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Targeting Stat3 and Smad7 to restore TGF-b cytostatic regulation
of tumor cells in vitro and in vivo
RB Luwor1, B Baradaran2, LE Taylor1, J Iaria1, TV Nheu1, N Amiry3, CM Hovens1,3, B Wang1, AH Kaye1 and H-J Zhu1

Transforming Growth Factor-b (TGF-b) and Epidermal Growth Factor (EGF) signaling pathways are both independently implicated
as key regulators in tumor formation and progression. Here, we report that the tumor-associated overexpression of epidermal
growth factor receptor (EGFR) desensitizes TGF-b signaling and its cytostatic regulation through specific and persistent Stat3
activation and Smad7 induction in vivo. In human tumor cell lines, reduction of TGF-b-mediated Smad2 phosphorylation, nuclear
translocation and Smad3 target gene activation were observed when EGFR was overexpressed, but not in cells that expressed EGFR
at normal levels. We identified Stat3, which is activated specifically and persistently by overexpressed EGFR, as a key signaling
molecule responsible for the reduced TGF-b sensitivity. Stable knockdown of Stat3 using small hairpin RNA(shRNA) in Head and
Neck (HN5) and Epidermoid (A431) tumor cell lines resulted in reduced growth compared with control shRNA-transfected cells
when grown as subcutaneous tumor xenografts. Furthermore, xenografts with Stat3 knockdown displayed increased Smad3
transcriptional activity, increased Smad2 phosphorylation and decreased Smad7 expression compared with control xenografts
in vivo. Consistently, Smad7 mRNA and protein expression was also significantly reduced when EGFR activity was blocked by a
specific tyrosine kinase inhibitor, AG1478, or in Stat3 knockdown tumors. Similarly, Smad7 knockdown also resulted in enhanced
Smad3 transcriptional activity in vivo. Importantly, there was no uptake of subcutaneous HN5 xenografts with Smad7 knockdown.
Taken together, we demonstrate here that targeting Stat3 or Smad7 for knockdown results in resensitization of TGF-b’s cytostatic
regulation in vivo. Overall, these results establish EGFR/Stat3/Smad7/TGF-b signaling axis driving tumor growth, which can be
targeted therapeutically.
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INTRODUCTION
Growth factor and cytokine signaling networks control many
aspects of cell behavior such as proliferation, survival, migration,
invasive capabilities, transformation and differentiation. In normal
cells, these complex signaling pathways are tightly regulated.
Alterations of these signals are often found to cause, directly or
indirectly, tumor formation. Transforming Growth Factor-b (TGF-b)
and Epidermal Growth Factor (EGF) signaling pathways are both
independently implicated as key regulators in tumor formation,
and as such are potential therapeutic targets.1–4

TGF-b regulates a wide range of cellular processes including cell
proliferation, differentiation, migration, organization and death.3 It
is widely accepted that TGF-b can act as a tumor suppressor, given
the frequent occurrence of tumor formation when TGF-b or its
downstream signaling is disrupted by gene targeting in mice or
the identification of loss-of-function mutations within several
TGF-b signaling components in many types of human cancers.5–7

Biological responses to TGF-b are mediated mainly by the type I
(TbRI) and II (TbRII) transmembrane cell surface receptors,4,8 which
contain cytoplasmic domains with serine/threonine kinase activity.
The activated ligand–receptor complex then binds and phosphor-
ylates, through TbRI, the intracellular signaling molecules Smad2
and Smad3.4,8,9 Once phosphorylated, these regulatory Smads
(R-Smad) form complexes with Smad4 (also called DPC4 for
deleted in pancreatic carcinoma locus 4) and translocate into the

nucleus. In the nucleus, they associate with transcription factors to
form transcriptionally active DNA complexes.4,8,9

TGF-b signaling can be negatively regulated by multiple
proteins located both extracellularly and intracellularly,4

including Smad7, which directly competes with Smad2/3 for
binding to TbRI. Perturbation of TGF-b signaling by Smad710 as a
transgene leads to various forms of tumor formation in mice.
However, it remains to be answered whether the TGF-b signaling
pathway is so fundamental in maintaining homeostasis that not
only its direct disruptions but also other oncogenic signals acting
through the impairment of TGF-b signaling leads to tumor
formation.

