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Abstract: The preparation of a molecule with two alkyl-
tethered silylium-ion sites from the corresponding bis(hydro-
silanes) by two-fold hydride abstraction is reported. The length
of the conformationally flexible alkyl bridge is crucial as
otherwise the hydride abstraction stops at the stage of a cyclic
bissilylated hydronium ion. With an ethylene tether, the open
form of the hydronium-ion intermediate is energetically
accessible and engages in another hydride abstraction. The
resulting bis(silylium) ion has been NMR spectroscopically
and structurally characterized. Related systems based on rigid
naphthalen-n,m-diyl platforms can only be converted into the
dications when the positively charged silylium-ion units are
remote from each other (1,8 versus 1,5 and 2,6).

A common way of stabilizing silylium ions is by Lewis pair
formation with s-basic molecules to yield onium ions.[1] Under
certain circumstances, that is with no such Lewis base present
in the reaction medium, even an Si�H bond can lend
stabilization to a silylium ion in the form of a three-center,
two-electron (3c2e) Si�H�Si bond (Scheme 1, top).[2–4] If
intermolecular, this is a weak interaction, and the hydrosilane
in these hydronium ions is usually supplanted by the arene
used as the solvent.[2] Conversely, the situation changes when
a tethered Si�H bond is geometrically accessible (Scheme 1,
bottom). Several cyclic hydronium ions have already been
described, and their spectroscopic and crystallographic char-
acterization established that these are free in the sense that
neither the solvent nor the counteranion coordinates to either
of the silicon atoms.[3]

These systems are actually fairly stable, and the abstrac-
tion of another hydride with the trityl salt Ph3C[B(C6F5)4] to
access a bis(silylium) ion is, if at all, slow. A likely reason

could be the stereoelectronic inaccessibility of the Si�H bond
engaged in the aforementioned 3c2e bond. An attempt by
M�ller and co-workers did not enable the isolation of such
a species (Scheme 2, top).[3c] The targeted dication was too
reactive and immediately decomposed the borate counter-
anion. The close proximity of the cationic centers attached to
the rigid naphthalen-1,8-diyl platform is presumably part of
the problem. M�ller had reported another six-membered ring
system with an aliphatic backbone before (Scheme 2, bot-
tom).[3a] We anticipated that smaller or larger ring sizes would
make the formation of the Si�H�Si unit less favorable (gray
box), thereby allowing for donor-mediated ring opening and
eventually facile hydride abstraction (Scheme 1, bottom). The
aliphatic linker would further equip the dication with the
necessary conformational flexibility to accommodate the
positive charges and Lewis pair formation with bulky donor
molecules. We disclose here the synthesis of a bis(silylium)
ion, a new class of bidentate[5] silicon superelectrophiles[6] for
potential application in catalysis[7] or as receptors.[8]

The choice of substituents at the silicon atom is crucial for
the successful generation of heteroleptic silylium ions as
substituent redistribution reactions often produce complex
mixtures.[9] The alkyl-substituted precursors required for the
present study are inherently afflicted with this problem but
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Scheme 1. Inter- and intramolecular hydronium ions, and the gener-
ation of bis(silylium) ions from those cyclic systems. WCA= weakly
coordinating anion. Do= donor, typically solvent molecule.

Angewandte
ChemieCommunications

How to cite: Angew. Chem. Int. Ed. 2020, 59, 10523–10526
International Edition: doi.org/10.1002/anie.202003799
German Edition: doi.org/10.1002/ange.202003799

10523Angew. Chem. Int. Ed. 2020, 59, 10523 –10526 � 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

http://orcid.org/0000-0003-0983-3095
http://orcid.org/0000-0003-0983-3095
http://orcid.org/0000-0003-0983-3095
http://orcid.org/0000-0003-0983-3095
http://orcid.org/0000-0001-7918-1585
http://orcid.org/0000-0001-7918-1585
http://orcid.org/0000-0001-7918-1585
http://orcid.org/0000-0001-7918-1585
http://orcid.org/0000-0001-9666-1919
http://orcid.org/0000-0001-9666-1919
http://orcid.org/0000-0001-6098-1996
http://orcid.org/0000-0001-6098-1996
http://orcid.org/0000-0003-3748-6609
http://orcid.org/0000-0003-3748-6609
http://orcid.org/0000-0003-3748-6609
http://orcid.org/0000-0003-3748-6609
http://orcid.org/0000-0002-1487-9218
https://doi.org/10.1002/anie.202003799
http://dx.doi.org/10.1002/anie.202003799
http://dx.doi.org/10.1002/ange.202003799


