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A B S T R A C T   

Metabolites from the gut microbiota define molecules in the gut-kidney cross talks. However, the mechanistic 
pathway by which the kidneys actively sense gut metabolites and their impact on diabetic chronic kidney disease 
(DCKD) remains unclear. This study is an attempt to investigate the gut microbiome metabolites, their host 
targeting genes, and their mechanistic action against DCKD. Gut microbiome, metabolites, and host targets were 
extracted from the gutMgene database and metabolites from the PubChem database. DCKD targets were iden-
tified from DisGeNET, GeneCard, NCBI, and OMIM databases. Computational examination such as protein–-
protein interaction networks, enrichment pathway, identification of metabolites for potential targets using 
molecular docking, hubgene-microbes-metabolite-samplesource-substrate (HMMSS) network architecture were 
executed using Network analyst, ShinyGo, GeneMania, Cytoscape, Autodock tools. There were 574 microbial 
metabolites, 2861 DCKD targets, and 222 microbes targeting host genes. After screening, we obtained 27 final 
targets, which are used for computational examination. From enrichment analysis, we found NF-ΚB1, AKT1, 
EGFR, JUN, and RELA as the main regulators in the DCKD development through mitogen activated protein ki-
nase (MAPK) pathway signalling. The (HMMSS) network analysis found F.prausnitzi, B.adolescentis, and B.dis-
tasonis probiotic bacteria that are found in the intestinal epithelium, colonic region, metabolize the substrates 
like tryptophan, other unknown substrates might have direct interaction with the NF-kB1 and epidermal growth 
factor receptor (EGFR) targets. On docking of these target proteins with 3- Indole propionic acid (IPA) showed 
high binding energy affinity of -5.9 kcal/mol and -7.4kcal/mol. From this study we identified, the 3 IPA pro-
duced by F. prausnitzi A2-165 was found to have renal sensing properties inhibiting MAPK/NF-KB1 inflammatory 
pathway and would be useful in treating CKD in diabetics.   

1. Introduction 

Globally, the type2 diabetic population has a high incidence of 
developing chronic kidney disease (CKD)(Rossing et al., 2023). It is 
estimated, about 40 % of a diabetic individual may be prone to develop 
CKD at some point during their lives (Fenta et al., 2023)(Afkarian et al., 

2016). However, the percentage of CKD development in the diabetes 
population is not known precisely due to other causes like obesity, 
dyslipidemia, atheroscelerosis, hypertension and aging (Hoogeveen, 
2022). In diabetic indivduals, the onset of CKD progression is associated 
with long-term exposure to hyperglycemia, glycosylation of end prod-
ucts, reactive oxygen species, and cytokines response; infection that 
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affects kidney glomerular filtering system that leads to end-stage renal 
disease (ESRD) (Fotheringham et al., 2022) through various number of 
pathways, like endocrine, inflammatory, hemodynamic and neurologic 
pathway (Rukavina Mikusic et al., 2020). 

The primary hallmark for pathogenesis of DCKD is facilitated 
through inflammation of the kidneys caused by the metabolic action of 
gut dysbiosis or pathogenic infection. It has been shown that individuals 
with diabetic kidney disease shown to have a higher composition of gut 
microbes from the phylum Proteobacteria. Positive correlations of gut 
microbes have been found between the renal functions. At genus level, 
Bacteroidetes and Elusimicrobia, at species-level, Syntrophaceticus schinkii 
Citrobacter farmeri (Zhao, 2022) is associated with albumin/creatinine 
ratio in urine, where as Lachnospiraceae_NC2004_group, Verrucomicrobia, 
Subdoligranulum associated with eGFR (estimated glomerular filtration 
rate), Abiotrophia, Peptococcaceae with serum creatinine. On the other 
hand, Abiotrophia, Peptococcaceae, and Ruminococcus have negative 
correlation with eGFR whereas Faecalibacterium, Lachnoclostridium, 
Roseburia, Oscillospirales, Ruminococcus with HbA1C is also observed in 
DKD patients (Zhao et al., 2023). The main features of gut dysbiosis is 
leaky gut formation, is facilitated by relative abundance of four phyla 
Anaplasma, Aspergillus, Verruciformes, and Clostridium in DKD pa-
tients (Tian et al., 2023), results in endothelial dysfunction, oxidative 
stress that increases mitochondria dysfunction in the early stage of CKD 
(Al Khodor and Shatat, 2017)(Harlacher et al., 2022). Shang et al. 
studied the composition of gut dysbiosis pattern of diabetic kidney 
disease patients in a mouse model. They found 35 enriched gut genera 
specific to diabetic kidney disease (DKD) were from the phyla Proteo-
bacteria, Actinobacteriota, Synergistota, Euryarchaeota, Patescibacteria, 
Verrucomicorbiota, and Cyanobacteria in DKD (Shang et al., 2022). In 
individuals with DKD and diabetes mellitus, a different study found an 
enhanced composition of Fusobacteria, which is correlated negatively 
with elevated blood glucose and appears positively associated with 
epidermal growth factor receptor (EGFR) with the Verrucomicrobiota 
species (Tao et al., 2019). Thus, determining the gut microbiome-based 
target for inflammation-mediated organ failure holds great promise for 
showing the advancement of the kidney injury in diabetic individuals. 

It is believed that the gut microbes of a healthy individual maintain 
homeostasis by interacting with distant organs via metabolites obtained 
through fermentation of the substrate from the host diet (Zheng et al., 
2020). Despite this scenario, understanding how inflammation drives 
the progression of DCKD is attainable through leaky gut formation in 
two ways: first, development of DCKD alters gut microbes that influence 
uremic toxin accumulation; second, accumulation of protein-bound 
uremic toxins obtained through microbial metabolism of aromatic 
amino acids from host diet (Wojtaszek et al., 2021). A study by Pavan 
et al. identified gut microbial changes caused by CKD perpertuate, the 
accumulation of uremic toxic metabolites like p-cresol sulfate, indoxyl 
sulfate in serum/plasma, elevated systemic inflammation intensified the 
kidney disease (Pavan, 2016). Conversely, consumption of short-chain 
fatty acid (SCFA) metabolites (acetate, propionate and butyrate) pro-
duced by beneficial gut microbes, reduced kidney damage by protecting 
the proximal tubular cells in renal transplanted patients (Huang et al., 
2012). Acetate, a type of SCFA metabolite treatment in ische-
mia–reperfusion (I/R) kidney-injured mice model, lowered inflamma-
tion, reactive oxygen species, immune infiltration and increased 
epithelial cell proliferation in damaged kidneys (Ramezani et al., 2016). 
Furthermore, in children with chronic kidney disease, plasma-acetate 
appeared to reduce hypertension (Lu et al., 2021). Another study by 
Fabian et al. suggest diet supplements with propionate-SCFA to ESRD 
patients impede systemic elevation by expanding peripheral regulatory 
T-cells (Meyer et al., 2020). Dietary precursor of tryptophan, 
trimethylamine-N oxide (TMAO), a protein bound uremic toxin metab-
olite influence the intestinal barrier integrity damage, play a role in 
insulin resistance and DKD development (Lv et al., 2022). Tryptophan 
metabolism by intestinal bacteria such as Enterobacteriaceae results in 
the production of indoxyl sulfate, which damages kidneys by activating 

the aryl hydrocarbon receptor (AhR)(Hui et al., 2023). Conversely, 
Lactobacillius sp. metabolize tryptophan to indole derivatives like indole 
3 lactic acid and inhibit the AhR pathway, which reduces leaky gut in 
diabetic rat model (Miao et al., 2024). 