Epidermal growth factor receptor (EGFR) signaling is elicited by
ligand binding, initiating the activation of many downstream
signaling cascades including the following: Ras-Raf-Erk1/2, Phos-
pholipase Cg, the PTEN-regulated phosphatidylinositol 3-kinase
(PI3-K)-Akt-mTOR, Src and Signal transducer and activator of trans-
cription (Stat) family members.11 In turn, these signaling intermediates
trigger gene transcription of numerous proteins involved in regulating
a variety of cellular functions.12 Not surprisingly, genetic alterations
leading to EGFR overexpression or mutation are frequently observed
in almost all epithelial cancer types.13–15 However, which downstream
molecules are specifically activated by tumor-associated and
overexpressed EGFR and are responsible for EGFR’s tumorigenic
function have yet to be clearly identified.
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Stat3 is a member of the Stat family of cytoplasmic transcription
factors that are activated by many cytokine and growth factor
receptors including the EGFR.16,17 Phosphorylated Stat3 transmits
its signal from the EGFR to the nucleus, where it initiates
transcription of multiple genes known to promote cancer
development.7,16,18 Indeed, Stat3 activation has been detected
at a high frequency in many types of tumors, and its activity is
required for the growth of head-and-neck cancer and multiple-
myeloma cells.19,20 We have recently discovered21 that persistent
activation of Stat3 causes 100% occurrence of tumor formation in
a gastric mouse model. Importantly, this study identified that only
persistent, not transient, activation of Stat3 desensitizes TGF-b
signaling via increased Stat3-mediated Smad7 expression,
releasing cells from its cytostatic regulation, thereby allowing
tumor formation.

Here we establish a novel EGFR–Stat3–Smad7–TGF-b signaling
molecular axis where tumor-associated overexpression of EGFR in
epithelial cells results in sustained hyperactivation of Stat3, which
induces Smad7 expression, compromising TGF-b’s cytostatic
regulation of the epithelium and consequent tumor formation
and growth.

RESULTS
Overexpression of EGFR inhibits TGF-b signaling
Previously, we found that aberrant IL-6/gp130 signaling causes the
desensitization of TGF-b signaling in the gastric epithelium.21 To
test the effect of EGFR signaling on TGF-b signaling, seven human
cell lines with varying EGFR expression levels were used
(Figure 1a). Of those, A431, HN5, 293T-EGFR and U87MG-EGFR
overexpress EGFR, whereas the 293T, A549 and U87MG do not.
The Smad3 luciferase reporter construct pCAGA12-luc was tran-
siently transfected into those cell lines to quantitatively determine
TGF-b signaling sensitivity. Stimulation with TGF-b-activated
pCAGA12-luc activity was seen in all seven cell lines used
(Figure 1b). Interestingly, this increased pCAGA12-luc activity was
significantly reduced in all four EGFR-overexpressing cells, but not
in the low levels of EGFR-expressing cells lines when cells were
cotreated with EGF (Figure 1b), suggesting that EGF inhibited
pCAGA12-luc activity in cells with high levels of EGFR expression.
Furthermore, EGF reduced the TGF-b-mediated phospho-Smad2
levels in the EGFR-overexpressing cell lines A431, HN5 (Figure 1c)
and 293T-EGFR cells (Supplementary Figure 1A), without affecting
phospho-Smad2 levels in normal EGFR-expressing cells (293T and
A549; Supplementary Figure 1A). Consequently, EGF treatment
caused a marked decrease of Smad2 nuclear localization by TGF-b
in A431 cells (Figure 1d). In addition, EGF reduced the expression
of TGF-b-induced p21WAF1, an inhibitor of cyclin-dependent
kinases and mediator of growth arrest (Supplementary Figure 1B).

To confirm that EGFR activation was responsible for the
observed desensitization of the TGF-b signaling, AG1478, a
specific inhibitor of EGFR22 (Supplementary Figure 1C), was used.
EGF-mediated reduction of the TGF-b reporter activity was
reversed when A431 and HN5 cells were cotreated with AG1478
(Figure 1e), confirming that activation of overexpressed EGFR
mediates the desensitization of the TGF-b signaling. Furthermore,
blockade of EGFR activity in HN5 cells by AG1478 resensitized
these cells to the growth-inhibitory effects of TGF-b, producing a
reduction in [3H]-thymidine incorporation 450% (Figure 1f).

