third-order cumulants
In the previous sections, we have demonstrated that the average third cumulant in networks
with narrow degree distributions is determined by global parameters such as the number of
neurons N, the connection probability p, and the average strength of input shared by k neurons,
μ(k). Of course, in networks with a wide degree distribution, the regular network approximation
(which we used to derive the equation in S2 Appendix) is no longer valid. To demonstrate
some of the new phenomena by simulation, we consider a network model with a geometric
degree distribution, originally introduced in [3]. In short, the out-degrees k of excitatory and
inhibitory neurons are chosen from a geometric distribution with parameter k0 (representing
the mean out-degree) according to

PðkÞ ¼ 1� 1

k0

� �k�1
1

k0
: ð58Þ

This distribution exhibits a mean connection probability of 1/k0 and a long tail. After the sam-
pling of out-degrees, excitatory neurons are divided into “hubs” (out-degree k> k0) and “non-
hubs” (k� k0). Postsynaptic neurons for non-hubs and inhibitory neurons are chosen ran-
domly from the population consisting of all other neurons. However, for hub neurons, a fixed
fraction f of all outgoing connections goes to other hubs. By varying f between 0 and 1, one can
choose how densely connected the subnetwork of hubs will be. The “critical value” to keep in
mind here is f0 = 0.35. If f> f0, hub neurons have a preference to connect to other hubs. Such a
network is called “assortative”, otherwise it is called “disassortative”, see [3] for details. Similar
networks have been studied in [35, 36]. The effect of the geometric out-degree distribution on
the distribution of network motifs is depicted in Fig 7.

If excitatory hubs preferentially connect to other hubs (for assortative networks), the num-
ber of relevant tree motifs with high total branch length grows in the network, and so does
their combined strength. This is one major difference between assortative and random net-
works, and a reason why the contributions of longer trees in networks with hubs tend to be
much larger than in Erdős-Rényi topologies. Of course, along the same lines, the number of
“short”motifs (i.e. those with small total branch length) decreases (in comparison to their “lon-
ger” counterparts). This phenomenon is illustrated in Fig 7.

This discrepancy can also be used to say something about the topology of the network that
generated a given set of recorded spike data. Indeed, once the connection probability and third
order correlations have been estimated (e.g. with the help of k-statistics), one could compare
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the regular network theory predictions with the third order cumulants obtained from data. A
large disparity between the two could imply, for example, the presence of hubs and a wide in-
and out-degree distribution in the network that generated the data.

Discussion
In this work, we have studied connections between topology and measures of average third-
order correlations in networks of spiking neurons. We have compared different connectivity
rules with respect to their effect on the average joint third cumulant, �k3. Furthermore, we
showed which topological motifs in the network contribute to the overall strength of third-
order correlations. While our focus was on network models arising in neuroscience, we feel
that the results presented here could as well be relevant in other fields, where correlations of
higher-order play an important role.

As a handy computational model of spiking neuronal activity, we have used the Hawkes
point process [27, 28], which was originally introduced as a model of earthquake activity. It is

Fig 7. Contribution of tree motifs with longer total branch length increases in networks with excitatory hubs. Top: Theoretical (narrow out-
degree distribution approximation for random networks) and sample contributions (in non-regular networks) of the average third cumulant of T6 (see
Fig 4) tree topologies with fixed branch lengths. Ticks on the x-axis code for the lengths of the branches of the tree. The ordering of the indices in the
tick labels is done in a top-to-bottom and left-to-right fashion. The sample contributions were computed as averages of 3 independent realizations of an
assortative network with a geometric out-degree distribution. Bottom: Theoretical and sample contributions to the average third cumulant of T1 tree
topologies with fixed branch lengths.

doi:10.1371/journal.pcbi.1004963.g007
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sufficiently rich in order to model interesting dependencies between various types of events (in
our case, spikes of different neurons), but still simple enough to be tractable. Indeed, these are
the exact properties that make Hawkes processes quite useful models in neuroscience. They
have been employed in the analysis of pairwise correlations between spike trains [3, 37], model-
ing spike-timing dependent plasticity [38, 39], and, very recently, to model single unit activity
recorded on a monkey during a sensory-motor task [40].

Using the Hawkes process theory, we have shown that a linear stochastic point process
model can reproduce not only the event rates and pairwise correlations in networks (as was
already shown in [3]), but also its third-order joint cumulants, which are statistical measures of
correlations between groups of three nodes. These cumulants can be seen as a quantification of
“non-Gaussian” properties of the total population activity observed in time bins of a given size.

The problem of quantifying higher-order correlations is of some importance in computa-
tional neuroscience. It has been suggested a long time ago [41, 42] that understanding the
cooperative dynamics of populations of neurons would provide much needed insight into the
neuron-level mechanisms of brain function. Indeed, there is now a large body of experimental
evidence that supports the idea of computationally relevant correlations between neurons in a
network [7, 43–45]. The evidence for coordinated activity of neuronal spike trains, however,
mostly relies on the correlations between pairs of nerve cells [46–50]. Unfortunately, it is
becoming increasingly clear that pairwise correlations cannot explain the intricate dynamics of
neuronal populations [9, 12, 51, 52] and that higher-order moments of spiking activity need to
be taken into account.

