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The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable
environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies
show that [3-adrenergic receptor ($3-AR) is involved in tumor progression, playing an important role in metastasis.
Among f3-adrenergic receptors, 33-AR is the last identified member of this family, and it is involved in cancer cell survival and
induction of stromal reactivity in the tumor microenvironment. 33-AR is well known as a strong activator of uncoupling
protein 1 (UCPI) in brown fat tissue. Interestingly, 33-AR is strongly expressed in early embryo development and in many
cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated
glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that 33-AR is able to promote
this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of
mitochondrial dormancy through the induction of UCP2. The 3-AR/UCP2 axis induces a strong reduction of mitochondrial
activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by
SR59230A, the specific $3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a
strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor
cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate
the presence of 33-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.

1. Introduction active stromal tissues and high stem cell potential [1], share
a high aerobic glycolytic rate [2, 3] and a catecholamine-
Both fetal development and tumor growth, despite, respec-  rich environment [4, 5]. Aerobic glycolysis occurs in the early

tively, physiological and pathological events with feedback  preimplantation of mammalian embryo [6, 7], during early
far away from each other, are triggered by heterogeneous  pregnancy [8], and in tumors [4], by increasing the con-
interrelated pathways. Embryo and cancer, among hypoxic =~ sumption of glucose and production of lactate. Aerobic
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glycolysis, which converts glucose to lactate, is the major
source of energy of these cells, instead of mitochondrial oxi-
dative phosphorylation [4, 9, 10]. Both cancer cells and
embryos need to increase the uptake of glucose, the expres-
sion of glycolytic enzymes, and the export of lactate to obtain
energy for growth [6-11]. Glycolytic metabolism confers a
proliferative advantage to both tumor cells and embryos,
since this metabolism produces a large number of useful
intermediates to secondary biosynthetic pathways [5, 12].

Several studies suggest that stress-related catecholamine
release accelerates cancer progression, so the targeting of
B-adrenergic receptors (f-ARs) has been proposed as a
potential therapeutic approach to cancer and, in particular,
melanoma [13, 14]. At the beginning, attention was mainly
focused on f32-AR [15], but, more recently, f3-AR was
found overexpressed in tumors, particularly in melanoma
cell lines and tumor microenvironments [16-18]. Currently,
it is known that [33-AR expression correlates with cancer
progression, angiogenesis, and tumor stromal cell reactivity
[16-18]. Interestingly, high expression of 33-AR has also been
revealed in the pregnant myometrium [19] and during early
embryo development [20, 21], confirming the similarities
between the environments surrounding tumor and embryo.

B3-AR is well known to control thermogenesis by activat-
ing uncoupling protein 1 (UCP1). At low temperature, a
signal is transmitted to brown adipocytes by catecholamine
release and f33-AR activation, resulting in increased UCP1
expression and activity. The UCPs are members of the mito-
chondrial anion carrier family. While UCP1 is predomi-
nantly expressed in brown adipocyte tissue [22], UCP2 is
ubiquitously expressed in cancer derived from different tissues
[23,24]. Interestingly, UCP2 appears to be highly expressed in
cancer cells (such as leukemia and pancreatic cancer) and in
nondifferentiated cells with low amounts of mitochondrial
tissues, which rely on glycolysis rather than oxidative phos-
phorylation for their energy production [25-28].

In this study, we investigated the role of the $3-AR/UCP2
axis on the regulation of the Warburg metabolism in cancer
stem cells (CSC) and in mouse embryonic stem cells (ESC).

2. Materials and Methods

2.1. Cell Culture and ES Cell Differentiation. Melanoma cells
(A375) and mouse ESC (CGR8) were purchased from the
European Collection of Cell Cultures (ECACC, Wiltshire, UK).

