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Twisted magnon beams carrying orbital angular
momentum
Chenglong Jia1, Decheng Ma1, Alexander F. Schäffer 2 & Jamal Berakdar 2

Low-energy eigenmode excitations of ferromagnets are spin waves or magnons that can be

triggered and guided in magnonic circuits without Ohmic losses and hence are attractive for

communicating and processing information. Here we present new types of spin waves that

carry a definite and electrically controllable orbital angular momentum (OAM) constituting

twisted magnon beams. We show how twisted beams emerge in magnonic waveguides and

how to topologically quantify and steer them. A key finding is that the topological charge

associated with OAM of a particular beam is tunable externally and protected against

magnetic damping. Coupling to an applied electric field via the Aharanov-Casher effect allows

for varying the topological charge. This renders possible OAM-based robust, low-energy

consuming multiplex magnonic computing, analogously to using photonic OAM in optical

communications, and high OAM-based entanglement studies, but here at shorter wave-

lengths, lower energy consumption, and ready integration in magnonic circuits.
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Recently, the spatial structuring of photonic, electronic, or
neutron beams has been demonstrated1–5 enabling to
encode additional information in the beam spatial dis-

tribution. For instance, a photonic beam can be spatially modu-
lated to have a helical or twisted wavefront embodying a well-
defined, internal, meaning origin-independent, orbital angular
momentum. The external orbital angular momentum (OAM) is
origin dependent and is obtained from the photonic angular
momentum density Lγ= rγ × Pγ, where rγ is measured with
respect to the beam center and Pγ is the linear momentum
density6. Similar arguments apply to matter fields3–5. The intense
research on this topic is fueled not only by fundamental interest
but also by the new possibilities and functionalities accomplished
by structuring the spatial distributions of the waves. For instance,
OAM can take very large values that can be exploited for mul-
tiplex communications and quantum information based on
entangled photons with large OAM1–5,7–9. Here we uncover the
existence of twisted magnon beams, which are low-energy spin
waves that carry a well-defined OAM. We demonstrate how they
are triggered in a magnonic waveguide (such as in Fig. 1), and
how to quantify their topological nature by an associated topo-
logical charge, which is found to be related to the OAM of a
particular twisted beam. It is shown that this topological charge is
electrically tunable and protected against damping. Hence, twis-
ted magnonic beams are ideal candidates for robust, low-energy
cost multiplex magnonic computing using the versatile toolbox
for material and spin waves engineering10–17. In addition, we find
an OAM-dependent magnonic Hall effect that depends on the
value of OAM and, hence its value can be steered electrically. We
also inspect the nature of thermal magnetic fluctuations around
the equilibrium-ordered phase in a magnetic sample supporting
twisted modes and find an anisotropic dependence of the corre-
lation length.

Results
Analytical model for twisted magnon beams. What are the
requirements for the emergence of OAM-carrying waves in mag-
netic systems and what is their relevance? In magnetically ordered
systems key low-energy carriers of information are spin waves or
magnons, which are the quanta of low-energy magnetic excita-
tions. Identifying twisted magnonic beams that carry OAM would
open a subfield in magnonics since OAM in principle can have an
unbounded value. Thus, let us consider a generic ferromagnetic
(FM) cylindrical waveguide modeled by localized magnetic
moments at site i described by the magnetic moment operator Mi

or the corresponding (dimensionless) spin operator Si=−Mi/(γħ)
(γ is the gyromagnetic ratio). The (Heisenberg) Hamiltonian reads
H ¼ � 1

2

P
ij
JijMi �Mj � Ks

2

P
i
ðbez �MiÞ2 �

P
i
B �Mi, where Jij > 0

is the exchange coupling between nearest-neighbor sites (ij), and
Ks > 0 is a magnetic anisotropy contribution including the shape
anisotropy (the demagnetizing factor tensor Dij at any given
direction of the cylindrical nanowire are approximately zero,
except for Dxx=Dyy≃ 1/218,19). B= (0, 0, Bz) is an external
magnetic field along the waveguide (this direction is taken as the z-
axis). For magnetically ordered systems longitudinal excitations,
meaning changes in the expectation value of Mi, caused for
example by changes in Jij, are much higher in energy than trans-
versal ones. The latter correspond to a precession of the unit vector
field mi=Mi/|Mi|, while |Mi|=M= constant and their energy is
typically set by Ks, which is much smaller than Jij20. Hence, we
inspect the transversal spin dynamics governed by the Heisenberg
equation of motion dmi=dt ¼ �i=�h½mi;H�. The dynamics of the
magnetization unit vector field proceeds as (we introduce the

