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The rapid spread of severe acute respiratory syndrome coronavirus 2 infection across the globe triggered an unprecedented increase 
in research activities that resulted in an astronomical publication output of observational studies. However, most studies failed to 
apply fully the necessary methodological techniques that systematically deal with different biases and confounding, which not only 
limits their scientific merit but may result in harm through misleading information. In this article, we address a few important biases 
that can seriously threaten the validity of observational studies of coronavirus disease 2019 (COVID-19). We focus on treatment 
selection bias due to patients’ preference on goals of care, medical futility and disability bias, survivor bias, competing risks, and the 
misuse of propensity score analysis. We attempt to raise awareness and to help readers assess shortcomings of observational studies 
of interventions in COVID-19.
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The 2 fundamental variables of an analytical study are the 
exposure and the outcome. In observational studies, the fre-
quency of an outcome or exposure is measured and compared 
between groups. This comparison yields relative frequency 
measures and describes the association between the exposure 
and the outcome [1]. Although observational studies comple-
ment randomized controlled trials (RCTs), they are prone to 
certain flaws that can seriously threaten their validity: con-
founding and bias.

Confounding occurs when the observed relationship be-
tween the exposure and the outcome is altered or is accounted 
for by a third variable (the confounder). Confounders fulfill 3 
criteria: (1) they are related to both the exposure and the out-
come; (2) they are distributed unequally between the studied 
groups; and (3) they serve as intermediate step in the causal 
pathway between the exposure and the outcome [2]. Identifying 
and taking into account possible confounders is critical when 

drawing causal inferences from observational studies, especially 
those assessing treatment effects.

Bias is a systematic error in any process at any stage of infer-
ence that produces results or conclusions that differ systemati-
cally from the truth [3]. Numerous types of biases that can creep 
into different stages of clinical research have been recognized 
and catalogued [3]. Some of these are well known and easily 
recognizable. Others are frequently missed.

The rapid spread of severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) infection across the globe and its 
associated huge burden of morbidity and mortality triggered 
an unprecedented increase in research activities. Early observa-
tions of high mortality in patients hospitalized with coronavirus 
disease 2019 (COVID-19) led to the use of a variety of pharma-
cologic treatments based on in vitro studies and/or extrapola-
tion from the effect of treatments on what was considered to 
be the underlying pathophysiology of COVID-19. A result was 
an astronomical output of publications of observational studies 
examining outcomes of treatment in patients with COVID-19. 
Most of these studies failed to use methodological approaches 
that systematically deal with biases that arise when examining 
mortality in severely ill patients and with confounding due to 
treatment selection. This has not only compromised the validity 
of these studies and limited their scientific merit but may have 
resulted in harm through misleading information. For example, 
hydroxychloroquine (HCQ), convalescent plasma, vitamin 
C and D, zinc, azithromycin, and recently ivermectin have all 
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been promoted and used based on observational studies, the 
observed effects of which were not subsequently found in RCTs.

In this article, we address a few important biases that can se-
riously threaten the validity of observational studies of the effect 
on mortality of treatments for COVID-19 and discuss issues re-
lated to the propensity score methods, which have been widely 
used in observational research about treatments for COVID-19 
[1, 4]. We attempt to raise awareness of typical and avoidable 
biases and to help readers assess the direction and magnitude 
of bias in published observational studies of COVID-19 treat-
ments to date.

TREATMENT SELECTION BIAS

Overview

Bias in an epidemiologic study refers to a systematic error that 
leads to an incorrect estimate of the true effect of an exposure 
on an outcome [3]. A major concern in observational studies 
of COVID-19 treatment and mortality outcome is bias that 
arises from selection of treatment of patients based on factors 
that predict outcome. For example, patients who have advanced 
cancer or end-stage comorbid diseases or those with disability 
may not be offered a given treatment (medical futility and dis-
ability bias).