EGF-mediated inhibition of TGF-b signaling is not dependent on
PI3-K and MEK activity
The two most documented signaling pathways activated upon
EGFR phosphorylation are the Ras-MAPKs (MEKs) and the PI3-K/
Akt pathways. Both pathways have been implicated in modulating
Smad activation.23–25 To examine whether these pathways
were involved in the desensitization of TGF-b signaling by

overexpressed EGFR, we used pharmacological inhibitors to
block either MEK (U0126) or PI3-K (LY294002) activity without
affecting phospho-EGFR levels (Figures 2a and b; Supplementary
Figures 2A and B). Unlike the EGFR inhibitor AG1478, neither
U0126 nor LY294002 resensitized the TGF-b reporter activity in
HN5 and 293T-EGFR cells (Figure 2c and Supplementary
Figure 2C), suggesting that the inhibition of the TGF-b pathway
mediated by the overexpression of EGFR is not dependent on MEK
and PI3K signaling.

EGFR overexpression induces specifically sustained Stat3
phosphorylation and transcriptional activity
As we had previously shown that sustained Stat3 activation results
in the desensitization of TGF-b signaling in the IL-6/gp130
signaling system,21 we next set out to determine whether EGFR
activated Stat3 in several human cell lines. Although EGF
stimulation resulted in increased phospho-EGFR, phospho-Erk1/2
and phospho-Akt levels in all five cell lines used, phosphorylation
of Stat3 was only observed in cell lines overexpressing EGFR
(A431, HN5 and 293T-EGFR) (Figure 3a). Furthermore, this EGFR-
overexpression-specific Stat3 activation was sustained for at least
8 h post EGF stimulation (Figure 3b). In fact, the EGFR-mediated
Stat3 phosphorylation observed correlated with an increase in
Stat3 transcriptional activation as measured by the luciferase
activity using the pAPRE-luc reporter construct in EGFR-over-
expressing cells (Supplementary Figures 3A and B). TGF-b
stimulation did not affect EGF-mediated Stat3 activity
(Supplementary Figure 3C). There was minimal Stat3 reporter
activation (otwofold) in the cells expressing normal or low levels
of EGFR (293T, A549 and U87MG; Supplementary Figure 3B). Taken
together, these results demonstrate that overexpression of EGFR
mediates specifically sustained Stat3 phosphorylation and tran-
scriptional activity.

Our results so far demonstrate an inverse correlation between
the specific activation of Stat3 and the TGF-b signaling sensitivity
specifically in cells overexpressing EGFR. To verify conclusively
that Stat3 mediates desensitization of the TGF-b signaling, we
knocked down Stat3 protein expression by small interfering RNA
(siRNA) (Supplementary Figure 4A). The activity of the TGF-b
reporter pCAGA12-luc was increased when the endogenous Stat3
levels were knocked down in both A431 and HN5 cells (Figure 3c),
indicating that Stat3 is indeed required for the overexpressed
EGFR-mediated desensitization of the TGF-b signaling. Impor-
tantly, Stat3 knockdown restored TGF-b-mediated growth sup-
pression of HN5 cells (Figure 3d).