effective field Bs :¼ ðKsMiz þ BzÞbez)
dmi

dt
¼ γ mi ´Bs �

X
j2i

MJij mi ´mj

� �" #
: ð1Þ

We are interested in weak transversal fluctuations around the
ordered magnetic phase (weak means slow variation in mi within a
lattice constant a). Furthermore, we will consider sufficiently large
spins where quantum/thermal fluctuations are subsidiary and
magnetic reversals are rare. Thus, it is useful to go over to a con-
tinuous magnetic texture vector field mi(t)→m(ri, t) and interpret
m(r, t) as the local, time-dependent expectation value of the field
operatorm(r, t). The exchange contribution in Eq. (1) appears as the
divergence of the spin current21,

P
j γMJijðmi ´mjÞ !

P
μν ∂μJ μ

mν
.

Here J μ
mν

¼ γMJa2 m ´ ∂μm
h i

ν
stands for the ν polarized spin

current along the μ spatial direction. With this Eq. (1) reads

∂mðr; tÞ
∂t

¼ γmðr; tÞ ´Bs �
X
μ

∂μJ μ
mðr; tÞ: ð2Þ

The uniaxial symmetry of Bs dictates a conservation of the z-
component of magnetization, meaning that ∂tmz þ ∇ � J mz

¼ 0.
As discussed below, J mz

is the only spin current with a non-
vanishing time average. Within this general setting, we derive the
equations governing the dynamics of small transverse deviations
around the z-axis unit vector bez by writing mðr; tÞ � bez þ emðr; tÞ
with em?bez and jemj � 1. With em ¼ ðmx;my; 0Þ and inserting in
Eq. (2) we infer the Schrödinger equation

i�h∂tψðr; tÞ ¼ Hmψðr; tÞ; ð3Þ
where ψ(r, t)=mx(r, t)− imy(r, t) and

Hm ¼ p2

2m?
J
þ VðrÞ; ð4Þ

where p=−iħ∇ is the momentum operator and m?
J ¼

�h=ð2γJMa2Þ is an effective mass. The wave function ψ(r, t) van-
ishes outside the waveguide and, otherwise, is subject to the
potential V(r)=−ħγ(KsM+ Bz). In an extended cylindrical
waveguide and in cylindrical coordinates r→ (r, ϕ, z), Eq. (3)
admits the non-diffractive Bessel solutions (see for instance
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Fig. 1 Proposal for generating a twisted magnon beam exploiting the
Aharanov–Casher effect. Incident spin waves (impinging from left) that
propagate in a cylindrical magnetic insulator waveguide traverse a region
with a linear charge density λe (marked yellow). As demonstrated here, a
magnonic twisted beam emerges to the right and can be quantified by the
topological charge ‘ / λe, which is associated with a monopole-like vector
potential, AeðrÞ � λe

r beϕ that is intimately related to the Dirac phase for
magnons
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ref. 22)

ψðr; tÞ / J‘ðk?rÞ expði‘ϕþ ikzzÞ expð�iωtÞ; ð5Þ
with J‘ðxÞ is the Bessel function of the first kind with order ‘. The
total energy is

EðkÞ ¼ �hω ¼ �h2ðk2z þ k2?Þ=2m?
J þ V : ð6Þ

Note that similar to optics, conventional (meaning ‘ ¼ 0 in Eq.
(5)) Bessel modes22,23 also exist, but those do not carry any OAM.
A striking consequence is that Bessel beams do not interact with
electric fields, in contrast to twisted magnon beams and also do
not allow for ‘-based operations. This fact is decisive when it
comes to constructing OAM-sensitive magnonic circuits (similar
to ref. 11) that are controlled by electric fields offering so new
functionality, as discussed in ref. 24. A further important aspect is
the difference between our propagating OAM modes and static/
driven magnetization vortices25–27. The latter are localized
topological excitations that are much higher in energy than a
magnon wave (cf. Eq. (5)), which extends over the whole wave-
guide. The much lower energy set by E(k) is tunable by J;m?