However, all of the validated research describes the composition of 
gut microorganisms, related metabolites, and the effects of inflamma-
tory response due to gut dysbiosis associated with diabetic chronic 
kidney disease and none describes about the pathway mechanistic ac-
tion of gut microbes and metabolite against disease progression. On 
further, the mechanism of gut microbiota in mediating inflammation in 
kidney organs and its significant through metabolite accumulation is 
still complex and need to be explored. Despite this, we hypothesised that 
studying gut metabolites with renal protective properties could be a 
promising target to combat inflammation-mediated chronic kidney 
disease (CKD) progression in diabetics. Our research employs the 
network pharmacology and molecular docking approach that focuses on 
identifying the gut microbiome-metabolite(s)-substrate-sample source 
network architecture, a key signaling pathway that targets the DCKD 
progression would bring a base platform for future research. 

2. Methodology 

Several web-based database like Swiss target prediction (STP), 
Similarity ensemble approach (SEA), GutmGene were used to identify 
the targets of gut microbiota-derived metabolites. Disease-specific tar-
gets related to diabetic chronic kidney disease (DCKD) were retrieved 
from GeneCards, DisGenet, OMiM database by using the key words “ 
Type2 diabetes mellitus”, “Chronic kidney disease”, “Diabetic chronic 
kidney disease”. In addition, the National Centre for Biotechnology In-
formation (NCBI) database was also searched for disease targets based 
on the category “Homosapiens”. Thirdly, genes overlapping between 
disease-specific targets and gut microbiome-derived metabolite key 
targets were identified. These genes then interacted with host genes 
specific to the microbiome and were deemed as final targets. Gene 
ontology and enrichment analysis, gene-gene interaction, gene-disease 
association, and HMMSS network analysis were performed using final 
key targets to determine the pathways and biological and molecular 
mechanisms. Finally, molecular docking was performed to identify the 
gut microbiota-derived metabolites against DCKD. 

2.1. Targets collection 

2.1.1. Collection of gut microbial metabolites and its potential targets 
Human-specific gutmicrobiota and its metabolites were collected 

from the gutMGene v1.0 database (https://bio-annotation.cn/ 
gutmgene/)(Cheng et al., 2022). The canonical SMILES of each metab-
olite were retrieved from PubChem database (https://pubchem.ncbi. 
nlm.nih.gov/) and identified through Swiss Target Prediction (STP) 
(https://www.swisstargetprediction.ch/)(Daina et al., 2019) and Simi-
larity Ensemble Approach (SEA) (https://sea.bkslab.org/) (Wang et al., 
2016). The overlapping potential metabolite gene targets between SEA 
and STP (SEA Vs. STP) were identifed using InteractiVenn (https://www 
.interactivenn.net/)(Heberle et al., 2015) web tool. 

2.1.2. Collection of diabetic chronic kidney disease (DCKD) targets 
Human disease-specific databases such as DisGeNET (v7.0)(Piñero 

et al., 2015), GeneCard (Safran et al., 2022), OMIM (Amberger et al., 
2015), and NCBI (Geer et al., 2009) were used to screen the disease 
targets of diabetic chronic kidney disease. The InteractiVenn web tool 
was utilized to find cross-referencing disease targets by combining the 
targets from the four databases and SEA-STP targets (SEA-STP Vs. Dis-
ease targets). 

2.1.3. Collection of gut microbe targets against diabetic chronic kidney 
disease 

About 224 gut microbial genes from 1500 microbial species related 
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to humans were retrieved from the gutmGene online repository (Cheng 
et al., 2022). The targeted genes were identified by intersecting the 
cross- referencing and gut microbial targets (SEA-STP − Disease targets 
Vs. gut genes) to find the gut microbe-based therapeutic target for 
treating diabetic chronic kidney disease. Further, the final targets were 
used for downstream computational analysis. The wholesome collection 
and the targets screened are represented in (Supplementary sheet 1). 

2.2. Protein-Protein interaction (PPI) network analysis 

We attempted PPI analysis on the final targets to predict specific 
insights and interactions between genes-proteins and each gene linked 
to DCKD. We imported the final 27 targets into the STRING 12.0 online 
tool (https://string-db.org/) (Szklarczyk et al., 2021). By choosing 
‘Homosapiens 9606′ as an organism with a medium confidence 
threshold score as > 0.400. We obtained strong PPI network interaction 
and the output of the string was visualised using cytoscape 3.10.0 
(Otasek et al., 2019). We collected the top 15 hub targets from Cytoscape 
to find the molecular protein–protein network interactions using Net-
workAnalyst 3.0(Zhou et al., 2019) a webtool based on STRING Inter-
actome as the reference database. The target with higher degree scores 
represent the most valuable protein − coding target against DCKD. 
Further, we evaluated the hub targets with three different PPI in-
teractions: i) Host/microbiome PPI interaction to check the microbial 
hub target’s interaction with the host proteins using Network Analyst 
3.0 with parameter set, ‘microbiome’ in species and microbiolink 
(Domain-Domain) ii) physical interaction and co-expression analysis of 
hub targets are done using GeneMANIA software (Franz et al., 2018) to 
identify the inter-relational and functional analysis of hub targets and 
iii) tissue-specific PPI interaction of hub targets to find the hub targets 
interaction specific to tissue (whole blood) concerning Differential Net 
database in Network Analyst 3.0. 