Stable knockdown of Stat3 in HN5 and A431 cells results in
reduced tumor growth
To confirm our in vitro results and to examine the role of Stat3 in
an in vivo setting, we generated HN5 and A431 cells with stable
knockdown of Stat3 expression using Stat3-specific small hairpin
RNA(shRNA). HN5 and A431 cells with reduced Stat3 expression
(designated S1, S2 and S3 for HN5 and A-S1 and A-S2 for A431
cells) expressed similar levels of EGFR compared with control cells
(Figure 4a and Supplementary Figure 4B). As expected, S1, S2 and
S3 cells also displayed reduced EGF-mediated Stat3 transcriptional
activity (Supplementary Figure 4C) and phosphorylated Stat3
compared with the control HN5 cell line, although no effect was
seen on phosphorylated EGFR or phospho-Erk1/2 levels
(Supplementary Figure 4D). Most importantly, the tumor growth
of these clones was significantly reduced when grown as
xenografts in BALB/cnu/nu mice, indicating a key role of Stat3 in
mediating tumorigenicity of HN5 and A431 cells (Figure 4b and
Supplementary Figure 4E). Two tumors from each HN5 subclone
were removed with subsequent western blot analysis of these
tumors, showing that the knockdown of Stat3 had remained intact
in vivo throughout the course of the experiment (Supplementary
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Figure 1. Overexpression of EGFR desensitizes the TGF-b pathway. (a) Cell lines as indicated were lysed and examined for EGFR and Actin
protein expression or (b) transfected with the Smad3 reporter construct pCAGA12-luc and allowed to adhere overnight. Cells were then treated
with 2 ng/ml of TGF-b in the presence (&) or absence (’) of EGF (20 ng/ml) for a further 24 h, and then lysed and assessed for luciferase
activity. Data are expressed as relative Smad3 luciferase activity (fold change) by standardizing the luciferase activity of unstimulated cells to 1,
and accordingly normalizing all other raw values. (c) Cells were treated with EGF (20 ng/ml) overnight, then stimulated with TGF-b (0, 0.2 and
2ng/ml) for 30min and lysed and examined for phospho-Smad2 and total Smad2 expression. (d) A431 cells were stimulated with or without
EGF (20 ng/ml) overnight, then treated with or without TGF-b (0.2 ng/ml) for 15min. Cells were then fixed in formaldehyde, permeablized in
0.2% Triton-X-100 and stained with anti-Smad2 antibody. Localization of Smad2 was visualized with Alexa488-conjugated secondary antibody
using confocal microscopy. (e) A431 (i) and HN5 (ii) cells were transfected with pCAGA12-luc, pretreated with (’) or without (&) AG1478 for
4 h, and then stimulated with TGF-b (2 ng/ml) and/or EGF (20 ng/ml) for a further 24 h. Cells were then lysed and assessed for luciferase activity
and expressed as outlined in Figure 1b. (f ) HN5 cells were treated with or without TGF-b in the presence (’) or absence (&) of AG1478 for
48 h. Cells were then incubated with 0.2 mCi of [3H]-thymidine/well for 4 h, lysed with 0.5 M NaOH, harvested and then measured for
incorporated [3H]-thymidine.
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10mM) or (b) LY294002 (0, 2 and 10mM) for 4 h, then stimulate with or without EGF (20 ng/ml) for 10min. Cells were then lysed and examined
for phosphorylated and total expression of EGFR, Akt and Erk1/2. (c) HN5 cells were transfected with pCAGA12-luc, pre-treated with (’) or
without (&) (i). U0126 and (ii). LY294002 for 4 h, then stimulated with TGF-b (2 ng/ml) and/or EGF (20 ng/ml) for a further 24 h. Cells were then
lysed and assessed for luciferase activity and expressed as outlined in Figure 1b.
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Figure 4F). As with transient knockdown of Stat3, stable knock-
down of Stat3 increased the TGF-b-mediated activity of pCAGA12-
luc and circumvented the inhibitory effects of EGF stimulation
(Figure 4c). Furthermore, pCAGA12-luc activity was also increased
by approximately 10-fold in HN5 cells with stable Stat3 knock-
down compared with control cells in vivo (Figure 4d), whereas
phospho-Smad2 expression was detected in approximately 4% of
HN5 cells with Stat3 knockdown versus 1% of HN5 control cells
in vivo (Figure 4e). These data confirm that Stat3 is required for the
overexpressed EGFR-mediated desensitization of the TGF-b
signaling.

Smad7-dependent desensitization of TGF-b signaling by EGFR
As IL-6/gp130 signaling sustained Stat3 activation and induced
the expression of the negative regulator of TGF-b signaling,

Smad7,21 we next examined whether the EGFR-Stat3-mediated
desensitization of TGF-b signaling is also dependent on Smad7.
Indeed, blockade of EGFR activation by AG1478 significantly
reduced Smad7 gene promoter activity in A431 and HN5
cells (Figure 5a), whereas EGF stimulation enhanced Smad7
promoter activity (Supplementary Figure 5A). AG1478 treatment
also reduced Smad7 mRNA and protein levels in HN5 cells
(Figures 5b and c). In addition, EGF inhibited TGF-b-mediated
TGFbRI/Smad2 association presumably through Smad7’s well-
recognized role of competing for TGFbRI binding (Supplementary
Figure 5B). Furthermore, both Smad7 promoter activity and Smad7
protein expression were reduced when the Stat3 expression
levels were knocked down transiently by siRNA (Figure 6a and b).
Comparison of HN5 control and stable Stat3 knockdown
xenografts also revealed reduced Smad7 mRNA expression
(Figure 6c) and protein expression in vivo (Figure 6d). These
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as outlined in Figure 4d (n¼ 4).
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data demonstrate that upregulation of Smad7 protein levels
in EGFR-overexpressing tumor cells is through Stat3-mediated
Smad7 promoter activation. To determine whether EGFR-Stat3-
mediated desensitization of TGF-b signaling is due to increased
Smad7 expression, we use Smad7 siRNA to knock down its
expression. Indeed, in HN5 tumor cells, Smad7 knockdown
largely restored the TGF-b reporter activity when EGFR is activated
by EGF treatment (Figure 6e). It is noteworthy that the reporter
activity in the absence of EGF treatment is also vastly increased
by Smad7 knockdown, confirming the effect of increased
basal Smad7 expression in EGFR-overexpressing cells. Importantly,
Smad7 knockdown, similar to Stat3 knockdown, restored
HN5 tumor cell growth inhibitory sensitivity to TGF-b (Figure 6f).
Finally, and similar to stable knockdown of Stat3, stable
Smad7 knockdown by shRNA in HN5 cells resulted in increased
pCAGA12-luc activity by approximately 10-fold compared with
control cells in vivo (Figure 6g). Taken together, this signaling
pathway cross talk mediated by EGFR–Stat3–Smad7–TGF-b
operates specifically in tumor-associated EGFR-overexpressing
cells.