Patients’ Preferences, Medical Futility, and Disability as Factors in 
Treatment Selection

In the early months of the SARS-CoV-2 pandemic and in the 
absence of a standard protocol in a real-world setting outside 
the context of a randomized trial, treatment might be affected 

by whether a patient had a do not resuscitate (DNR) or do not 
ventilate (DNV) advance directive at admission or the patient 
and/or family decided after admission that the patient should 
not be resuscitated and/or ventilated. Moreover, during pan-
demic waves when health care systems are overwhelmed, pa-
tients with disabilities or those whose care has been judged 
as futile are less likely to receive advanced critical care [5–7]. 
These patients are more likely to die because the reason for 
the DNR and/or DNV directive is usually poor health status. 
If these patients are less likely to be treated and are included 
in the comparator group in the analysis, the estimated effect 
of treatment on mortality will be biased in favor of the treat-
ment. For example, in a non–COVID-19 observational study 
of patients admitted to an intensive care unit with sepsis, 
adding DNR status to a multivariable model assessing the as-
sociation between activated protein C and mortality led to an 
important shift in the estimated effect of activated protein C 
on mortality [8].

DNR and DNV orders are a specific category of a larger set 
of statements that are patients’ preferences for life-sustaining 
treatments. Walkey et al [9] have discussed the importance of 
accounting for patient preferences for life-sustaining treatment 
both in observational studies of treatments and in clinical trials.

There is suggestive evidence that patients hospitalized with 
COVID-19 who had preferences to forgo or were not offered 
mechanical ventilation were less likely to be treated with HCQ, 
for example, at least in some settings (Table 1). They are also 
much more likely to die. In these observational studies, the bias 
in the estimated effect of HCQ on mortality because of failure 

Table 1. Comparison of 3 Large Coronavirus Disease 2019 Cohorts With a Focus on “Goal of Care”

Study Data Set

Arshad et al [10] Henry Ford Health System (6 hospitals) in southeast Michigan:  
10 March–2 May 2020

 Variable HCQ Group   
(n = 1985)

Non-HCQ  
(n = 556)

Comment

  ICU admission 26.9% 14.6% 166/615 (27%) of those who died did not receive MV

  Ventilatory support 20.2% 8.6% 

  Mortality 16.1% 25.4%

Richardson et al [11] Northwell Health System (12 hospitals) in New York City, Long Island, and Westchester County, New York: 1 
March–4 April 2020

 Variable HCQ Group Non-HCQ 271/553 (49%) of those who died did not receive MV

  ICU admission NA NA

  Ventilatory support NA NA

  Mortality NA NA

Catteau et al [12] Belgian National COVID-19 Hospital Surveillance Data: 14 March–24 May 2020

 Variable HCQ Group (n = 4542) Non-HCQ  
(n = 3533)

1512/1881 (80.4%) of patients who died did not receive MV  
861/975 (88%) of non-HCQ patients who died did not receive MV  
300/800 (37.5%) of HCQ patients who died did not receive MV  ICU admission within 24 hours 6.9% 2.7%

  Ventilatory support 11.4% 3.3%

  Mortality 17.7% 27.1%

Abbreviations: COVID-19, coronavirus disease 2019; HCQ, hydroxychloroquine; ICU, intensive care unit; MV, mechanical ventilation; NA, not applicable (did not examine HCQ); NR, not 
reported.
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to account for a preference not to be ventilated would be large 
(Table 1).

A 2020 systematic review and meta-analysis [13] of obser-
vational studies of HCQ and mortality in patients hospitalized 
for COVID-19 identified 15 studies that were not considered 
“critically biased.” None of the 15 studies presented informa-
tion on whether patients with DNR or DNV advance directives 
were admitted to the hospital, whether these patients were in-
cluded in the study, and, if included, how they were handled in 
the analysis.

SURVIVOR BIAS

Treatments including medications (eg, antivirals, 
immunomodulators, anticoagulation) or other interventions 
(eg, respiratory support, prone positioning) are being widely 
tested using cohort studies of patients hospitalized for COVID-
19. In observational studies, “immortal time” refers to the 
period between the time point when patients enter the study co-
hort (in most COVID-19 studies this is the admission time) and 
the point when they receive the examined treatment. During 
the period between admission and treatment initiation, death 
cannot occur in the treatment group because those patients 
must, by design, survive long enough to receive treatment. 
In other words, the patients who survive to receive treatment 
are considered “immortal” between admission and treatment 
(Figure 1). Outcomes, such as death, that occur among patients 
during this immortal time can be attributed to only the “un-
treated/comparator” group. Not accounting for this immortal 
time in the design or analysis of observational studies leads to 
what is known as immortal time bias, survivor bias, or time-
dependent bias [14].