J and
V. Both magnetization vortices and propagating, OAM-carrying
magnons have well-defined topological features that can be
quantified. To do that in our case, we consider the z-component
of the magnon current J mz

, which is nothing but the probability
current density coiling around the z-axis

J mz
¼ �h< ψðr; tÞ p

m?
J
ψ?ðr; tÞ

" #
/ ‘

r
beϕ þ kzbez

� �
ρ‘ðrÞ; ð7Þ

meaning that the spin waves spiral around the axis of the
waveguide, similarly to the case of photon, electron, or neutron
twisted beams1–5. In fact, the analogy runs deeper: let us introduce
pseudo-electric and -magnetic fields as eE ¼ mx þ imy and eB ¼
iðmx � imyÞ: Physically, eB and eE describe the (paraxial) spin
wave modes rotating clockwise and anticlockwise, respectively.
The magnon density isWm ¼ 1

2 jeEj2 þ jeBj2� �
, and themz polarized

magnon current density J mz
can be related to the pseudo-

Poynting-like vector28, Pμ :¼ J μ
mz

/ 1
2
eE? ´ ð∂μeBÞ þ eB? ´ ð∂μeEÞ
h i

.

It is straightforward to infer that P has the proper time and space
symmetry of a canonical momentum. Noting that our twisted beam
is localized within the waveguide, we can introduce the canonical
OAM of the magnon twisted beam as L ¼ r ´P, which is extrinsic
and dependent on the choice of the coordinate origin. However, the
integral orbital angular momentum over the cross-section is indeed
intrinsic, amounting to

hPi / hki; hLi / ‘hki=k; ð8Þ
with k ’ kzbez being the mean wave vector of the spin wave. We
have then hLi � hPi=P ¼ ‘, in full analogy with paraxial optical
twisted beams28. This ‘ can be identified with the topological
charge associated with a particular twisted beam. Generally, our
magnons are characterized by the integral momentum hP i and the
orbital angular moment 〈L〉 as two independent properties,
meaning that in addition to the intrinsic spin angular moment ħ
along the bez , the magnon in the cylindrical nanowire may carry a
longitudinal and intrinsic orbital angular moment Lz � �h‘ as well,
which formally can take arbitrarily large values and can be utilized
in magnonic and spintronics applications.

Undamped topological charge of twisted beams. An important
feature of twisted magnons is the robustness of the associated
topological charge to magnetic damping. This fact is crucial
when it comes to utilization of the OAM of twisted magnons
as information carriers, analogously to OAM-based optical

communications7,8. Generally, the (Gilbert) damping of magneti-
zation procession11,17 is governed by a term of the form
αm × ∂m/∂t. In Eq. (3), this amounts to substituting ∂t→ (1+
iα)∂t, which leads to the time-decaying magnon density ρ‘ðtÞ ¼
ρ‘ðt ¼ t0Þ expð�2αωðt � t0ÞÞ when propagating from time t0 to t.
The magnon OAM ‘ derives, however, by an averaging of 〈L〉 over
the cross-section of the waveguide S, meaning
hLi ¼ hr ´PiS ¼ êzð

R
‘ρ‘ðtÞdSÞ=ð

R
ρ‘ðtÞdSÞ ¼ ‘êz . Thus, damping

leads to a decaying magnon density (its photon analog is the light
intensity), which is however independent of ‘ and hence of OAM.
In other words, the OAM (‘) is not affected by damping and is
conserved during the magnetization evolution. Another point of
view is that the damping term would dominate the interfacial spin-
pumping current by m´ ∂m=∂t / = ψðr; tÞ∂tψ?ðr; tÞ½ � ¼ ωρ‘,
which clearly does not depend on the internal phase structure of
the twist excitation (and hence on ‘). These conclusions are sup-
ported by the full-fledge numerical simulations presented below.

Simulating an experimental realization. Having laid down the
principle existence of twisted OAM and the robustness of the
associated topological charge to perturbations that subsume into
damping of the precessional dynamics, the experimental feasi-
bility as well as the role of further magnetic interactions that
emerge in a realistic setting, have to be clarified. Therefore, we
resort to full-fledge numerical micromagnetic simulations (see
Methods) for an experimentally realistic waveguide made of
insulating yttrium iron garnet (YIG).