2.3. Functional similarity and pathway enrichment evaluation 

Computational gene ontology (CGO) analysis or functional similarity 
analysis study is performed for the hub target attributes to define the 
biological and molecular functional mechanism of genes inside the host 
cell. For gene ontology analysis, the hub gene targets were submitted to 
ShinyGo 0.77 (https://bioinformatics.sdstate.edu/go/)(Ge et al., 2020), 
a graphical web tool used to find the gene ontology features differenti-
ating the hub targets from other set of background gene targets. We 
customized the setting parameters to match species as ‘homosapiens’ 
and we kept a false discovery rate (FDR < 0.05) to determine the hier-
archial clustering of gene type, chromosomal position, percentage of GC 
content and transcript length between gene targets (Supplementary 
sheet 2). Also, the study of gene functional features, biological and 
molecular way of protein interaction CGO, was performed for final 
targets with significant p value < 0.05. Secondly, gene enrichment and 
pathway assement of hub targets are done using DAVID (Database for 
Annotation, Visualization and Integrated Discovery) v6.8 web tool 
(https://david.ncifcrf.gov/)(Sherman et al., 2022) concerning the KEGG 
(Kyto Encylcopedia of Genes and Genomes) database. This study is done 
to find the relative abundance of hub targets in specific biological 
pathways aggravating DCKD conditions. DAVID tool is used for pathway 
enrichment analysis of any set of gene lists. We imported the hub targets 
in the DAVID tool, and the output (.Tsv) file from DAVID was imported 
into the science and research plot (SR) tool (https://www.bioin 
formatics.com.cn/en), a statistical tool for bioinformatics, with 
manual alignment, the data is uploaded and based on − log(10) fold 
enrichment, gene counts and false discovery rate < 0.05, the blubble 
plot graph is plotted and visualised. 

2.4. Gene-disease association prediction 

Predicting gene-disease associations enables us to identify genes that 

change biological processes linked to disease conditions. We conducted 
a meta-analysis of gene-disease association prediction for the hub targets 
concerning the DisGenet database specific to DCKD using the network 
analyst (Zhou et al., 2019) web application tool. The target genes of 
interest are mapped to the disease-specific to the kidney system. The 
degree of disease is calculated for each hub targets with nodes and 
edges. Nodes represent hub targets and diseases; edges represents the 
degree of interaction with the diseases. The higher the interaction, the 
higher the edges, and vice versa. 

2.5. Hubgenes-Microbes-Metabolite-Substrate-Sample source (HMMSS) 
network analysis 

The degree of interaction of target proteins of an enriched key sig-
nalling pathway in DCKD interacts with gut microbes, substrate, key 
microbial metabolites derived from the substrate, and richness of me-
tabolites in fecal, serum, blood, intestinal epithelial cells and the colonic 
region was obtained from gutMgene (Cheng et al., 2022) using HMMSS 
network interaction architecture to identify the potential metabolite 
based theraupetic target against DCKD; and identified the degree of 
interaction by constructing HMMSS network architecture. The target 
proteins obtained from the key signalling pathway are called hubtarget. 
The degree of ineraction between hub target-substrate, hub target- 
metabolite, metabolite-sample source, hub target-microbes collected 
manually in (.xls) file format and imported into Cytoscape 3.10.0 
(Otasek et al., 2019) tool. The hubtarget is the source, and metabolite, 
microbes, substrate and sample source are nodes. The hub target is 
defined as green color node, the substrate in violet, microbes in skyblue, 
metabolites in yellow and sample richness in red colour. The interaction 
of edges is represented in a dotted blue color. The illustrated network 
architecture was constructed based on interaction degree score using 
Cytoscape 3.10.0. 

2.6. Drug-likeness and toxicology evaluation of gut microbial derived 
metabolites 

We screened 203 metabolites from gutmGene, including metabolites 
screened from the HMMSS network for drug-likeness and toxicology 
evaluation. Insilico evaluation of physiochemical properties of drug- 
likeness of each metabolites done using SwissADME (https://www. 
swissadme.ch/), based on the following criteria: Topological polar sur-
face area < 140A02; molecular weight(>180–400 kD); bioavailability 
score (0.55–0.85 or 30 %); druglikeness 0.48; satisfying five Lipinski’s 
rule (Supplementary sheet 3). 

2.7. Molecular docking mechanism 

Molecular docking was used to predict the pharmacology network 
and molecular complex interaction between gut metabolites and target 
genes to treat DCKD. The docking method is described stepwise: Step1: 
The 3D structure of screened target genes was retrived using the RCSB- 
PDB database (Burley et al., 2023). The protein surface features of 
screened targets were quanitified based on active pocket sites, delinea-
tion of atoms, and concave surface regions using the CASTp web tool 
(Tian et al., 2018). Step 2: The 2D structure of the ligand, microbiome- 
derived metabolite molecules was downloaded as (.Sdf) format from 
PubChem and converted to (.Pdb) file format using molegro molecular 
viewer software (Bitencourt-Ferreira and de Azevedo, 2019) Step3: The 
target protein and the ligand molecules were docked to check the high 
affinity binding using Autodock 1.57 software (Seeliger and De Groot, 
2010), by adding polar hydrogen and water molecules removal from the 
target, followed by adding kollman and compute gasteiger charges. Step 
4: The grid box with grid center and dimensions (X,Y,Z) set the docking 
site after the target protein and ligand’s active sites were chosen. The 
grid dimensions used for each target protein are given in (Supplemen-
tary sheet 4). Step 5: To predict the conformation of the ligand and 
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protein molecule, docking was carried out using an algorithm based on 
the Lamarckian genetic model. Using Biovia Discovery Studio visualiser 
software (Jejurikar and Rohane, 2021), three-dimensional (3D) image of 
protein and ligand interaction was studied and visualised. The Ligplot +
V.2.2.8 (Wallace et al., 1995) tool visualizes two-dimensional (2D) 
ligand and protein interactions. The negative affinity binding scores 
determine the conformation. Higher negative scores generally indicate 
more interactive conformation between the protein molecule and the 
ligand. 

2.8. Prediction of ADME and toxicity screening for gut metabolite targets 

Docked metabolites with high binding energy efficiency with target 
protein are selected for toxicity screening. We used ADMETlab2.0, to 
conduct a toxicology analysis for the docked metabolites that might be 
used as a probiotic target to treat DCKD (Dong et al., 2018). Using the 
above-mentioned software, computationally, docked metabolites were 
screened for additional ADMET properties such as intestinal adsorption 
rate, plasma − protein binding, toxicity analysis like Ames test, hepa-
totoxicity test, hERG channel blockers and rate of elimination by the 
kidney system. 

Fig. 1. Collection of common targets: SEA Vs. STP. Venn diagram illustrating the (574) overlapping targets for gut metabolites in STP and SEA.  

Fig. 2. Collection of DCKD targets: GeneCard Vs.NCBI Vs.DisGenet Vs.OmiM. 
Venn diagram illustrating the number of genes shared and distinct among 
DCKD target databases from DISGENET, OMiM, NCBI, and GeneCard. 
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3. Results 

3.1. Collection of gut microbial metabolites and its potential targets 

To find the renal sensing property of gut- derived metabolites against 
diabetic CKD, we collected a total of (205) human gut microbiome 
derived metabolites from the gutMgene database, of which (1304) tar-
gets were obtained from Swiss Target Prediction (STP) database, and 
(1470) targets from Similarity Ensemble Approach (SEA) (Fig. 1). We 
obtained (574) common potential targets against DCKD from the 
overlap of SEA and STP targets. The details are illustrated in (Supple-
mentary sheet 1). 