Survivor bias is common in the medical literature including 
in studies published in high-impact-factor journals. In 2004, 
van Walraven et  al [15] examined all observational studies 
that used a survival analysis in top medical journals between 
1998 and 2004. Of 682 eligible studies, 127 (18.6%) contained 
a time-dependent factor, of which 52 (40.9% of studies with a 
time-dependent factor) were susceptible to survivor bias. In 
approximately two-thirds (67.3%) of these susceptible studies, 
the bias affected a variable mentioned in the study abstract. 
Correction of the bias could have qualitatively changed the 
study’s conclusions in more than one-half of the studies [15].

Beyersmann et al [16] showed, using a simple mathematical 
tool, that survivor bias inevitably leads to biased effect estima-
tion, because the number of individuals at risk of exposure is 
distorted over the course of time. Beyersmann and colleagues’ 
[16] model showed 3 possible effects of survivor bias on time to 
study end point (outcome). First, if the time-dependent expo-
sure has no real effect on the outcome, survivor bias will result 
into erroneous positive association (better) with the outcome. 
Second, if the time-dependent exposure has a real negative 

(worse) effect on the outcome, survivor bias will exaggerate this 
negative association. Third, if the time-dependent exposure has 
a real positive (better) effect on the outcome, time-dependent 
bias will show less pronounced effect.

The Cox proportional hazards regression model is commonly 
used to analyze data from studies that seek to estimate the ef-
fect of treatment on the time to an event (eg, death). A Cox re-
gression analysis estimates the hazard rate—the probability of 
having the event (eg, death) given that the patient has survived 
to a specific time. The pure effect of survivor bias on the out-
come hazard is as follows: The hazard for the untreated patients 
is always overestimated, and the hazard for the treated patients 
is always underestimated. Thus, the hazard ratio (HR) (com-
paring treated with untreated) is always underestimated. As a 
rule of thumb, the magnitude of the bias depends on 2 compo-
nents: first, the time to the exposure (the longer the time to ex-
posure, the larger the bias), and second, the time to the outcome 
(the shorter the time, the stronger the bias) (Figure 1).

The following analytical approaches are used to account for 
survivor bias [17, 18]: (1) model treatment as a time-dependent 
variable in the Cox regression analysis; (2) landmark analysis; 
(3) structural nested accelerated failure time model; (4) and 
marginal structure models. The advantages and disadvantages 
of these approaches are discussed in statistical papers and are 
beyond the scope of this review.

In 2 recent systematic reviews [19, 20], we observed that only 
4 of 18 cohort studies of tocilizumab in COVID-19 and 3 of 19 
studies of corticosteroids in COVID-19 adjusted for survivor 
bias. In one study by Wu et al [21] of 1514 COVID-19 patients, 
the authors reported on the adjusted HR for mortality for corti-
costeroid treatment. With corticosteroid treatment considered 
as a time-fixed variable in the Cox regression analysis, the ad-
justed HR for mortality in severe COVID-19 was 1.77 (95% 
confidence interval [CI], 1.08–2.89) while it increased by 60% 
to 2.83 (95% CI, 1.72–4.64) when corticosteroid treatment was 
used as a time-dependent variable.

COMPETING RISKS

In survival data, the outcome of interest is time to the occurrence 
of a certain event. An important feature of survival data is cen-
soring, which occurs when the exact survival time is unknown 
[22]. Censoring occurs, for example, when a subject is lost to 
follow-up, withdraws from the study, or does not experience 
the event of interest before the end of the study. Conventional 
methods used in the analysis of survival data include the 
Kaplan-Meier method and Cox proportional hazards regres-
sion. A Cox regression analysis estimates the hazard rate—the 
probability of having the event (eg, death) given that the patient 
had survived to a specific time [22]. Both methods assume that 
censoring is independent or noninformative. Noninformative 
censoring means that individuals who are censored have the 
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same future risk of the event of interest as subjects under obser-
vation. However, this assumption is not always true.