The cylindrical YIG waveguide has a diameter of 0.4 μm and
a length of 2.0 μm. The saturation magnetization is Ms= 1.4 ×
105 A/m, the exchange stiffness constant is Aex= 3 × 10−12 J/m,
the uniaxial magnetocrystalline anisotropy along z is Ku= 5 ×
103 J/m-3, and the Gilbert damping α= 0.0124. The ground state
equilibrium magnetization is oriented along the +z-axis, parallel
to the main axis of the waveguide. To launch the spin waves, we
excite locally at one end z= 0 with a twisted magnetic B field (see
Methods) that is linearly polarized in the x-direction and having
the amplitude Bmax= 10 mT and the frequency ωB= 5 GHz.
Figure 2a shows a snapshot of the x-component of magnetization
excitations propagating after 2 ns. More details of excitation mode
are gained from slices along the tube in Fig. 2b, which
demonstrates the generation of propagating twisted magnon
beams. An animated version of mx at the transversal slice z=
1 μm during the magnon propagation is provided as Supplemen-
tary Movie 1. The finite damping leads to a decaying magnon
density along the YIG tube with the amplitude being normalized
with respect to the maximum excitation at z= 0. Remarkably,
when evaluating the OAM ‘ from the numerically calculated
pseudo-Poynting vector, we indeed find that ‘ is independent of
the magnon density and is conserved during the spin wave
propagation along the tube (cf. Fig. 2c). These full numerical
calculations endorse the above formal analysis as well as the
experimental feasibility and relevance of twisted magnon beams.

Aharonov–Casher effect and Landau levels. The simulations
shown in Fig. 2 as well as our formal analysis evidence that the
twisted magnon beams embody a non-vanishing z-polarized spin
current density allowing for a coupling to an external electric field
E through the Aharonov–Casher (AC) effect29. For magnon-
based information transfer, this fact is crucial as it allows to
control the flow of OAM-carrying magnons with electric means.
In the presence of an electric field, the exchange interaction in the

Heisenberg Hamiltonian becomes anisotropic according to JijMi �
Mj ! 1

2 Jij Mþ
i M

�
j e

iθij þM�
i M

þ
j e

�iθij
� �

þ JijM
z
i M

z
j ; where θij ¼

gμB
�hc2

R rj
ri
dr � ðE ´bezÞ is the AC phase. The canonical momentum p in
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Eq. (4) has then the kinetic momentum form pe ¼ p� qmAe,
where qm= gμB/c and the electric vector potential Ae is given by
AeðrÞ ¼ �EðrÞ ´bez=c. For the electric field EðrÞ ¼ Eðx=2; y=2; 0Þ,
one finds the symmetric twist vector potential AeðrÞ ¼
E
c ð�y=2; x=2; 0Þ ¼ Br

2 beϕ: Our case is analogous to an electron
system in uniform perpendicular magnetic field σjBjbez30, and
σ ¼ signðEÞ is set by the direction of the applied electric field E.
From the gauged Hamiltonian Hm ¼ p2e=2m

?
J follow the well-

known quantized Landau states having the form of non-
diffracting Laguerre–Gaussian (LG) modes31–33

ψL
‘;nðr; ϕÞ /

ffiffiffi
2

p
r

we

� �j‘j
Lj‘jn

2r2

w2
e

� �
exp � r2

w2
e

� �
ei‘ϕþikzz; ð9Þ

where Lj‘jn are the associated Laguerre polynomials, and n= 0, 1,
2, … is the quantized radial number. The Landau energy levels
read

EL
k ¼ �h2k2z

2m?
J
� �hΩe‘þ �hjΩej 2nþ j‘j þ 1ð Þ: ð10Þ

Here we ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=qmjBj

p
is a characteristic width that depends on

the amplitude of the applied electric field, Ωe ¼ qmσjBj=2m?
J is

the Larmor frequency (σ= ±1 correspond to the clockwise or
anticlockwise rotation, respectively). Thus, the electric field E
confines the magnons to form paraxial LG beams with

J L
mz

/ 1
r

‘þ σ
2r2

w2
e

� �
beϕ þ kzbez

	 

ρL‘;nðr; zÞ: ð11Þ

The azimuthal component is directly related to the kinetic orbital
angular momentum L ¼ r ´Pe as hLzi ¼ ��hhi∂ϕ þ qmrAei.
Unlike the Bessel beams with uniform rotational direction
described by the topological charge ‘, the direction of hLzi of the
LG beams depends on ‘ and the twist vector potential Ae as well.
Note, the hLzi radial structure depends strongly on σ, that is, the
direction of the applied electric field in terms of the first radial
maximum of the LG mode rj‘j ¼ we

ffiffiffiffiffiffiffiffiffiffij‘j=2p
: For ‘σ>0, we have a

uniform, rotationally azimuthal current as usual. However, for

‘σ<0 the currents in the region of r<r‘ and r>r‘ are counter-
circulating and are dominated by the topological charge ‘ and the
twist vector potential Ae, respectively. For an estimate, we take:
JM2= 0.1 μeV, a= 10 Å, and E ¼ 1 V/nm, which give we ≈
1.4 μm and ħ|Ωe| ≈ 0.33 μeV. Increasing the strength of the
applied electric field, higher electric Larmor frequencies Ωe are
achievable but the electric Landau radius we is smaller.