A375 cells were cultured in high-glucose DMEM con-
taining 10% FBS, while CGR8 were cultured in a propaga-
tion medium containing a BHK21 medium (Gibco), 1%
nonessential amino acids (Gibco), 107> M sodium pyruvate
(Gibeo), 107" M beta-mercaptoethanol (Sigma), 2 x 107°M
glutamine (Sigma) 1% penicillin-streptomycin (Gibco), 10%
fetal bovine serum (Gibco), and 1000 U/ml recombinant
mouse leukemia inhibitory factor (Chemicon International)
in a humidified 5% CO, atmosphere at 37°C [29]. Differenti-
ation of ES cells was performed by the hanging drop method
[30]. Briefly, embryoid bodies (EBs) were formed for 2
days in hanging drops containing 450-600 cells/20 ul of
a differentiation medium, whose composition was similar
to that used for cell propagation except for fetal bovine
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serum (20%, HyClone) and without recombinant mouse leu-
kemia inhibitory factor. After 4 days in suspension, EBs were
plated on gelatin-coated plates. Starting from day 8 of differ-
entiation, the number of beating EBs was counted by phase-
contrast microscopy.

2.2. Cell Treatments. A375 cells were grown to 70% conflu-
ence in complete medium DMEM high-glucose for 48 h.
Then the medium was removed, and after washing in PBS
solution, cells were serum-starved overnight with a starvation
medium, without FCS, in order to promote the cells’ entry
into a quiescent GO phase, thereby better evaluating cells’
responsiveness to exogenous treatments. After 24h, cells
were treated with a single dose of BRL, a 33-adrenergic ago-
nist, and after 30 minutes with the 33-antagonist SR59230A
and with genipin, UCP2’s antagonist.

2.3. Melanosphere Formation Assay. A375 cells were incu-
bated for 72h with a conditioned medium (CM) and then
detached using Accutase (Sigma). Single A375 cells were
plated at 150 cells/cm® on a low-attachment 100 mm plate
in a Dulbecco’s modified Eagle’s medium/F12 supplemented
with B27 and N2 media, 5g/ml insulin, 20 ng/ml fibroblast
GF-2, and 20ng/ml epidermal GF. A375 cells were grown
under these conditions for 15-20 days and formed nonadher-
ent PO spheres termed prostaspheres. For the evaluation of
self-renewal, a single prostasphere was dissociated in single
cells with Accutase, and a dilution of one cell per well into
96-well low-attachment plates was performed in order to
isolate individual P1 prostaspheres. Single-cell cloning
was confirmed by microscopic analysis, and single clones
were counted.

2.4. Western Blot Analysis. The buffer used was RIPA lysis
buffer (50 mM Tris-HCI, pH 7.5, 150 mM NaCl, 1% Triton
X-100, 2mM EGTA, 1 mM sodium orthovanadate, 1 mM
phenylmethanesulphonyl fluoride, 10 mg/ml aprotinin, and
10 mg/ml leupeptin). Twenty micrograms of total proteins
was loaded on SDS-PAGE, separated, and transferred onto
nitrocellulose. The immunoblots were incubated in 3%
bovine serum albumin, 10mmol/l Tris-HCl (pH?7.5),
1 mmol/l EDTA, and 0.1% Tween 20 for 1 h at room temper-
ature, probed first with specific antibodies and then with
appropriate secondary antibodies. Bound antibodies were
detected using the Novex ECL, HRP Chemiluminescent
Substrate Reagent Kit (Life Technologies). Filters were
autoradiographed, and images were acquired through the
BioSpectrum Imaging System (Ultra-Violet Products Ltd.,
Cambridge, UK). The following antibodies were used:
UCP2 (sc-6525), B-actin (sc-1615), HKII (ab-76959), MCT-
4 (376140), GLUT1 (ab-209449), SOX2 (sc-16320), total
OXPHOS (ab-110143), and 83-AR (h-160).

2.5. Metabolic Assays. The lactate extrusion assay was per-
formed using the Lactate Colorimetric Assay Kit II, following
the manufacturer’s instructions (BioVision®).

The glucose uptake assay was performed using the Glu-
cose Uptake Cell-Based Assay Kit (item n. 600470), following
the manufacturer’s instructions (Cayman Chemicals®).
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ATP production assay was performed using the ATPlite
Luminescence Assay System, following the manufacturer’s
instructions (PerkinElmer®).