DISCUSSION
Ever since its discovery as one of the first receptor tyrosine
kinases, EGFR and its signaling have been studied extensively.
Many downstream pathways have been identified, but little is
known about the difference between the normal and tumorigenic
signals transduced from EGFR. It was presumed that the two main
downstream pathways, Ras/MAPK and PI3-K/Akt, were responsible
for EGFR-driven tumor growth. However, it has been difficult to
detect the different mode of their activation between normal and
tumor cells. At best, o10% elevation in MAPK activation by a
constitutively active EGFR (D2-7EGFR)26 was proposed to explain
its tumorigenicity. Yet these downstream signals have been used
to measure the efficacy of EGFR inhibition in cancer
treatment.27–29 The identification of Stat3 here as a molecule
specifically and persistently activated by the overexpressed and
tumor-associated EGFR but not by EGFR expressed at normal
levels reveals a critical signaling difference by EGFR between
normal and tumor cells.

In both the normal and tumor cells, MAPK (Erk1/2) and
Akt activation by EGFR are rapid and transient, regardless of the
levels of EGFR expression. In contrast, low levels of EGFR do not
activate Stat3, whereas only high levels of EGFR are capable
of Stat3 activation. It appears that a threshold of approximately
106 EGFR/cell is required for EGF-mediated Stat3 activity
based on the cell lines tested here. Surprisingly, Stat3 activation
by high levels of EGFR is slower than the Erk1/2 or Akt activation
(Figure 3). Furthermore, the high level of EGFR-mediated
Stat3 activation is persistent, unlike the transient nature of Erk1/
2 and Akt activation. This is in direct contrast to cytokines such
as IL-6 and IL-11, which mediated Stat3 activation rapidly
and transiently.21,30 Our previous work demonstrated, in both
animal models and human tissues, that persistent Stat3 activation
leads to stomach epithelial hyperproliferation. It has become
clear that Stat3 is an oncogene, and its activation is prevalent
in many human cancers;16,31,32 however, unlike many other
oncogenes, there is no genetic evidence of gain-of-function
mutation. Our observation that the tumor-associated
overexpressed EGFR activates Stat3 persistently identifies EGFR
as a physiologically relevant upstream molecular cause of Stat3
activation.

The tumorigenic consequence of the persistent Stat3 activation
is at least partially mediated through the desensitization of TGF-b
signaling via its negative regulator Smad7 in stomach epithe-
lium.21 Indeed, EGFR-mediated Stat3 activation also results in the
desensitization of TGF-b signaling in many tumor cell lines with
EGFR overexpression. More importantly, in the head-and-neck

tumor cell line with high levels of EGFR, HN5, there is a loss of
cytostatic/growth-inhibitory regulation by TGF-b (Figure 1), which
can be reversed by blocking either EGFR activation or reducing
Stat3 or Smad7 expression (Figures 1, 3 and 6). Restoration of
TGF-b signaling as evident by enhanced cytosolic and nuclear
phospho-Smad2 can also be achieved by stable knockdown of
Stat3 or Smad7 expression in vivo (Figures 4 and 6).33 Thus, the
loss of TGF-b cytostatic regulation on normal cell growth may
represent a key molecular event during tumorigenesis driven by
overexpression of EGFR through the EGFR–Stat3–Smad7–TGF-b
signaling axis.