isopropyl and tert-butyl groups usually hamper such proces-
ses.[9c,d] For this reason, we opted for the bis(hydrosilanes) 1–3
with iPr2Si moieties (Scheme 3, top); their straightforward
preparation is outlined in the Supporting Information. The
chemical stability of the counteranion is of utmost importance
in silylium-ion chemistry,[10] and [B(C6F5)4]

� previously used
by M�ller is not suitable for the given challenge.[3c,11] We
decided to go with [CHB11Cl11]

� ,[12] one of the least coordi-
nating and most robust carborate counteranions.[10, 13] React-
ing precursors 1–3 with the corresponding trityl salt
Ph3C[CHB11Cl11] in C6D6 resulted a biphasic suspension that
contained silylium ions 4+–6+ (Scheme 3, top). For character-

ization, the phases were separated and the remaining slurry
was washed with a few drops of C6D6 and n-pentane. The
remainder was fully dissolved in 1,2-C6D4Cl2, and the
homogeneous solution was subjected to NMR analysis
(Scheme 3). Running those reactions directly in 1,2-C6D4Cl2

was far less clean.
The collected 29Si NMR data were correlated with

independently prepared iPr3Si+ (7+)[12b] and known [(Me3Si)2-
(m-H)]+ (8+)[2a] both having [CHB11Cl11]

� as counteranion
(Scheme 3, bottom). The silylium ions 4+ and 5+ with
a butylene (n = 2) or a propylene (n = 1) tether show chemical
shifts similar to Reed�s acyclic hydronium ion 8+[2a] (d(29Si)
approx. 84 ppm) and M�ller�s system (cf. Scheme 2, bot-
tom).[3a] We therefore concluded that these are best repre-
sented as cyclic systems closed-4+ and closed-5+, respectively.
In turn, the silicon atoms in ethylene-tethered silylium ion 6+

(n = 0) are significantly more deshielded with d(29Si) =

107.3 ppm. This value lies between those of related hydro-
nium ions and d(29Si) = 130.4 ppm of iPr3Si[CHB11Cl11] (7+) in
1,2-C6D4Cl2 and could therefore be an average resonance
signal. To learn whether this is due to an equilibrium between
the closed and counteranion- or solvent-stabilized open forms
of 6+, we performed theoretical calculations at the B3LYP-
D3(BJ)/cc-PVTZ + (PCM, benzene)//B3LYP-D3(BJ)/6-31G-
(d,p) + (PCM, benzene) level of theory.[14–16] Generally, these
computations revealed that, out of those three, the closed
forms represent the energetic minimum while the solvent
adducts of the open forms are higher in energy than those of
the counteranion (C6H6 or 1,2-C6H4Cl2 versus [CHB11Cl11]

�).
Importantly, a low free energy difference was only found
between closed-6+ and open-6+ (DG = 1.3 kcalmol�1). This
means that the counteranion-stabilized open form of 6+ is
energetically accessible in C6H6 solution. Conversely, open-4+

and open-5+ do not exist in solution state (DG = 3.9 and
5.5 kcalmol�1, respectively). This trend was the same but
more pronounced for the NMR solvent 1,2-C6D4Cl2 (DG =

8.1 for 4+, 9.4 for 5+, and 4.7 kcalmol�1 for 6+). This is in line
with VT NMR measurements which did not indicate any
change in the stabilization mode (closed forms only). The
computed NMR chemical shifts agree with those obtained
experimentally (see the Supporting Information).