All experiments were collected after 48 h, and the lumi-
nescence and fluorescence were measured with a Flex
spectrophotometer.

2.6. ROS Cytofluorimetric Analysis. The cells were stained with
1 ul of MitoSOX and were incubated for 15 minutes, then
washed with PBS one time; the supernatant was aspirated;
and the cells were incubated with Accutase. Finally, the
detached cells were suspended in a final volume of 300 yl and
were analyzed using MACSQuant FACS (Miltenyi Biotec).

2.7. DilC(5) Membrane Potential. Membrane potential was
performed using the MitoProbe™ DiIC1(5) Assay Kit for
Flow Cytometry M34151, following the manufacturer’s
instructions (Thermo Fisher®).

2.8. Frap Assay. The ferric reducing antioxidant power
(FRAP) assay, which is a measure of the antioxidant effects
of nonenzymatic defences in plasma, was performed accord-
ing to the method by Benzie and Strain [31].

2.9. Confocal Microscopy. After washing with PBS, the cells
were fixed with a 3.7% formaldehyde solution in PBS for
20min at 4°C. Then, after extensive washes in PBS, the
cells were permeabilized with 0.1% Triton X-100 in PBS
and then stained with a 50 pg/ml fluorescent phalloidin
conjugate solution in PBS, phalloidin-TRITC, for 1h at
room temperature with anti-$3-AR antibody, MitoProbe,
and DAPI, then analyzed with the related laser. After
several washes with PBS, the coverslips were mounted
with glycerol plastine and then observed under a confocal
fluorescence microscope (Leica).

2.10. Mitochondrial Isolation. To isolate the mitochondria
from A375 stem cells and ESC, the Mitochondria Isolation
Kit (Miltenyi Biotec®) was used. At the end of the kit proce-
dure, after the centrifugation at 13,000xg for 2 minutes at
4°C, we aspirated the supernatant and resuspended the mito-
chondria pellet in lysis buffer for Western blot analysis and in
PBS for FACS analysis.

2.11. MTT Assay. Viability of tumor cells, in all conditions,
was evaluated using an MTT (3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide; thiazol blue) assay. It is a
test of cell viability based on the reduction of the MTT dye
by mitochondrial succinate dehydrogenase enzyme, which
is active only in living cells. The enzyme cuts the tetrazolium
ring of MTT (yellow substance) with the formation of a blue
salt that is exocitated and precipitates.

The cells were maintained in MTT for 1h, then the
formation of needle-like crystals near the membrane was
visible (if the cell is not vital, the process is reduced).
Then, the cell membrane was lysed and the dye solubilized
developing a color whose intensity was proportional to cell
viability. The absorbance was evaluated at 570 nm using a
spectrophotometer.

2.12. Bioinformatic Analysis. To assess the bioinformatic
analysis, we chose four widely used methods: Hum-mPLoc
3.0, FUEL-mLoc, WegoLoc, and COMPARTMENTS. All
the selected predictors are available as Web servers that are
intended for eukaryotic proteins or are specific for human
proteins. These predictors take advantage from the usage
of the Gene Ontology (GO) terms, representing gene
product properties. GO-based methods use the correlation
between the annotations (usually functional annotations)
for a protein and its subcellular location. Methods such
as FUEL-mLoc, WegoLoc, and Hum-mPLoc 3.0 adopt dif-
ferent databases. WegoLoc and COMPARTMENTS extract
the GO terms from the UniProtKB database. Hum-mPLoc
3.0 uses the SWISS-PROT portal, and FUEL-mLoc adopts
two newly created compact databases, namely, ProSeq and
ProSeq-GO, that allow consuming much less memory and
make predictions faster.

By unifying these information with evidence on pro-
tein localization from curated knowledge, high-throughput
experiments, text mining, and sequence-based prediction
methods, these tools infer on the subcellular localization of
our [33-AR protein.

2.13. Statistical Analysis. In vitro data are presented as
means + standarddeviation (SD) from at least three experi-
ments. Results were normalized versus control expression levels.