3.2. Collection of diabetic chronic kidney disease (DCKD) targets 

For the disease targets specific to diabetic chronic kidney disease 
conditions, we obtained (2865) genes from four different human gene 
databases such as NCBI, OMiM, Genecards, and DisGenet (Fig. 2). We 
finalised (203) intersecting targets between SEA − STP targets and 
DCKD targets (SEA-STP Vs DCKD) (Fig. 3). 

3.3. Collection of gut microbe derived metabolite targets against DCKD 

We collected the metabolite-targeting gut genes of about (222) 
genes from the GutmGene database and found the final targets by 
intersecting with (203) SEA-STP and DCKD core targets. We finalised 
(27) targets as a final targets of gut microbiome-derived metabolite 
against DCKD (Fig. 4) and used for the computational analysis. 

3.4. Protein-Protein interaction (PPI) network of gut microbial gene 
targets and DCKD 

The final 27 targets were added to the STRING tool to identify the 
direct and indirect interaction of target genes and proteins with a min-
imum confidence threshold of 0.400. The STRING output is visualised in 
Cytoscape 3.7.1 (Fig. 5A). 

Based on the degree ranking score method, the top 15 genes called 
hub targets were identified using Cytoscape. The ranking scores for each 
target is given in (Supplementary Table 1). The list of 15 hub targets are 
HDAC1, AKT1, EGFR, JUN, NF-ΚB1, RELA, GSK3B, PPARG, CYP1A1, 
CXCL8, NFE2L2, IL2, PTGS2, HMOX1, IL6. Further these hub targets 
(15) were added to the Network Analyst web server to identify the 
generic protein–protein interaction network invovled in the onset and 
progression of DCKD. Based on STRING interactome as a reference 
database, we identified 13 targets that formed a relatively large network 

Fig. 3. Collection of coretargets: DCKD targets Vs SEA-STP targets. Venn dia-
gram showing the amount of genes that SEA-STP targets and DCKD targets have 
in common and different from each other. Both had 203 common targets and it 
is represented as core targets. 

Fig. 4. Final targets of gut microbiome metabolite Vs. DCKD targets. Venn diagram representing the core targets (203) in pink colour and (222) gutMgene targets in 
greeen colur and intersection represent final targets (27) of microbes metabolite targeting host targets. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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with 852 nodes, 1181 edges, and 14 seeds (final targets or genes of in-
terest). Network analyst calculate the highly significant interaction 
based on the seed size. The huge edges circle represents higher gene 
interaction, and the small ones represents less interaction against DCKD 
(Fig. 5B). The network result shows HDAC1 (Histone Deacetylase 
Enzyme 1) has a higher significant level of interaction with a degree 
score of 237, followed by AKT1 (AKT serine/theronine kinase 1) (219), 
EGFR (Epidermal growth factor receptor) (176), JUN (Jun proto- 
oncogene)(124), NF-KB1 (Nuclear factor- kappa B subunit 1), (115), 
RELA (Transcription Factor p65, part of the NF-kB complex) (100). Two 
seeds, PTGS2 (Prostoglandin- endoperoxide synthase 2) and HMOX1 
were found to not correlate with other targets. Highly interactive 13 
genes based on seed size are represented in (Table1). 

3.5. Physical interaction and coexpression analysis 

Identified hub targets from PPI interaction network analysis was 
added to GeneMANIA, an online bioinformatics tool to find gene’s 
physical interaction and co-expression. We found hub targets accounted 
for 29.74 % of physical interactions, 36.27 % of coexprression, 10.39 % 
of co-localization, 4.83 % of genetic interactions, pathway analysis of 
4.70 % and 1.11 % of shared protein domains in DCKD conditions. The 
interaction image developed from GeneMANIA is represented in 
(Fig. 5C). 

Fig. 5. Protein-Protein network interaction analysis of targets. (A). Protein-Protein network interaction of final targets (27) using STRING. PPI interactions of 27 
final targets obtained from STRING database. The orange node circles represent the genes and green dotted lines represents the degree of interaction. All 27 genes 
found to have interaction with one another. (B). Protein-protein network interaction of top (15) hub targets using NetworkAnalyst. The PPI of top 15 hub genes is 
shown in the network pattern graph. This network is large with 852 nodes, 1181 edges, and 14 seeds. Nodes in green circles represent hub genes and the red edges 
represent connections between the hub genes. Bigger size of nodes indicate significant gene interaction. (C). Physical interaction and co-expression prediction of 
hubtargets. Physical and coexpression analysis of hub genes using GeneMania tool. Physical interaction is represented in red color lines and co– expression is 
indicated in violet color lines. (D). Tissue-specific (Whole blood) PPI interaction of hub targets. The tripartite graph displays the interaction of top hub genes in whole 
blood. The level of interaction is shown with blue lines and genes are represented by purple circles. The genes EGFR, NFkB1, and HDAC1 have higher expression 
in blood. 
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3.6. Tissue-specific (Whole blood) PPI analysis 

A relationship between toxic metabolites derived from the gut and 
kidney axis is achieved through the circulatory system. Tissue-specific 
PPI interaction is performed to check whether the hub targets are 
assigned to interact or expressed throughout the blood. The study was 
performed using the Network Analyst server using DifferentialNet 
database as a reference. The hub targets gene interaction networks form 
1461 nodes connected with 1771 edges. The result shows the interaction 
of EGFR in whole blood is higher with degree score (873), followed by 
HDAC1 (227). Other genes, RELA (150), AKT1 (107), NF-ΚB1(101) 
and JUN (79), form a stable interaction but to a lesser extent than those 
previously stated targets across whole blood. The tissue-specific PPI 
interactions of hub targets are represented in the linear Bi/Tripartite 
graphical layout. The bigger circle represents a huge interaction and 
viceversa (Fig. 5D). 

3.7. Gene ontology (GO) and pathway enrichment analysis 

Functional annotation of 15 hub targets was identifed using ShinyGo 
0.77 online server. Gene ontology(GO) classifications in terms of pro-
cesses like biological process (BP), molecular functions (MF) were ana-
lysed. Hub targets with FDR < 0.05 based on nominal p-values are 
considered enriched. The hierarchial clustering tree chart was plotted to 
represent the (GO) classification of hub genes enriched. The bigger dots 
in the tree represents more significant p-values. The tree results for the 
top 20 pathways of GO: the biological process of hub targets in our rapid 
response to abiotic stimulus, mechanical stimulus (GO: 0009612), 
molecule of bacterial origin (GO:0071219), lipopolysaccharides (GO: 

0032496), reactive oxygen species(GO:0034614) and positive regula-
tion of transcription by RNA polymerase II (GO:0045944) (Supple-
mentary Fig. 1A). The GO: molecular process shows the involvement of 
hub targets in transcription factor binding (GO:0008134), NF-KappaB 
binding(GO:0051059), DNA-binding transcription activator activity, 
RNA polymerase II-specific (GO: 0051059), chromatin (GO: 0003682) 
and actinin binding (GO: 0042805) (Supplementary Fig. 1B). The 
functional annotations of gene ontology predicted the hub genes NF- 
ΚB1, EGFR, JUN, RELA and AKT1 which predominately participate in 
the above- mentioned biological process and molecular functions related 
to DCKD conditions. The functional annotation of gene ontology analysis 
of hub genes is given in (Supplementary Table 2). Secondly, KEGG 
pathway enrichment evaluation is done for 15 hub targets using DAVID 
to determine the key signalling pathways against DCKD (Fischer exact p- 
value(EASE score < 0.05; FDR < 0.05; threshold count-2). Using the SR 
plot tool, a bubbleplot graph of the key signaling pathways was drawn 
from the DAVID output (Fig. 6). DAVID results predicted the MAPK 
(mitogen activated protein kinase) signalling pathway with FDR 0.01 by 
the target genes NF-ΚB1, EGFR, JUN, RELA and AKT1 might be found to 
regulate the pathophysiology of DCKD (Supplementary Table 3). 