OAM-tunable magnon Hall effect. Having clarified the role of
an external electric field, one may wonder how the twisted
magnon beam is affected by magnetic perturbations. A hallmark
of a charge wave-packet propagation in a magnetic field is the
transverse deflection, that is, the Hall effect, which in its simplest
variant is assigned to the Lorentz force. A similar effect for
uncharged particles, such as photons, phonons, or magnons, may
thus appear surprising. In our FM case, on the other hand, the
Hall effect is also sensitive to the residual magnetization, a phe-
nomenon termed the anomalous Hall effect. Indeed, the Hall
effect for magnons has already been observed34. Is this effect
OAM dependent and can we control it by tuning the OAM? A
positive answer would be an important advance, since OAM can
be controlled externally, as demonstrated in Fig. 2. To approach
this issue, we note that LG modes have well-defined azimuthal
and radial wavefront distributions (quantified by ‘ and n,
respectively) and they form an orthogonal and complete basis in
terms of which an arbitrary function can be represented. So let us
consider a magnonic wave packet centered at (pc, rc) (similar to
electronic wave packets35,36). From the above, we conclude that
the trajectory spirals around the z-axis. Projecting the local
coordinate frame along the curved trajectory, we end up with a
noncommutative geometry and a covariant derivative in
momentum space37–40: Di ¼ ∂=∂pi þAg

i ðpÞ, where AgðpÞ ¼
ihψL

‘;nj∂=∂pjψL
‘;ni is the Berry connection. The corresponding

Berry gauge field (curvature), Bg ¼ ∂=∂p ´AgðpÞ gives rise to a
deflection of the wave packet center. Given that the z-axis is now
locally directed along p, the vector ðbex þ ibeyÞ is orthogonal to p
and moves on the unit sphere with p/p under variation of p,
which results in a magnetic-monopole-type field41,42, Bg ¼
�‘p=p3 for the orbital motion of magnons (since
expði‘ϕÞ ¼ ðbex þ ibeyÞ‘). As a result, we infer the Hamiltonian
equations of motion35,39

drc
dt

¼ ∂H
∂pc

� �h _pc ´Bg ¼
pc
m?

J
þ �h‘ _pc ´

pc
p3c

; ð12Þ

dpc
dt

¼ � ∂H
∂rc

¼ � ∂VðrÞ
∂rc

� qm
cm?

J

∂

∂rc
pc � ðE ´ êzÞ½ �: ð13Þ

The anomalous velocity term �h‘ _pc ´ pc=p
3 is perpendicular to pc

causing a transversal motion of the wave packet. The corre-
sponding transverse shift δrc is cast as δrc ¼ �h‘

R
Lðpc ´ dpcÞ=p3c

and is determined by the geometry of the contour L in
momentum space and ‘. This is in so far remarkable, as arbi-
trarily large values of ‘ are possible giving rise to a large deflection
at small driving force.

For concreteness, let us consider a weak spatially varying,
perpendicular magnetic field Bz, say along the x-direction43,44.
The driving force is Fx ¼ �∂xBzðrÞbex and thus _pc ¼ Fx and
δ _rc ¼ �h‘Fx ´ pc=p

3
c . Assuming paraxial magnonic propagation,

meaning pc ’ pzbez , the transverse deflection reads (an exact but
cumbersome analytical expression is available) δrc ’ δy /
�h‘Fxz
p3c

bey: Different LG modes with different topological charges ‘

split at the waveguide end (cf. Fig. 3a). Similar to photon41

and electron42 twisted beams, we predict a magnonic
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Fig. 2 Spiraling spin wave propagating along a cylindrical micro-scale
waveguide of the insulting magnet yttrium iron garnet. a Snapshot of the
magnon beams after 2 ns for the x-component of the triggered
magnetization. b Vortex configuration of the excitation modes along the
waveguide. c The z-resolved amplitude and the orbital angular momentum
of the spin waves. In a–c, the spin waves are excited locally at one end of
the waveguide by a twisted radio frequency (rf) magnetic field having the
peak amplitude Bmax= 10mT, and a frequency ωB= 5 GHz. For the time
evolution of mx at the transversal slice z= 1 μm see Supplementary Movie 1
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OAM-dependent Hall effect, which is qualitatively different from
the usual magnon Hall effect10,34.