Statistical analysis was performed using GraphPad Prism
software (GraphPad, San Diego CA, USA) by one-way
analysis variance (ANOVA), followed by a Bonferroni post
hoc analysis.

3. Results and Discussion

Since embryos and cancer are enriched in nondifferentiated
cells (embryonic and cancer stem cells), we investigated
whether f3-AR affected CSC and ESC metabolism. We
enriched the melanoma stem cell compartment by growing
melanospheres in vitro. Interestingly, melanospheres revealed
higher levels of 83-AR compared with A375 parental popula-
tions (Figure 1(a)). Usually, cells with an accelerated glycolysis
rate display elevated glucose uptake, lactate overproduction,
and overexpression of specific markers such as hexokinase
2 (HKII), monocarboxylate transporter-4 (MCT-4), and
glucose transporter-1 (Glut-1) [32]. Here, we report that
melanospheres expressed higher levels of HKII, MCT-4,
and Glut-1 compared with the A375 parental population,
thus demonstrating that A375 melanospheres rely on an
accelerated glycolytic metabolism (Figure 1(a)). Elevated gly-
colytic metabolism in melanospheres was confirmed by a
higher glucose uptake, lactate export, and decreased ATP
synthesis, when compared with the A375 parental popula-
tion (Figures 1(b) and 1(c)).

Selective 83-AR antagonism with SR59230A decreased
the ability of A375 cells to form melanospheres under
BRL37344 (selective 33-AR agonist) stimulations, as demon-
strated by the reduction of P1 populations and reduction of
stem cell markers CD133 and SOX2 (Figures 1(d) and
1(e)). To verify the metabolic effect of 33-AR stimulation,
CSC and ESC were treated with BRL37344, inducing an
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FIGURE 1: 33-AR affects the glycolytic metabolism of both A375 melanospheres and embryonic stem cell. WB analysis of 33-AR, hexokinase
II (HKII), monocarboxylate transporter-4 (MCT-4), and GLUT-1 markers (a). Analysis of the lactate export and glucose uptake (b). ATP
production assay (c). A375 melanospheres and mouse ES cells treated with BRL37344 (10 uM) and BRL37344 (10 uM) + SR59230A
(10 uM). The following experiments were performed: representative random figure of melanospheres in each condition and clonogenesis
assay quantification (d); analysis of CD133™ cells by FACS and WB of stem cell marker SOX-2 (e); glucose uptake and lactate export in
A375 melanospheres and ES cells (f, g); WB analysis of HKII and MCT-4 in A375 melanospheres (h) and ES cells (i). Data are
representative of at least three experiments (mean and SD). **P < 0.01 and ***P < 0.001.
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accelerated aerobic glycolysis (Warburg effect), as con-
firmed by the increased expression of HKII and MCT-4,
lactate export, and glucose uptake. These effects were
dramatically reduced by SR59230A in both CSC and ESC
(Figures 1(f)-1(i)). Supplementary Figure 1 shows that pro-
pranolol (unselective f31-/32-AR antagonist) had no effect
on the reduction of the Warburg metabolism in CSC. Thus,
these results indicate that CSC and ESC share similar
metabolic pathways (Warburg effect) and that this shift
is mediated by $3-AR. The extrusion of lactate, promoted
by fB3-AR, enhanced the similarities between cancer and
embryonic environment. During embryo development, the
dramatic production and extracellular transport of lactate
reduce the pH in the microenvironment, promoting the dis-
aggregation of uterine tissues and facilitating the trophoblast
invasion [11]. The lactate extrusion, together with the pro-
motion of angiogenesis, cell migration, and metastatization,
is probably also useful for the growth and infiltration of the
tumor. Interestingly, lactate contributes significantly to the
immune escape and further analogy between the tumor and
the embryonic environment [33].