Traditionally in neuroscience, higher-order synchrony has been almost exclusively investi-
gated with the help of classical tools borrowed from statistical physics such as maximum
entropy models [13–18, 53]. In this approach, the quantifiers of higher-order coordination are
the so-called “interaction parameters” of the binary exponential family. However, an alterna-
tive measure, commonly used in statistical literature, also exists—it is the joint cumulant. As
already mentioned in [54, 55], cumulant correlations are not identical to the higher order expo-
nential family parameters (for details, see [54]). In a sense, it can be said that non-zero cumu-
lants indicate the presence of additive common input (a well-known model for correlated
stochastic signals, see [56–58]), while the interaction parameters of maximum entropy models
measure multiplicative interactions. The mathematical differences between the two types of
dependence are currently under investigation [59–61]. As our neuronal network model each
neuron “feels” only the linear sum of spiking activity of its presynaptic partners, in this work
we have opted for quantifying synchrony using joint cumulants. Finally, it may be worthwhile
to note that there are other ways of generating time structured correlations of higher order in
computational models (see, for example, [9], but also [62]).

In addition, by generalizing the result in [3], we have found that integrated third-order cor-
relations (κijk) also admit a representation in terms of sums of weights of certain topological
sub-motifs in the network. While in the case of pairwise correlations between neurons these
motifs were simple binary trees (see Fig 2), when dealing with third-order interactions the
motifs become more complex (Fig 3) “trees with three leaves”, which are still manageable com-
putationally. More precisely, it is the combined “strength” of all such trees containing a triplet
of neurons that determine how often, on average, the activity of such a triplet exhibits coordi-
nated spiking. Sadly, no concise matrix product formula is available for the whole third cumu-
lant tensor {κijk}i, j, k and one has to resort to writing down equations for individual
components, which still offer the possibility of efficient estimation. Indeed, computing the the-
oretical cumulants κijk for (close to) regular networks is much less computationally intensive
than estimating them from data via k-statistics and only relies on simple algebraic manipula-
tions of the connectivity matrix G.
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We have also studied analytically the average third-order cumulant �k3, derived from the
sum of joint cumulants of all possible triplets of neurons in the network. We have shown that
the value of �k3 in random networks of Erdős-Rényi type does not depend on fine-scale topolog-
ical structure and is instead a function of global network parameters, such as the network size
N, the connection probability p and total common input to groups of neurons. Furthermore,
we have shown that, in the limit of very large networks, the dominating contribution to �k3

comes from the combined weight of all trees with a specific topology (which we denoted T6, see
Fig 4) present in the network. Thus, for large, random networks, it is tree-like connectivity
motifs of this topology that affects the average third cumulant most.

We were able to show that the contributions of individual subtrees to the average joint
cumulant depend on specific topological properties of the tree, such as its number of branches,
number of nodes and, interestingly, the out-degrees of its internal nodes (nodes that are not
leaves as they have a nonzero out-degree). Not surprisingly, in a stable network (whose connec-
tivity matrix G has a spectral radius less than 1), the absolute contributions of trees with a large
number of branches decays to 0 as the number of branches increases. However, the sign of the
total contribution turns out to depend both on the parity of the sum of all internal node out-
degrees and the parity of the total branch length. This, in principle, allows one to determine
whether the presence of a particular sub-tree in a network will increase or decrease the third
cumulant, and thus allow to compute the total size of third-order interactions.

Finally, we considered a case in which our regular network approximation fails, networks
with interconnected hub neurons. Similar networks were already considered in [3]. Their main
characteristic is a heavy-tailed out-degree distribution (in the case we considered, it was geo-
metric). Such networks are, in a sense, the opposite of an Erdős-Rényi type random network.
The presence of interconnected hubs increases the number of subtrees in the network with
large total branch length and, consequently, their overall contribution to the average joint third
cumulant. Thus, such networks illustrate nicely how “higher-order”motifs can, for certain net-
works, influence the overall third-order cumulant structure, which is not possible in networks
with narrow out-degree distributions.

As far as the limitations of our approach are concerned, it is important to note that the lin-
ear theory of Hawkes processes which we resorted to [29] is strictly valid only for purely
excitatory networks, as the instantaneous rate function is not allowed to become negative.
For the case discussed here, this may happen, as the networks are inhibition-dominated.
However, in accordance with what was already mentioned in [27], the theoretical results
remain approximately valid for networks with negative interactions, as long as the probability
of the rate being negative is small. Still, an interesting generalization of our model, and the
results achieved with it, would be the case of multiplicative interaction [63]. More generally,
a point process model in which an non-negative nonlinearity is applied to Eq 3 yields a neces-
sarily positive rate for any choice of interaction kernels. The computational approach one
would have to use in this case in order to study the effect of topology on higher-order correla-
tions would be quite different, though, as almost no analytical results exist for such models
[64, 65].

Supporting Information
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(PDF)
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