For a cylindrically inhomogeneous waveguide, for instance due
to inhomogeneity in the demagnetization field18,19, we may
formally write the potential in Eq. (4) as VðrÞ ¼ �V þ V2r

2=2 with
jV2j � j�V j causing further δrc ¼ δϕ / �h‘V2z

p3c
beϕ: The displacement

direction is along beϕ, meaning that LG modes are rotated
uniformly clockwise or anticlockwise depending on ‘ (cf. Fig. 3b),
a result in line with the optical Magnus effect6,45.

Another aspect arises when the waveguide is an FM metallic
wire, in which case the electric field vanishes inside the wire.
However, we may still have nontrivial magneto-electric effects.
Starting from a general symmetrical but inhomogeneous
electric potential Ve(r), the energy shift due to the AC effect
is given to the first order in the perturbation Ve(r) by δE ’
qm
m?

J c
h1r ∂Ve

∂r bez � ðr ´ pÞ½ �i ¼ qm
m?

J c
hLzr ∂Ve

∂r i: For a step-function profile of

the wire electric potential Ve(r)=UΘ(r− R) (here Θ(r) is the
Heaviside function and R is the radius of the metallic wire), we
find ∂Ve/∂r=Uδ(r− R). No electric field is present in the
nanowire except for the surface. Nonetheless, the twisted magnon
beam acquires an additional phase upon traveling a distance z
along the nanowire φð‘; zÞ ¼ Uρ‘ðRÞ qm�hc ‘

kz
z
R : This phase accumu-

lation may result in an interference between the different LG
modes, for example, ψ�‘ þ ψ‘

� � / cos½j‘jϕþ φðj‘j; zÞ�.

Anisotropic correlation length of magnetic fluctuations. While
the control of twisted magnons via external electromagnetic fields
is crucial for applications, one may wonder about the stability of
the FM state to twisted excitations. To explore this aspect we have
to study the influence of vorticity on the magnetic fluctuations
and in particular the correlation length. Both are indicators on
how magnetic ordering reacts to excitations46. Let us start with
the Ginzburg–Landau free energy density of the FM waveguide at
temperature T (in unit of 1/M2), F ¼ Ja2

2 ð=mÞ2 þ ðkBT �

Ks
2 Þm2

z þ K4m
4 � Bzmz (with kB is Boltzmann constant and |mz| ≤

1). The quartic term with K4 > 0 stabilizes the long-range FM
ordering below Tc ≈ Ks/2kB. Because of the uniaxial anisotropy
and the cylindrical demagnetizing field, the SU(2) spin symmetry
is reduced to SO(2) ´Z2. Low-energy Goldstone modes are due to
the continuous SO(2) symmetry.

For T < Tc the saddle point approximation delivers the mean-
field value of mz in the absence of an external magnetic field:
�mzðTÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBðTc � TÞ=2K4

p
in the FM sector. The stiffness of

deformations around the saddle point solution is inferred from
the longitudinal (along bez) and transverse (along ber and beϕ)
fluctuations46, m ’ ½RðrÞ;ΦðrÞ; �mz þ ZðrÞ�. The fluctuations
energy cost, up to second order, is δF ¼
Ja2

2 ð=RÞ2 þ ð=ΦÞ2 þ ð=ZÞ2� �� 2kBðT � TcÞZ2: For non-
diffracting Bessel modes at T � Tc, we find the anisotropic

characteristic length scales, 1
ξz
’

ffiffiffiffiffi
2Ks
Ja2

q
; 1
ξ‘nr

� χ‘n
R and 1

ξ‘ϕ
� ‘

R, where

χ‘n is the nth root of the Bessel prime function dJ‘ðrÞ=drjr¼R ¼ 0.
The definition of χ00= 0 gives 1

ξ00r
¼ 0 and 1

ξ0ϕ
¼ 0, which implies

that the transverse excitations correspond to the Goldstone
modes of the SO(2) symmetry.

For the paramagnetic region T > Tc, the quartic K4 term is not
relevant and the mean-field equilibrium solution is
�mz ¼ Bz=kBðT � TcÞ. For transverse fluctuations around the
saddle point solution �mz , we write m ’ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
p bez þ ρber; with

0 ≤ ρ ≤ 1. Substituting in δF and neglecting constants and higher
order terms in ρ leads to δF ρ ¼ Ja2

2 ð=ρÞ2 � αðTÞρ2 þ βρ4 with α
(T)= [kBT− (Ks+ Bz)/2] and β= Bz/8. Interestingly, transverse
fluctuations are most probable not at the boundary ρ= 0 but at
ρ0 ¼

ffiffiffiffiffiffiffiffiffiffi
α=2β

p
, the global minimum of the free energy δF ρ. For

cylindrical waveguide the transverse fluctuations are subject to a

non-zero restoring force and the correlation length is 1
ξr
’

ffiffiffiffiffiffiffiffiffi
4αðTÞ
Ja2

q
:

Thus, the transverse scattering density is Lorentzian.