3.8. Gene-disease association network prediction 

Gene-disease association network analysis was conducted to predict 
the relationship between the hub genes (NF-ΚB1, EGFR, JUN, RELA, 
AKT1) of a key signaling pathway that has been associated with the 
onset and progression of chronic kidney disease in diabetics. This study 
is conducted on a network analyst web server concerning the DisGenet 
database specific to human disease. We obtained a subnetwork as an 

Fig. 5. (continued). 
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output with three seeds (JUN, NF-ΚB1 and EGFR); the big sub- network 
is generally termed “continents”, they have huge interaction of genes 
associated with disease conditions, and the small sub-network is 
generally termed “Islands” have lesser interaction with disease. Three 
seeds formed a relatively large network with 123 nodes and 134 edges. 
Of the three seeds, we found both NF-ΚB1 and EGFR hub proteins are 
highly expressed in type2 diabetes mellitus conditions. Independently, 
the NF-ΚB1 gene is expressed in kidney-related diseases like chronic 
kidney failure, hyperoxaluria and hypogammaglobulinemia, where the 
condition leads to decreased antibody levels in the blood. Specific 
expression of EGFR has been linked with acute kidney injury, insulin 
resistance, increased blood pressure,cardiomyopathy dilation and 
decreased body weight. Also, the JUN gene is independently expressed 
in the kidney’s reperfusion injury. Thus, from our study, we identified 
that the hub genes NF-ΚB1 and EGFR get highly expressed in high blood 
glucose level which might be responsible for CKD development in the 
human host. The gene-disease association network in concentric circle 
layout is represented in (Fig. 7). 

3.9. Hubgenes-microbes-metabolite-substrate-samplesource (HMMSS) 
network analysis 

The three hub targets of the key signaling pathway (NF-ΚB1, EGFR, 
and JUN) that were screened in DCKD-related gene-disease association 
network analysis are used to assess the degree of interaction with 14 gut 
microbes, three substrates (tryptophan and two unknown), seven me-
tabolites, and 6 sample source from gutmGene to construct HMMSS 
network. Based on the HMMSS network, we found that the expression of 
NF-ΚB1 activation induces the activation of EGFR, JUN and AKT1 target 
genes in DCKD condition during gut dysbiosis. The metabolite 3-indole 

propionic acid, which is produced from the fermentation of unknown 
and tryptophan substrate by hindgut microbes like Faecalibacterium 
prausnitzii A2-165, Bifidobacterium adolescentis, Fecalibacterium praus-
nitzi, Bacteroides distonis, and Bacteroides vulgatus, can inhibit the acti-
vation of NF-ΚB1 in gut region epithelial cells, as demonstrated by the 
network architecture in (Fig. 8). Also, the metabolite is found in all types 
of sample sources like feces, blood and colonic region which are linked 
to regulating the intestinal homeostasis in diabetics individuals. The 
other strain, Streptococcus salivarius, Streptococcus salivarius K12 strain, 
has a dual effect with NFKB-1 expression against DCKD development. 
The hub protein EGFR expression was found to interact with uremic 
toxin metabolites like indoxyl sulfate and p-cresol sulfate, which are 
responsible for the development of CKD in the type2 diabetes 
population. 

The Lachnospiraceae metabolize unknown substrate and produce 
phenylacetylglutamine which can suppress the activation of EGFR and 
the metabolite found in feces and urine. Similarly, strains like Fusobac-
teria, L.acidophilus ATCC 4357, and Firmicutes found in the colonic region 
metabolize unknown substrates and produce butyrate metabolite which 
tends to inhibit the action of JUN. The increased composition of 
Escherichia coli metabolizes tryptophan to produce indole and vanco-
mycin to induce the expression of hub protein AKT1. It is found that all 
the hub targets are highly induced by the action of NF-ΚB1 with degree 
score (11) and may prominently suppresed by the Firmicutes phylum, 
Faecalibacterium prausnitzii A2-165 with higher degree of interaction 
(33) by metabolites butyrate and 3-indole propionic acid and helps to 
maintain barrier integrity in DCKD condition (Table 2). 

Fig. 5. (continued). 
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3.10. Screening for druglikeness of metabolites produced from gut 
microbes 

All 203 gutmGene metabolites were screened using the SwissADME 

webserver for physiochemical characteristics, druglikeness, and ADME 
properties. About 30 metabolites out of the 203, including 3-Indole 
propionic acid were screened via HMMSS network analysis. Docking is 
not performed for other metabolites that interact in the network, such as 
indoxyl sulfate and p-cresolsulfate, which are uremic toxins that stim-
ulate the expression of hub target proteins in DCKD conditions. Due to its 
low molecular weight, drug-likeness, butyrate and other metabolites, 
Indole is similarly not considered for docking analysis. Therefore 3- 
Indole propionic acid and 29 metabolites were checked for physi-
ochemical properties in SwissADME. Each metabolite met the Lipinski 
rule of violation criteria, and each metabolite’s screen details are given 
in (Supplementary sheet 3). The screened metabolites underwent 
docking tests against JUN, EGFR, and NF-ΚB1 target proteins to verify 
the binding conformation of the metabolite-protein complex used as a 
potential therapeutic target against DCKD. 

3.11. Molecular docking mechanism 

Three target proteins—NF-ΚB1, EGFR, JUN— associated with MAPK 
key signalling pathway were subjected to a molecular docking test to 
determine their effectiveness in binding affinity with 3-Indole propionic 
acid (3IPA) which was chosen based on degree of interaction via 
HMMSS network architecture. Negative score values determine the ef-
ficacy and stability of binding affinity between protein-metabolite 
complexes. Higher negative scores form the most stable complex. For 
the three target conformers, EGFR − 3IPA (PDB-4uv7), JUN-3IPA (PDB- 
4 h39), and NF-ΚB1-3IPA (PDB-8TKM), we ran a molecular docking test 
using Autodock tool. EGFR showed the most stable complex among the 
three targets, measuring − 7.4 kcal/mol. NF-ΚB1 and JUN followed 
closely behind with − 5.91 kcal/mol and − 5.38 kcal/mol, respectively 
(Table 3). 