Based on the above reasoning, we predicted that ethylene-
tethered 6+ would be more likely to participate in another
hydride abstraction than 4+ and 5+ with longer alkyl bridges.
Indeed, 4+ and 5+ did not react with Ph3C[CHB11Cl11] any
further. However, the reaction of 6+ with the trityl salt was
extremely slow, furnishing the desired bis(silylium) ion 92+ in
small quantities along with byproducts (Scheme 4). In turn,
direct treatment of bis(hydrosilane) 3 with 2.0 equiv of
Ph3C[CHB11Cl11] afforded the dication 92+ in 78 % yield
(gray box). We explain this dramatic difference by the poor
solubility of the reactants in C6D6; preformed, solid 6+ is less
prone to undergo the hydride abstraction than in situ-formed,
dissolved 6+.[17] The new bis(silylium) ion was fully charac-
terized by NMR spectroscopy, and its molecular structure was
determined by X-ray single-crystal analysis (Figure 1).[18]

Different from the previously reported solvent-stabilized
iPr3Si+ ion 7+ (Scheme 3, bottom), the cationic silicon centers
are each stabilized by one of the counteranion�s chlorine

Scheme 2. Attempted and planned synthesis of counteranion-stabilized
bis(silylium) ions.

Scheme 3. Synthesis and NMR spectroscopic characterization of cyclic
hydronium ions. Unless noted otherwise, all NMR spectra were
recorded in 1,2-C6D4Cl2. CPMAS =cross polarization and magic-angle
spinning. [a] Determined by a 1H/29Si-1D-CLIP-HSQMBC NMR experi-
ment. [b] The molecular structure of closed-6+ was determined by an X-
ray diffraction analysis but its quality prevents its publication (see the
Supporting Information). The CIF file was deposited with The Cam-
bridge Crystallographic Data Centre as a personal communication
(CCDC 1990361).
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atoms. The anti conformation of the coordinated silicon
centers is likely a consequence of both steric and charge-
charge repulsion. The average C-Si-C angle is 116.48 and,
hence, closer to a trigonal planar (120.08) than a tetrahedral
(109.58) coordination geometry. The Si�Cl bond (2.341 �) is
longer than that of a typical covalent Si�Cl bond (2.072 �)
and even longer than that in 1,2-C6D4Cl2-stabilized iPr3Si+

(7+) (2.33 �).[2a]

We then turned towards a reinvestigation of M�ller�s
naphthalen-1,8-diyl system but were also not able to generate
the corresponding bis(silylium) ion (cf. Scheme 2, top).[3c]

Precursor 10 was converted into the stable hydronium ions
11+ in high yields with various trityl salts Ph3C[WCA]
(Scheme 5, top). The aryl substitution typically brings about
an upfield shift of about Dd(29Si) = 20 ppm.[9b,c] Relative to
d(29Si) = 85.2 ppm for 5+, approx. d(29Si) = 63.5 ppm for 11+

independent of the weakly coordinating counteranion is in
excellent agreement with this.

As the peri substitution pattern is potentially thwarting
the establishment of another positive charge, we subjected
regioisomeric bis(hydrosilanes) 12 and 14 to the one-step

procedure (Scheme 5, bottom). However, we found that the
counteranion had a profound effect on the dication formation
of these regioisomers; 132+ and 152+ did not form with
[CHB11Cl11]

� as the counteranion. In turn, the reaction of 12
and 14 with 2.0 equiv of Ph3C[CHB11H5Br6] afforded the
bis(silylium) ions 132+ and 152+, respectively in good yields.
Due to their poor solubility even in highly polar arene
solvents, these bis(silylium) ions were characterized by NMR
spectroscopy as the acetonitrile adducts.

The present work demonstrates that the generation of
long-sought bis(silylium) ions is possible, provided that the
two positive charges can dodge each other. This can either be
achieved by conformational flexibility of the tether between
those sites or by an appropriate predefined distance in rigid
systems. The length of the flexible tether is crucial as it
determines the stability of intermediate cyclic hydronium
ions. With an ethylene bridge, the open form of such
a hydronium ion exists in equilibrium to undergo another
hydride abstraction. The new bis(silylium) ion has been
characterized by NMR spectroscopy and X-ray diffraction.
Future work will be directed towards the application of such
superelectrophilic bidentate Lewis acids in catalysis or as
receptors.[5]
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