Displacement

–�
� ��

Rotation

Fx

y

Fr

�L
–1,0 �L

0,0 �L
1,0 �L

0,0 �L
1,0

a b

�L
–1,0

Fig. 3 Demonstration of the orbital angular momentum (OAM)-dependent magnon Hall effect. a Transverse displacement by a driving force Fx along the
x-direction and b uniform rotation by a r2-inhomogeneity
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Generation of twisted magnon beams. In Fig. 2 we demon-
strated how to trigger twisted magnons via magnetic fields. In
fact, there are various other ways to accomplish this goal: one
may use, for instance, an engineered magnetic spiral phase plate
or fabricate a hologram such as a pitch fork for scattering of
incoming magnons before entering the waveguide. Another
possibility is the following (cf. also Fig. 1): let us consider a
uniformly charged thin wire with a linear charge density λe
located in the region z∈ [d1, d2] on the axis of a FM cylindrical
waveguide. The radial electric field EðrÞ ¼ λe

2πϵrber in the FM
nanowire within z∈ [d1, d2] (ϵ is the electric permittivity of the
FM). For z-polarized magnons, the interaction of magnons with
the radial electric field E involves the vector potential AeðrÞ ¼

�E ´bez=c ¼ λe
2πϵcrbeϕ; which is intimately related to the so-called

Dirac phase for magnons moving along a contour C, ΦD ¼
� qm

�h

R
CAeðrÞ � dr; producing a phase structure expði‘ϕÞ with the

quantized number ‘ ¼ � qmλe
2π�hϵc. Similar to twisted electron

beams47, the twisted magnons can be produced by considering a
transition of a conventional magnon with (‘ ¼ 0) in the region
z ≤ d1 without any flux (λe= 0) to the region z∈ [d1, d2] with the
non-zero flux (λe ≠ 0). For an estimate, we have qmλe

2π�hϵc �
5:6λe ´ 10

�15 with the linear charge density λe in unit of e/m. For
~1022 cm−3 carrier density in copper and magnon wavelength
(governed by the exchange interaction) ~μm, the linear density λe
~ 1014–1016 e/m is experimentally feasible.

�1 = �L
2,0 + �L

–2,0

�3 = �L
1,0 + �L

0,0 + �L
–1,0

� = –1

� =  1
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+

+

+

+

z

z

x

y

z

z

x
y

z

z
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2,0 + �L
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�L
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�L
–1,0

�L
0,0
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c

Fig. 4 Propagation of Laguerre–Gaussian (LG) eigenmodes along a magnonic waveguide. a orbital angular momentum (OAM)-balanced, b OAM-
unbalanced, and c mixed LG eigenmodes. σ denotes the direction of the applied electric field

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10008-3

6 NATURE COMMUNICATIONS |         (2019) 10:2077 | https://doi.org/10.1038/s41467-019-10008-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Demonstration of OAM magnon beams evolution. As evi-
denced, twisted magnon beams are controlled in numerous ways
including external electric and magnetic fields, geometry design
and holographic means. For instance, with suitably designed
holograms, different superpositions of twisted beams can be
created such as the OAM-balanced superposition. This is deter-
mined by two LG eigenmodes with the same radial number n but
opposite topological charges ± ‘, meaning ψ1 ¼ ψL

�‘;n þ ψL
‘;n:

This superposition has zero net canonical OAM 〈Lz〉= 0 exhi-
biting a flower-like symmetry pattern: jψ1j2 / cos2ð‘ϕÞ at z= 0,
as shown in Fig. 4a. The OAM-unbalanced superposition consists
of two LG eigenmodes with the same radial number n but dif-
ferent topological charge 0 and ‘ means that ψ2 ¼ ψL

0;n þ ψL
‘;n:

This superposition carries a finite net canonical OAM, 〈Lz〉∝ l,
and is characterized by a pattern with ‘ off-axis vortices (cf.
Fig. 4b).