B3-AR's role has been well clarified in white and brown
adipocytes. Selective, pharmacological activation of f33-AR
has been shown to have strong effects on adipose tissue mor-
phology and metabolism. The sympathetic nervous system,
through f3-AR stimulations, is the main trigger of UCP1
induction and activation in brown fat mitochondria, leading
to uncoupling of respiration and adaptive thermogenesis.
UCP1, localized on the inner mitochondrial membrane,
uncouples the activity of the respiratory chain from ATP syn-
thesis, thereby releasing energy as heat [34]. Administration
of CL-316,243, a potent and highly selective $3-AR agonist,
leads to a marked increase in thermogenesis in brown adi-
pose tissue (BAT) and an acute decrease in food consump-
tion [35]. At the same time, the role of UCPs in cancer has
been extensively studied, even though the effect of UCP2 on
cellular energy balance in cancer cells remains unclear [23].
Current evidence demonstrates a link between UCP2 and
the Warburg effect. Colon cancer cells stably overexpressing
UCP2 produce progressively more lactate than do control-
transfected cells, indicating higher rates of glycolysis [36].
Leukemia cells overexpressing UCP2 increase lactate produc-
tion, decreasing the entry of pyruvate into the Krebs cycle,
thereby inducing the Warburg effect [26, 27]. To assess a
possible involvement of UCP2 in the 33-AR-induced War-
burg effect, we used SR 59230A (specific $3-AR antagonist)
and genipin (specific UCP2 inhibitor) under BRL37344 stim-
ulations, in both CSC and ESC. UCP2 Western blotting
expression analysis and lactate export assay at different con-
centrations of genipin were performed to evaluate which of
them could have a similar effect to SR59230A treatment
(Supplementary Figure 2).

Intriguingly, we demonstrated that SR59230A inhibited
UCP2 expression in both CSC and ESC (Figures 2(a) and
2(e)). Performing functional metabolic assays, we observed
that genipin, as well as SR59230A, decreased the lactate
export and glucose consumption induced by BRL37344, both
in CSC (Figure 2(b)) and in ESC (Figure 2(f)). Moreover,
HKII and MCT-4 were impaired by genipin treatment

(Figures 2(c) and 2(g)). The results obtained with genipin
were comparable with those obtained with SR59230A,
suggesting that CSC and mouse ESC share an accelerated
B3-AR/UCP2-mediated glycolytic pathway.

Interestingly, the results regarding ATP production
were not similar in ESC and CSC: the treatment with
SR59230A and genipin induced a reduction in ATP synthe-
sis only in A375 CSC but not in ESC, where ATP synthesis
dramatically increased, indicating that only embryonic cells
are able to shift to an aerobic metabolism (Figures 2(d) and
2(h)). These data confirm the hypothesis that $3-AR plays
a crucial role in mitochondria UCP2 function and also
highlight a different regulation of the B3-AR/UCP2 axis
in CSC and ESC.

The similarity in the impairment of glycolytic metabo-
lism between the two cell lines and the difference in ATP
production suggest a diverse regulation of cell survival path-
ways mediated by 3-AR. It has already been shown that
SR59230A impairs cancer cell viability by inducing cyto-
chrome C release [16], and this study shows that SR59230A
and genipin dramatically reduced cell viability only in CSC
(Figures 3(a) and 3(f)). Since UCP2 is implicated in mitochon-
drial ROS (mtROS) content modulation [37], we revealed
that SR59230A and genipin increased mtROS content in
both CSC (Figure 3(b)) and ESC (Figure 3(g)) treated with
BRL37344, and the increase was markedly relevant in CSC
(Figure 3(b)). Notably, the basal mtROS levels were definitely
lower in ESC (Figure 3(g)) than in CSC (Figure 3(b)). This
effect suggests a possible different antioxidant ability between
the two cell lines. Results of this study indicate that the anti-
oxidant ability induced by BRL37344 is definitely higher in
ESC than in CSC, as confirmed by an increased FRAP func-
tional assay in both cell lines (Figures 3(c) and 3(h)) [31]. In
ESC, neither treatment with SR59230A nor treatment with
genipin reduced SOD2 expression, if compared with CSC
(Figures 3(d) and 3(i)). Therefore, after SR59230A and geni-
pin treatment, ESC maintained a higher antioxidant ability
compared to CSC, and this difference might explain the dif-
ferent effect on cell viability.