Although NF-ΚB1 and JUN binding affinity appear llower than the 

Fig. 5. (continued). 

Table 1 
PPI network analysis of hub targets based on topological ranking method.  

S. 
No 

Gene 
Id 

Label Gene Abbrevation Degree Betweenness 

1. 3065 HDAC1 Histone Deacetylase 
Enzyme 1 

237 150290.3 

2. 207 AKT1 AKT serine/theronine 
kinase 1 

219 148453.7 

3. 1956 EGFR Epidermal growth factor 
receptor 

176 103,840 

4. 3725 JUN Jun proto-oncogene 124 79500.1 
5. 4790 NF-KB1 Nuclear factor kappa 

Bsubunit 1 
115 67366.55 

6. 5970 RELA Transcription Factor 
p65, part of the NF-kB 
complex 

100 49028.06 

7. 2932 GSK3B Glycogen synthase 
kinase 3 beta 

88 50282.41 

8. 5468 PPARG peroxisome proliferator 
activated receptor 
gamma 

52 24515.21 

9. 1543 CYP1A1 Cytochrome p450 family 
1 subfamily A member 1 

36 26742.57 

10. 3576 CXCL8 C-X-C motif chemokine 
ligand 8 

16 6854.26 

11. 4780 NFE2L2 NFE2 like bZI 
transcription factor 2 

15 6021.58 

12. 3558 IL2 Interleukin − 2 10 4002.67 
13. 5743 PTGS2 Prostoglandin- 

endoperoxide synthase 2 
3 941  
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EGFR target, both targets inevitably form a stable complex affinity 
binding because energy binding efficacy is greater than − 4 kcal/mol. 
(Fig. 9). Furthermore, we are interested in identifying additional 
possible targets of metabolites produced by gut microbes. Consequently, 
screening them for drug-likeness characteristics, we docked 29 metab-
olites with three target proteins. Interestingly, the protein NF-ΚB1 forms 
a complex with 11 methoxycuruvularin, exhibiting a binding energy of 
− 6.84 kcal/mol. JUN-Icaritin with a binding energy of − 10.06 kcal/ 
mol, while EGFR forms a stable complex with naringenin at − 9.13 kcal/ 
mol. The docked results were given in (Supplementary excel sheet 4). 

3.12. Prediction of ADME and toxicity screening of gut metabolite targets 

ADMET screening for the four stabled complex metabolites—3- 
indole propionic acid, 11-methoxycuruvularin, icaritin, and nar-
ingenin—reported the following results. The adsorption potential of 
these metabolites in the gastrointestinal tract was predicted; the findings 
indicated that all four of the metabolites showed high permeability rates 
(Supplementary Table 4). Plasma-protein binding (PPB) was predicted 
to assess the binding potential of the metabolites in blood. The results 
show that the metabolites 3-indole propionic acid and 11-methoxycuru-
vularin have higher percentages of binding—88.8 % and 65.8 %, 
whereas icaritin and naringenin show less binding with > 90 % 
respectively. According to the toxicity analysis results, 3-indole propi-
onic acid and 11-methoxy curuvularin tested negative for all tests, while 
icaritin and naringenin failed the Ames toxicity test for mutagenicity. 

Thus, computational prediction of toxicity screening of gut metab-
olite shows the metabolite 3- Indole propionic acid attributed by Fae-
calibacterium prausnitizi AT 165 inhibits the target protein NF-ΚB1, 

primarily activated target gene by lipopolysaccharide injury in DCKD 
patients. Interestingly, this metabolite was also found to subside the 
expression of EGFR and JUN which is associated with DCKD develop-
ment via gut dysbiosis. The other possible metabolite, 11- methox-
ycuruvularin attributed by Bacillus sp. 46, has the potential to inhibit 
NF-ΚB1 independently but not effectively with JUN and EGFR. This 
might still work to reduce the immunomodulatory response action of 
EGFR and JUN because it targets the primary activator NF-ΚB1, which 
triggers EGFR and JUN. However, to use these microbes or metabolites 
as a probiotic target, either alone or combined formulations, clinical 
validation is necessary to treat DCKD. 

4. Discussion 

The release of metabolites by gut microbes through fermentation of 
the host substrate source is attributed to gut eubiosis (balanced micro-
bial community inside the gut region) or dysbiosis that could inhibit or 
stimulate immuno-inflammation inside the host. Recent research breif 
about the gut microbes and their metabolites linked with gut kidney 
cross-talks in the progression of renal disease (Gong et al., 2019) (Sar-
anya and Viswanathan, 2023) developement. However, active renal 
sensing bacterial metabolites, substrate source, microbes, host genes 
response and its interplay mechanism in the context of diabetic chronic 
kidney disease is not explored much. Utilizing a network pharmacology 
and molecular docking approach, we planned to initiate the in-
vestigations on the scenario above to find a probiotic producing 
metabolite targeting the key signalling pathway against DCKD. For this 
study, we collected metabolites of intestinal gut flora, a list of microbes 
present in the host gut, and a list of host-targeting genes by microbes 

Fig. 6. Pathway enrichment analysis of hub targets against DCKD. The bubble plot graph shows the important signaling pathway of hub genes.  
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from a comprehensive database that included information on the human 
gut microbiome from 400 research publications (Cheng et al., 2022). 

The molecular protein–protein interaction (PPI) of the top 15 hub 
genes using network analysis, revealed HDAC1, AKT1, EGFR, JUN, NF- 
KB1, and RELA are the most important key targets linked to the path-
ophysiology of DCKD. A study on epidermal growth factor receptor 
(EGFR) reported to undergo phosphorylation in high glucose conditions, 
resulting in accelerated kidney disease and enlargement of kidney size in 
diabetic animal models (Saad et al., 2005)(Advani et al., 2011). The 
expression of transcription factor NF-KB1 and its proteins like RELA 
highly involve in insulin resistance, vascular cell damage and renal 
inflammation (Guijarro and Egido, 2001). In addition, AKT1 signalling 
is also associated with mitochondrial dysfunction in kidney damage (Lan 
and Du, 2015). This illustrates the involvement of these hub targets and 
their influence on the progression of diabetic kidney disease. Tissue 
specific protein–protein interaction (PPI) network analysis of hub tar-
gets across whole blood confirmed the higher interaction of tissue- 
specific proteins were found between NF-KB1, EGFR, RELA, HDAC1, 
GSK3B and JUN. In addition, hub genes physical interaction and co 
expression analysis prediction are defined, to identify the main func-
tional features of hub genes in the treatment of DCKD. 