In the paraxial approximation with a relatively small transverse
kinetic energy and considering that Ωe / σjBj, we infer
the allowed wave number as kz≃ k+ Δkz, with Δkz ¼
�½σ‘þ ð2nþ j‘j þ 1Þ�=ze. Here ze ¼ we

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=�hjΩej

p
is a charac-

teristic longitudinal scale. On the propagation distance z, the
electric field modifies the longitudinal wave vector resulting in an
additional phase φ= Δkzz, which strongly depends on the
direction (σ) of the applied electric field. As for ‘σ>0, the
induced phase φ shows a linear dependence on the topological
charge ‘. In contrast, for ‘σ<0, φ=−(2n+ 1)z/ze is independent
of ‘. These phenomena are caused by partial cancellation of
counter-circulating azimuthal currents produced by the beam
with expði‘ϕÞ and by the twist vector potential Ae.

The propagation of twisted magnon beams in the waveguide
can give rise to a Faraday effect similar to the case of electron
vortex states32,33. As for the OAM-balanced superpositions, the
induced phases for the modes ψL

± ‘;n reads φ± ¼ �σ‘z=ze, which
results in rotation of the interference pattern by the angle Δφ=
σz/ze, as displayed in Fig. 4a. For the OAM-unbalanced super-
positions, the mode ψL

‘;n acquires an additional phase
Δφ ¼ �ðσ‘þ j‘jÞz=ze, as compared to the ψL

0;n mode. The
superposition with σ‘>0 shows a rotation of the interference
pattern by the angle Δφ= 2σz/ze, as demonstrated by the lower
panels in Fig. 4b with σ=−1, whereas the superposition with
σ‘<0, has no rotation at all (Δφ= 0, as evidenced by the σ=−1
panels in Fig. 4b.

All these electric field tunable phases, including the mixed cases
with ψ3 ¼ ψL

�‘;n þ ψL
0;n þ ψL

‘;n, as shown in Fig. 4c, indicate rich
magneto-electric patterns of the interference intensity, which also
may serve as a marker for identifying the twisted magnon beam.

Discussion
Imprinting an orbital angular momentum on a magnon beam
puts a new twist on magnonics, as OAM can be functionalized as
an independent robust, meaning damping resistant parameter.
Together with the fact that OAM can be tuned to very large
values, the twisted magnon beams offer new opportunities for
reliable multiplex communications. The susceptibilities of the
OAM-carrying magnons to electric and magnetic fields are
thereby a key advantage, as they offer versatile tools to extract and
steer the flow of information. Further immediate consequences of
the topological nature of the discovered twisted beams are that
the internal global phases, related to OAM, result in a controllable
interference pattern when such beams interfere. This we may
employ to imprint spatially modulated magnon density on a
length scale well below the beam’s extensions. The parameters of
the twisted beams are directly reflected in the magnon density
spatio-temporal pattern. Thus, in addition to the well-established,

energy-saving applications of magnonics and magnon-based
spintronics, this new offspring is useful for OAM-based, elec-
trically controlled functionalities in magnonic-based information
transfer and processing. Future studies are focused on the scat-
tering of twisted magnon beams from a magnetization vortex
core48 and its possible application in a long distance (at short
wavelength49) electrically controlled multiplex communication
channel between different vortex cores.

Methods
Micromagnetic simulations. We used the open-source, graphical processing unit
(GPU)-accelerated software package MuMax350 for the micromagnetic simulations.
The (0.4 × 0.4 × 2.0) μm3 large system is discretized into (100 × 100 × 500) cubic cells
with a size of (4 nm)3. The spatial profile of the excitation field applied at the z= 0

layer reads B‘ðρ; ϕ; tÞ ¼ < êBmaxð ρ
w0
Þj‘j exp j‘j

2 1� ρ2

w2
0

� �h i
exp �iðtωB þ ‘ϕÞ½ �

n o
. The

waist parameter w0 denotes the distance of maximum field strength Bmax, ê corre-
sponds to the polarization vector, which is equal to êx in our case, whereas w0= 75
nm. The time evolution is computed using a Dormand–Prince algorithm with
adaptive time-steps. To avoid artifacts due to finite size simulations, we apply open
boundary conditions (disregard demagnetizing fields).

Data availability
Figures 1, 3, and 4 have been produced from the equations given in text. Derived data
that support the findings of this study are available from the corresponding author upon
request.

Code availability
For obtaining the results plotted in Fig. 2 as well as the movie file, we used the open-
source, GPU-accelerated software package MuMax350 for the micromagnetic
simulations. For reproducing the data, one has to use the paramter for YIG, as given in
the text and discretize the (0.4 × 0.4 × 2.0) μm3 large cylinder into (100 × 100 × 500) cubic
cells with a size of (4 nm)3. Full details on the code are in ref 50.
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