A common approach used by investigators is to examine 
COVID-19 patients’ hospital mortality data without any fol-
low-up beyond hospital discharge. In this scenario, discharged 
patients are treated as censored observations when using sur-
vival analysis. The fundamental assumption that the death 
hazard remains the same after censoring is violated here; dis-
charged patients have usually recovered and thus have lower 
death hazards than patients who remain hospitalized. If no 

follow-up beyond hospital discharge is available, discharge from 
hospital and in-hospital death are therefore considered “com-
peting events.” A competing event is an event whose occurrence 
precludes the occurrence of the event of interest and the inci-
dence of these events is called “competing risks” [23]. The same 
principle applies when, for example, recovery from COVID-19 
is being considered as the primary outcome. Patients who die 
are censored and are therefore wrongly assumed to have sim-
ilar risk of recovery compared to those who remain alive and 
hospitalized.

Admission

Admission

Exposed (Intervention group)

Entire follow-up duration
misclassified into exposed group

Follow-up duration classified into
unexposed group

Follow-up time

0

Unexposed (Comparator group)

Intervention Outcome

Outcome

Admission

Admission

Exposed (Intervention group)

Immortal time appropriately
classified into unexposed group

Postintervention time classified
into exposed group

Follow-up duration classified
into unexposed group

Follow-up time

0

Unexposed (Comparator group)

Intervention Outcome

Outcome

A

B

Figure 1. A, Illustration of survivor bias due to misclassification of preintervention immortal time (time between admission to intervention). B, Illustration of appropriate 
classification of preintervention immortal time: absence of survivor bias.
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Competing risk bias is common in studies, even those pub-
lished in top medical journals. In 2016, Schumacher et al [24] 
assessed 219 original articles published in the New England 
Journal of Medicine in 2015. They identified 192 (88%) publi-
cations with a time-related primary end point, of which 136 
studies (62%) used statistical methodology for time-to-event 
data. In 51 of the 136 studies, competing risks were present. The 
competing risks were adequately dealt with in only 26 of these 
51 studies (51%). The remaining 25 studies (49%) were suscep-
tible to competing risk bias.

Competing events affect our ability to appropriately com-
pare risks for a given treatment in an observational study. For 
example, we might be interested to know whether convalescent 
plasma transfusion decreases the risk of in-hospital mortality in 
COVID-19 patients. If convalescent plasma is associated with the 
competing event (discharge), then this can have a large effect on 
the estimated risk of in-hospital mortality in patients treated with 
plasma transfusion. Table 2 summarizes a few examples from 
high-impact journals of studies of the effect of treatment on mor-
tality that failed to consider competing events in their analysis.

Failing to account for competing risks generally leads to an 
overestimation of the cumulative incidence of the event of in-
terest. The extent to which the cumulative incidence is over-
estimated is related to the proportion of subjects experiencing 
the event of interest and the competing event. In a recent study 
[29], investigators simulated a fictive clinical trial on COVID-
19 mimicking studies investigating interventions such as 
hydroxychloroquine, remdesivir, or convalescent plasma. The 
outcome was time from randomization until in-hospital death. 
Six scenarios for the effect of treatment on death and recovery 
were considered. The HR and the 28-day absolute risk reduc-
tion of in-hospital death were estimated using the Cox pro-
portion hazards and the Fine and Gray models [30]. Estimates 
were then compared with the true values, and the magnitude of 
misestimation was quantified. The simulation showed that the 
shorter the median time to recovery (as a competing event with 
death), the more overestimated the association between treat-
ment and in-hospital mortality (ie, the more perceived benefit 
of treatment on survival).