The development of chronic kidney disease is also significantly 
influenced by metabolic process like nutrient factors, aging (de Góes 
et al., 2023), hypertension (Weldegiorgis and Woodward, 2020) and 
hyperglycemia (Triozzi et al., 2021); according to the results of gene 
ontology analysis of hub targets from our study we predicted these 
targets were also associated with alteration based on nutrient meta-
bolism, abiotic stimulus, reactive oxygen species, additionally responds 
to external stimuli like lipopolysaccharides or response to bacterial 
origin. According to one study, NFKB1 directly correlated with diet- 
induced insulin resistance, activates reactive oxygen species levels, im-
pacts brain endothelial dysfunction (Arcambal et al., 2019), and tubular 
epithelial cellular damage in kidney tissue. Subsequently, oxidative 

stress brought on by reactive oxygen species due to high glucose level 
leads to the onset of renal fibrosis, a main pathophysiology feature of 
CKD, is marked by activation of NFKB inflammatory signalling pathway 
(Ren et al., 2023). This phenomena act as a vital factor in triggering the 
cascade action of TLR4, a receptor for lipopolysaccharides from bacte-
ria, which mediate tubulointerstitial inflammation in DCKD patients. 
Also, the activation of NFKB modifies proteins and peptides, the binding 
of chemokine proteins to their receptors (monocyte chemoattractant 
protein − 1–chemokine receptor 2; MCP1-CCR2 complex), aid the 
development of renal fibrosis (He et al., 2023) and substanstial action of 
inflammation induce the expression of cyclooxygenase (COX) 2 gene, 
which exacerbates renal fibrosis to end stage renal disease (Zhang and 
Li, 2009). Thus there is a clear evidence that the action of inflammation 
inudced by NFKB proliferate the renal fibrosis which affects the function 
of kidneys. Therefore, it is abundantly evident that the sequential action 
of inflammation promotes renal fibrosis, thereby impairing kidney 
function (Fig. 10). 

From the enrichment bubble plot analysis for the hub targets we 
found the key enriched pathway against DCKD due to the inflammatory 
action of external stimuli. Based on a false discovery rate < 0.05, the 
lowest rich factor, we identified the key targets were associated with 
MAPK: mitogen- activated protein kinase pathway that regulates the 
gene expression by translational modification of proteins resulting to 
cause adverse effects in kidney tissues like renal fibrosis, inflammation, 
oxidative stress and glycosylation of end products accumulation related 
to the pathogenesis of DCKD (Barletto Sousa Barros et al., 2019). Gene- 
disease association network analysis is further done for the key targets 
associated with MAPK signalling pathway against DCKD. The resulting 
network obtained based on degree ranking method, confirmed three 
targets (NF-KB1, EGFR, JUN) are highly interactive in developing kid-
ney disease. Of the three, NF-KB1 and EGFR are directly linked with 
hyperglycemic-induced renal impairments and associated with disease 
conditions like diabetic mellitus (Coto et al., 2018)(Ledeganck et al., 

Fig. 7. Gene- Disease association of significant pathway oriented hub targets specific to DCKD condition. A network of genes linked to kidney disease is connected to 
three central genes. Diseases are represented by colored boxes, with kidney-specific diseases indicated by blue colons. Genes are depicted as green circles, and their 
interactions are shown by sky blue lines. In DCKD conditions, the EGFR and NF-KB1 gene targets interact significantly. 
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2021), chronic kidney failure (Sheng et al., 2021)(Harskamp et al., 
2016), acute kidney failure, hyperoxaluria (Wu et al., 2021)(Tozawa 
et al., 2008) etc. development due to lipopolysaccharides or bacterial 
induced injury associated with leaky gut. Thus, from enrichment and 
gene-disease association network analysis, we predicted three targets 
(NF-KB1, EGFR, JUN) and the MAPK signalling pathway might act as 
antagonist and be shown to be a significant targets against DCKD. 

The results of hubgenes-microbes-metabolite-substrate-sample 
source (HMMSS) network architecture of the three hub targets showed 
that the activation of NF-KB1 with degree score 11 found to interact 
strongly with Faecalibacterium prausnitzii A2-165 that involved in 
fermentation of tryptophan and two unknown substrates to produce 3- 
indole propionic acid (IPA) metabolite. This metabolite is found to 

bound with intestinal epithelial cells, CaCo2 cells, and the fecal and 
blood system of the host. IPA has garnered attention due to its potential 
anti inflammatory, anti hyperglycemic and metabolic regulatory prop-
erties in restoring kidney functions (Peron et al., 2022). While 
F. prausnitzii is widely investigated as a butyrate producer (Li et al., 
2022), evidence suggests it produce indole and its derivatives, including 
indole propionic acid (Menni et al., 2019). Studies have linked IPA to 
beneficial effects on gut health and the immune system (Mani and Li, 
2015)(Tuomainen et al., 2018). 

The quantitiy of IPA produced through bacterial metabolism can be 
influenced by the specific group of gut microbes and the diet rich in 
tryptophan. Studies conducted in vitro, demonstrate that IPA directly 
regulate GLUT5, a glucose/fructose membrane transporter that 

Fig. 8. HMMSS network architecture. The HMMSS network architecture visually demonstrates the interplay between hub genes, microorganisms, metabolites, 
sample source, and substrate within the MAPK signaling pathway, with nodes depicted as elliptical circles and the intensity of interaction indicated by blue-colored 
dotted lines, wherein green ellipse circles depict hub genes, red circles represent sample source richness, violet circles symbolize substrate, sky blue represents gut 
microbe data, and yellow signifies microbe-produced metabolites. 
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promotes glucose absorption (Jennis et al., 2018). Invivo Studies in 
diabetic rat models using IPA supplements for two weeks mitigated the 
high glucose-induced oxidative stress, mitochondrial dysfunction, and 
endoplasmic reticulum stress in the diabetic test group. (Gundu et al., 
2022). The gut microbes that have been identified in humans are mostly 
responsible for converting tryptophan into indole derivatives, such as 
indole acetic acid (IAA) and indole propionic acid (IPA). 34 strains 
create the majority of IAA when compared to IPA ____ Bacteroidetes, 
Fusobacteria, Escherichia, Shigella, Staphylococcus, and Klebsiella have 
been reported to produce the most IAA (Kaur et al., 2019). In the event 
of an infection, these gut flora may support pathogenic colonization, 
biofilm association, or spore development. Only three 
strains—Lactobacillus, Bifidobacterium, and Clostridium sp.—participate 
in the IPA enrichment production route. Our study revealed, Fecali-
bacterium prausnitzi A-125, a gram-positive probiotic bacteria that is an 
efficient generator of butyrate, contributes to the IPA production route. 
This pathway has the potential to avoid leaky gut and have anti- 

inflammatory properties against diabetic kidney disease (Fig. 10). 
However, further invitro and invivo research is necessary to fully un-
derstand its mechanism and potential health implications related for 
kidney health. 