The addition of the ectopic antioxidant 3-mercaptoetha-
nol (B-ME) in the culture media recovered cancer cell death
mediated by SR59230A and genipin in CSC (Figures 3(e)
and 3(j)). These data demonstrate that the reduced viability
of CSC after these treatments was due to their lower ability
to counteract mtROS. In fact, the inhibition of the UCP2-
mediated mtROS modulation ability in the CSC was critical
for the survival of the A375 cell line. The antagonism of 33-
AR dramatically increased A375 cell death compared to
embryonic stem cells, demonstrating a strong selectivity for
cancer cells. SR59230A, by inhibiting the 33-AR/UCP2 axis,
strongly increases mtROS levels mainly in CSC, due to their
inability to maintain antioxidant response compared to ESC.
These results confirm data already present in literature,
where 33-ARs and UCP2 are indicated to have a strong anti-
oxidant role [37, 38]. The expression of 33-ARs and UCP2
in both cancer and embryonic stem cells is not surprising.
Both types of cells need a strong ability to proliferate and
strong protection from reactive oxygen species and present
a highly 3-AR expression.
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FIGURE 2: $3-AR/UCP2 axis blockade affects the glycolytic metabolism of both A375 and ES cells. Western blot analysis of UCP2 marker after
treatment with BRL37344 (10 uM) + genipin (15 uM), BRL37344 (10 uM), and BRL37344 (10 uM) + SR59230A (10 uM) (a, e). Glucose uptake
and lactate export assays (b, f). WB analysis of HKII and MCT-4 markers (c, g). ATP production assay (d, h). Data are representative of at least
three experiments (mean and SD). P values for SR59230A treatment *P < 0.05, **P < 0.01, and ***P < 0.001. P values for genipin treatment:

#P <0.05,##P < 0.01,and ###P < 0.001.

This result is in line with previous studies demonstrating
a potent anticancer agent of the specific UCP2 inhibitor gen-
ipin [39]. Our data suggest that this selective ability to induce
death only in CSC is due to a dramatic inability of tumor
stem cells to maintain the same antioxidant response present
in ESC. Literature reports that UCPs are directly activated by
reactive oxygen species resulting in a negative feedback con-
trolling both ROS production and their levels [37].

Recently, it has been shown that CSC have a markedly
glycolytic profile with a decreased or dormant mitochondrial
function, although the CSC phenotype can change between
different cancer subtypes [32, 40]. Our results clearly suggest
that the 3-AR/UCP2 axis promotes mitochondrial dor-
mancy by inhibiting ATP production and mtROS content
and leading both cell lines to increase aerobic glycolysis.
Moreover, 33-AR antagonism promotes mitochondrial reac-
tivation by inhibiting UCP2 activity and by increasing
mtROS content.

There is accumulating evidence supporting a direct link
between mitochondria, oxidative stress, and cell death. With
the increasing number of newly discovered protein sequences
in the postgenomic era, computational methods are required
to address large-scale proteomics data and to establish new
lines of experimental inquiry. Therefore, predicting subcellu-
lar location using computational tools has become a valuable
approach for experimental validation.

At present, several public subcellular localization predic-
tors are available. In our study, we chose four widely used
methods: Hum-mPLoc 3.0, FUEL-mLoc, WegoLoc, and
COMPARTMENTS. By unifying this information with evi-
dence on protein localization from curated knowledge,
high-throughput experiments, text mining, and sequence-
based prediction methods, these tools infer on the subcellular
localization of a protein.

In order to support our previous observation, we per-
formed a bioinformatic analysis by using the aforementioned
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F1GURE 3: The antioxidant ability promotes survival in embryo with respect to tumor. The A375 melanospheres and ES cells were treated as in
Figure 1. MTT survival experiment on each condition (a, f), mitochondrial mtROS measurement (b, g), FRAP assay (c, h), WB analysis of
SOD-2 antioxidant marker (d, i), and MTT survival experiment on each condition in the presence of 100 uM B-ME (e, j). Data are
representative of at least three experiments (mean and SD). NS: not significant. P values for SR59230A treatment: *P < 0.05, **P < 0.01,
and ***P < 0.001; P values for genipin treatment: #P < 0.05 and ##P < 0.01.