Analysis of survival data with competing events requires 
special considerations [31, 32]. Methods available to correctly 
analyze these data include estimating the risks of events over 
time and determining how exposures of interest affect risk. 
Depending on the research question, in the presence of com-
peting events, survival data should be analyzed using either 
a cause-specific hazard model or a subdistribution hazard 
model (Figure 2) [30]. The cumulative incidence function 
(CIF) should be used to estimate the cumulative incidence in-
stead of the Kaplan-Meier method. Cumulative incidence is 
defined as the probability that a particular event has occurred 
before a given time. The CIF quantifies the cumulative prob-
ability of cause-specific failure in the presence of competing 
events without assumptions about the dependence among the 
events. It denotes the probability of experiencing a specified 
event before time (t) and before the occurrence of a different 
type of event.

CAUSAL INFERENCE

Overview

Over the last decade, there has been increasing interest in the 
use of real-world data in the evaluation of treatments of all 
kinds. This interest has arisen in parallel with growing use of 
electronic health records (EHRs) in health care settings and 
concomitant development of large databases of information 
derived from EHRs, often linked with data from other data 
sources.

The challenges in using real-world data to draw conclusions 
about the causal effects of treatments on outcomes are nu-
merous. Statistical methods that seek to enhance the ability to 
draw causal inferences from observational studies of treatment 
have evolved rapidly. Propensity methods have come to be used 
with increasing frequency in studies that seek to draw causal 
inferences about the effect of treatment on outcomes using ob-
servational data, although many other methods have been pro-
posed to deal with confounding. These include, among others, 
inverse probability weighting, covariate balancing techniques, 
and machine learning.

Table 2. Selected Examples of Coronavirus Disease 2019 Observational Studies From High-Impact Journals With Competing Events

Study Intervention Outcome Competing Event
Survival 
Analysis

Discharged  
Patients Censored

Competing 
Risk Analysis

Biran et al [25] Tocilizumab In-hospital mortality Discharge alive Yes Yes No

Geleris et al [26] HCQ Composite of intubation 
or death

Discharge alive before 
intubation

Yes Yes No

Huet et al [27] Anakinra Composite of intubation 
or death

Discharge alive before 
intubation

Yes Yes No

Rosenberg et al [28] HCQ with or without 
azithromycin

In-hospital mortality Discharge alive Yes Yes No

Abbreviation: HCQ, hydroxychloroquine.
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Propensity Score Methods

A concern about conventional regression analysis is that the re-
gression model may be overfitted when the number of covariates 
is large compared with the number of outcome events. In ob-
servational studies of COVID-19 treatments and mortality, the 
number of factors that are potential confounders or are related 
to treatment selection is large. Thus, model overfitting is a valid 
concern. Propensity score methods theoretically reduce the 
problem of model overfitting because they can balance a large 
number of covariates across treatment groups by weighting on 
a single score [33, 34].

Propensity score matching has been particularly popular in 
the medical literature [35]. As described in detail in the next 
section, observational studies of COVID-19 treatments in hos-
pitalized patients that used propensity methods have most often 
used propensity score matching [19, 20].

Propensity score matching has the advantage of being 
simple to present and interpret. However, this simplicity hides 
the complexity of implementing “matching on the propensity 
score” [36]. Many decisions must be made, including whether 
to do pair-matching (1-to-1) or 1-to-many matching and the 
choice among many matching methods (eg, nearest neighbor, 
caliper matching, radius matching, kernel matching). A deci-
sion must be made about whether to match with or without 
replacement. These choices can affect conclusions and there 

is no definitive advice regarding how and when to choose a 
certain technique [36].

Propensity score matching can exclude patients for whom 
no matching patient exists. For example, in a study of HCQ 
and mortality that used 1-to-1 propensity score matching, 
only 1820 patients (910 pairs of HCQ treated/HCQ untreated) 
from a pool of 3372 eligible patients with COVID-19 con-
tributed to the final analysis [37]. Exclusion of some patients 
because they have no matching patients is a disadvantage of 
propensity score matching because precision and generaliza-
bility are reduced [38].