Secondly, the network architecture infers that protien-bound uremic 
toxins, such as p-cresol sulfate and indoxyl sulfate, a product of gut 
dysbiosis, are found to have a strong interaction with the epidermal 
growth factor receptor (EGFR) associated with CKD condition. A study 
has been implicated that in CKD, inflammation-induced EGFR-mediated 
NF-KB1 transactivation due to uremic toxins is associated to cause 
glomerular sclerosis and tubular interstitial fibrosis (Rayego-Mateos 
et al., 2018), which leads to end stage renal disease. Thirdly, we found 
upregulation of c-JUN transcription factor involved in the trans-
activation of NF-KB1 and EGFR, which causes reperfusion injury in renal 
proximal tubules causing acute kidney injury (Grynberg et al., 2021). 
Therefore, we conclude HMMSS network results that there is a cyclical 
relationship between JUN and the transcription factor EGFR in high 
glucose conditions that trigger the expression of the immuno- 
inflammatory gene NF-KB1 and speed up the development of chronic 
kidney disease (CKD). 

According to the molecular docking results, 3-indole propionic acid 
exhibited good energy binding efficacy with all three targets—NF-KB1, 
EGFR, and JUN. Thus, our research investigated the possibility of 3 
indole propionic acids produced by F. prausnitizi AT165 would act as a 
probiotic renal protective metabolite that targets NF-KB1, EGFR and 
JUN mediated transactivation of NF-KB1 inhibition via MAPK signalling 
pathway to lessen the severity of CKD in the diabetic population. 

5. Limitations 

There is still much to learn about different diet-oriented metabolites 
and how changes in gut microbiota may impact key regulators in the 
development of diabetic kidney disease (DCKD). These details will help 
to validate further through molecular simulation, invitro and invivo 
study for extensive understandings of metabolites, gut microbes inter-
action and key signalling pathways that may be the cornerstone for 
subsequent investigations. 

6. Conclusion 

In a nut shell, our study examined the microbial-based metabolite 
that aid in promoting intestinal homeostasis and mitigating the effects of 
diabetic chronic kidney disease through network pharmacology 

Table 2 
HMMSS network architecture.  

Type Term Degree of Interaction   

Hub Genes 

NF-KB1 11 
EGFR 4 
JUN 3 
AKT1 1 

Microbiome Faecalibacterium prausnitzii A2-165 33 
Faecalibacterium prausnitzii 30 
Bifidobacterium adolescentis 20 
Bacteroides distasonis 18 
Streptococcus salivarius 18 
Escherichia coli 18 
Streptococcus salivarius JIM8772 14 
Streptococcus salivarius K12 14 
Escherichia coli K-12 12 
Lachnospiraceae 9 
Lactobacillus acidophilus ATCC 4357 6 
Bacteroides vulgatus 6 
Firmicutes 1 
Fusobacteria sp. 1 

Metabolite 3 Indolepropionic acid 3 
Butyrate 2 
Indole 1 
Phenylglutamine 1 
vancomycin 1 
p-cresol sulfate 1 
Indoxylsulfate 1  

Table 3 
Binding efficacy of target protein with gut microbial derived metabolites.  

Target protein- 
metabolite complex 

PDB ID 
of target 
protein 

PubChem ID of 
gut metabolite 

Metabolites 
produced by gut 
microbe ID 

Energy binding 
efficiency in 
(¡Kcal/mol) 

Total no of 
hydrogen 
bond 

H-bond 
interaction 

Steric 
interaction 

Target protein − metabolite complex from HMMSS network against DCKD 
EGFR-3 Indole 

propionic 
acid 

4uv7 3744    

Faecalibacterium 
prausnitzii (853, 
gm0327)  

− 7.4 3 Thr 598, Leu 582, 
Trp 584  

Leu 582, Pro 598  

NF-KB1-3 Indole 
propionic acid 

8TKM 3744   − 5.91 3 Lys 241, Lys 272, 
Asp 239  

His 141, Lys 241  

c-JUN-3 Indole 
propionic acid 

4 h39 3744   − 5.38 2 Gly 280, Cys 283  Leu 340, Ile 342, Gly 280  

Target protein with other possible gut metabolite targets against DCKD 
EGFR- Naringenin 4uv7 439,246  Eubacterium ramulus 

(39490, gm0737)  
− 9.13  2 Trp 584, Pro 598  Cys 596, Thr 601, Pro 

598, Leu 582, Leu 595 
NF-KB1-11 

Methoxycuruvularin 
8TKM 10,381,440 Bacillus sp. 46 

(1266601, gm1132)  
− 6.84  4 Lys 334(A), Ile278 

(A), Phe 298 (A), 
Asp 297(A) 

Gly 296 (A), Phe 298 (A), 
Phe 295 (A)  

JUN-Icaritin 4 h39 5,318,980 Bacterium MRG-PMF-1 
(1477104, gm0861)  

− 10.06  4 Ala 305,Leu 307, 
Ile342, Leu 340  

Ala 305, Leu 307, Ile342, 
Leu 340, Leu 279,Val 
341, Asp 343,Thr 281, 
Leu 307,Phe 309  
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approach. This article provides a computational proof of approach to use 
Fecalibacterium Prausnitzii AT165, a member of the phylum Firmicutes, 
ferments the tryptophan rich diet substrate to produce 3-indole propi-
onic acid as a end product, which has renal sensing or protective 
properties in downregulating the expression of inflammatory genes NF- 
KB1, JUN and eGFR via MAPK/NF-KB signaling pathway, and may be 
used as a better probiotic formulation, to treat DCKD. Comparatively the 
other metabolites 11-methoxycuruvularin produced by Bacillus sp. 46 
targets NFk-B1, naringenin by E. ramulus targets EGFR, Icaritin by 
Bacterium MRG-PMF-1 targets JUN was also found to cascade NF-KB 

activation solely in an individual manner. Thus, these probiotic 
metabolite formulation might have renal protective sensing properties 
that down-regulate the inflammatory genes and maintain the slow 
progression of CKD in diabetic individuals. However, due to the shifting 
occurences of gut microbes and metabolites, this static dynamics cannot 
be identified by computational approach, we need clinical pre validation 
to investigate further to prove either active probiotic consortia or its 
secondary metabolites (3-IPA) have renal protective sensing properties 
to treat CKD in diabetes individuals. 

Moreover, the metabolites used in the investigation were not 

Fig. 9. Molecular docking mechanism of target protein with gut microbial derived metabolite.  
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empirically confirmed by mass spectrometric methods; rather, they were 
obtained from database searches and literature. Therefore, to reduce 
trial-and-error methods, dynamic molecular modeling could be 
employed in the future in tandem with clinical data, based on tryphto-
phan based diet modification on gut microbes and metabolite validation. 
All together, our findings suggest, the metabolites generated by specific 
bacteria with respect to diet substrate have renal protective sensing ef-
fects in mitigating DCKD, although more research is needed to confirm 
this. 
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