Web tools. The results shown in Supplementary Figure 3(a)
represent the sum of ranked probability, estimated by each
method. Surprisingly, all predictors we used designate the
mitochondria as a potential candidate. As expected, the
organelle does not appear as the best hit. This result is partly
attributable to the different total number of proteins located
in the different compartments; e.g., the plasma membrane
contains more proteins than the mitochondria. A closer look
at these results also shows that COMPARTMENTS assigns
the best score to the mitochondria. This result is supported
by the text mining Z-score computed by COMPART-
MENTS, which designates the mitochondrion as the second
best hit (Supplementary Figure 3(b)).

Surprisingly, we found that $3-AR is expressed on mito-
chondria of both ESC (Supplementary Figure 3(c)) and CSC,
as shown in the WB analysis and in the confocal images
(Figures 4(a) and 4(b)). Moreover, through functional

analysis, we demonstrated that SR59230A treatment is able
to modify ATP production and mtROS levels in the
isolated mitochondria (Figures 4(c) and 4(d)).

In summary, this study highlighted the parallelism
between embryonic and cancer stem cells in the regulation
of the B3-AR/UCP2-mediated Warburg metabolism and
enhanced the different ability of the two cell lines to respond
to SR59230A that induced cell death only in CSC by inhibit-
ing antioxidant response (Figure 4(e)). An important result
of this study is the presence of $3-AR in the mitochondria,
suggesting a possible cooperation with 53-AR located in the
plasmatic membrane. We suggest that $3-AR could work as
sensor of redox state of cells directly influencing mitochon-
dria bioenergetic functions. The presence of $3-AR in iso-
lated mitochondria could be explained by its protective role
against the induction of apoptosis, in both cancer and embry-
onic stem cells. Here, we clearly demonstrated a functional



A375 melanospheres

Oxidative Medicine and Cellular Longevity

ADP 50 uM
. Merge 33-AR & Mito —F
3-AR Mito TRACKER ; 2
A375 P e TRACKER . 1004= S 10 s
‘8 3-AR o 2 *
I A 5 wv 8
8 2 757 8
ot T g - 6
& a. 50 =
= o, < 4
- ° 2 25 :
= < 22
- s S
< = 0 § 0
o= [=] — A
£ % 2253 2EES3
IS~ =/ H<mQ
=] Q NN O N
= O N — N —~
5 = =
g & & 3 &
= +°g + g
3 & 3 5%
2 : 25
—
= =
[2a] 2]
| glucose -m . = | glucose
é % ﬂ Apoptosis é 8 B No apoptosis
2 o | glucose 6 P = g | glucose 6 P
$E w 2 8 /
foin g | pyruvate g 9 g | pyruvate
=g =
< 8 = QJ &9 T mtROSnot neutralized : g = QJ &9 T ATP
% § - | lactate \ % _E - | lactate mlROineutralized
o o - ) -
Q. -~ R t ~
2 ) 22 e | T

F1GURE 4: Functional $3-AR in mitochondria: a new receptor for an old compartment. WB analysis of 53-AR on mitochondria proteins (a).
Confocal representative images of $3-ARs, MitoTracker, and merge of both markers (b). ATP production measured on isolated mitochondria
as in Figure 1(d). Ectopic ADP was added to the reaction mix (c). mtROS measured as in Figure 3(a) (d). Summary scheme of the study (e).
Data are representative of at least three experiments (mean and SD). P values for SR59230A treatment: *P < 0.05; P values for genipin

treatment: #P < 0.05.

role of $3-AR blockade in isolated mitochondria by its ability
to decrease ATP production and to increase mtROS levels.

Further experiments need to be performed to better clar-
ify and elucidate the role of 33-AR in mitochondria, but the
results of this study have shown a new and different possible
function of this receptor in a new compartment.

Finally, we report that SR59230A is extremely selective
in reducing the viability of CSC by blocking the Warburg
metabolism and by inducing high mtROS levels. These
results suggest a potential role of SR59230A as a strong
and selective agent that could be used in cancer therapy.
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