Propensity Scores in Observational Studies of Treatment for COVID-19: 
Corticosteroids and Tocilizumab as Case Studies

In a systematic review [19] of corticosteroid outcomes in pa-
tients with COVID-19, 9 cohort studies examining mortality 
in relation to corticosteroid treatment were identified. Of 
these, 3 (33%) used a propensity method to control for con-
founding. Two studies used propensity score matching. One 
study did not provide details about the matching ratio, the 
methods for matching, or the software used. Another study 
provided information on the matching ratio (pairs), stated 
that matching was done without replacement, and identified 
the software package used but did not state the method for 
matching.
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Figure 2. Modified from Sapir-Pichhadze et al [23]. A, Cause-specific hazard ratio (HR) for each event: the HR for death (the event of interest) and the HR for discharge (the 
competing event). These can be obtained from separate Cox proportional hazards regression models. This approach provides an etiological exploration of risk factors and 
shows how risk factors are associated with each event; direct and indirect effects can be distinguished. B, The subdistribution hazard function estimates the hazard rate for 
death at time t based on the risk set that remains at time t after accounting for all previously occurring event types, which includes competing events (death and discharge). 
As a time-averaged risk comparison, subdistribution HRs extend overall risk ratios. Abbreviations: CSH, cause-specific hazard; SDH, subdistribution hazard. 
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In another systematic review of tocilizumab outcomes in pa-
tients with COVID-19 [20], 18 observational studies examining 
mortality met the authors’ criteria for inclusion. Of these, 7 
(39%) used propensity scores as an approach to control for con-
founding. As found in other evaluations of the implementation 
of propensity score methods, the completeness of the descrip-
tion of the methods was uneven. Five of the 7 studies that used 
a propensity score method used propensity score matching. 
Only 2 of the 5 provided information on all of the following: the 
matching ratio, the method for matching, whether the matching 
was done with or without replacement, the caliper, and the soft-
ware used. One study that used propensity score matching pro-
vided information only on the matching ratio.

Limitations of Propensity Scores and Regression to Address Bias and 
Confounding

Neither propensity score methods nor conventional regres-
sion can disentangle the causal effect of one treatment (eg, 
remdesivir) from the causal effects of other medications (eg, 
steroids) when the same patient receives both treatments. 
Neither propensity score methods nor conventional regression 
can assess and balance all the many factors that come into play 
in the clinical management of seriously ill patients during the 
course of hospital treatment [39]. With both conventional re-
gression analysis and propensity score methods, the validity of 
conclusions about a causal effect of treatment is based on the as-
sumption of absence of unobserved treatment selection factors 
and residual confounding.

FINAL THOUGHTS

Although an RCT is considered the gold standard to test the 
efficacy of any intervention, data from well-designed obser-
vational studies complement RCTs [40–42]. Observational 
studies provide important foundation data to plan RCTs such 
as hypothesis generation and RCT sample size calculation. 
Moreover, observational studies help examine the generaliza-
bility of RCT findings. As compared to observational studies, 
RCTs include standardized patient care with protocols and ex-
clude certain patient groups. Moreover, observational studies 
and meta-analyses of these studies may offer higher external 
validity than a single RCT owing to their potentially large size 
and the ability to include a patient sample that is representative 
of the average patient population. A recent example is the con-
cordance between the efficacy and effectiveness of COVID-19 
vaccines in RCTs and observational studies, respectively.

Finally, in addition to the rigorous conduct of observational 
studies, investigators need to comply with the guidelines for re-
porting of observational studies (Strengthening the Reporting 
of Observational Studies in Epidemiology [STROBE] state-
ment) [43]. The STROBE statement serves as a common and 
important construct to report observational research in a stand-
ardized and rigorous manner.

CONCLUSIONS

Observational studies can provide valuable informa-
tion that helps us understand diseases like COVID-19 
and explore potential benefits of different therapeutic 
interventions. However, they are prone to bias and 
confounding. In this review, we discussed treatment 
selection bias, survivor bias, competing risks, and the 
misuse of propensity score analysis. We attempted 
to raise awareness and to help readers assess short-
comings of observational studies of interventions in 
COVID-19.
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