Loss of TGF-b sensitivity and thereby loss of cytostatic
regulation may represent a key molecular event in tumor
progression. Desensitization to TGF-b-mediated growth regulation
can occur through the generation of loss-of-function mutations in
either TGF-b receptors or downstream signaling molecules.34

However, the overall occurrences of such mutations in human
tumors are not frequent,34 suggesting that there may exist
alternatives other than direct deletion or mutation of TGF-b
signaling components. Indeed, some early work showed that Ras
inhibited TGF-b signaling through MAPK’s modification of
Smads,24,27,35 whereas IFN-g inhibits TGF-b signaling through
Stat1-mediated Smad7 expression.36 We have not seen any
desensitization of TGF-b signaling mediated by MAPKs (Erk1/2)
in cells expressing high levels of EGFR (Figure 2). At least in the
context of the stomach epithelium, Stat1 did not cause
desensitization of TGF-b signaling.21 We identify Stat3 as a key
mediator of loss of TGF-b cytostatic regulation through signaling
pathway cross talk in vivo both here and previously.21 In early
tumor development where tumor growth and expansion are
dominant, TGF-b acts as a tumor suppressor, whereas it promotes
invasion in late stages of tumor progression. Importantly, TGF-b
signaling may be necessary for the late tumor invasion, best
demonstrated in colon tumor development where deletions or
mutations in the TGF-b signaling pathway gave rise to a better
prognosis compared with patients with colon cancers with intact
TGF-b signaling.37,38 Desensitization of TGF-b signaling through
cross talk such as EGFR-Stat3-Smad7-TGF-b demonstrated here,
instead of the deletion or mutation of TGF-b signaling, may enable
the cells to bypass TGF-b’s tumor-suppressive effect in early tumor
development, although the pathway can be resensitized by
different molecular means to promote tumor invasion at late
stages.

Establishing the loss of cytostatic regulation by TGF-b by tumor-
associated EGFR overexpression through the EGFR-Stat3-Smad7-
TGF-b axis has direct implications in EGFR signaling-targeted
cancer therapy. First, it provides some clear molecular targets for
treating EGFR-driven tumors, namely, Stat3 and Smad7. Several
research groups have developed therapeutics that target Stat3
with some success,20,39,40 such as administration of antisense
oligonucleotides targeting Stat3-expressing hematological tumors
in mice39 and a synthesized triterpenoid, CDDO-Imidazolide, to
inhibit Stat3 phosphorylation in human myeloma and lung cancer
cells.34,41 A similar strategy may be used to target Smad7
expression in tumors. A combination of Stat3 and/or Smad7
with EGFR targeting may provide a much more effective
treatment. Second, to determine the efficacy of any EGFR-
targeted treatment, in addition to its effects on Ras/MAPK and
PI3-K/Akt pathways, it may be necessary to measure the effects on
Stat3 activation, Smad7 expression and TGF-b-signaling sensitivity.
Given the availability of the sensitive luciferase reporters for Stat3,
Smad7 and TGF-b signaling, it is not unreasonable to envisage
them being used to directly monitor the real effects of any
EGFR-targeting therapy on its more specifically tumorigenic
downstream signaling. More importantly, they can be used
in vivo in real time when coupled with live imaging techniques
to optimize treatment regimen, especially regarding dosages and
schedules.
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MATERIALS AND METHODS
Antibodies and reagents
Rabbit polyclonal antibodies directed against Erk1, TGFbRI, p21WAF1 and
Stat3 and the polyclonal goat Akt antibody were obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). The phospho-Erk1/2, phospho-Stat3
and Phospho-Akt rabbit polyclonal antibodies were from Cell Signaling
Technology (Danvers, MA, USA), whereas the mouse phospho-tyrosine
monoclonal antibody (4G10) was from Upstate Biotechnology (Lake Placid,
NY, USA). The anti-mouse Actin and Smad2 antibodies were purchased from
Sigma (St Louis, MO, USA) and BD transduction Laboratories (Rockville, MD,
USA), respectively. The Anti-rabbit phospho-Smad2 antibody was kindly
provided by Professor P Ten Dijke (Leiden University Medical Center, The
Netherlands). The anti-rabbit Smad7 antibody was from Imgenex (Imgenex
Corporation, San Diego, CA, USA). The anti-rabbit Alexa488-conjugated and
Alexa546-conjugated secondary antibodies and the [3H]-thymidine were
from Invitrogen (Mulgrave, VIC, Australia). The mouse anti-EGF receptor
antibody was provided by the Melbourne Centre for Clinical Sciences
(Ludwig Institute for Cancer Research). AG1478 and Recombinant mouse
EGF were kindly provided by the Melbourne Tumor Biology Branch, Ludwig
Institute for Cancer Research, and recombinant human TGF-b1 was
purchased from R & D Systems (Minneapolis, MN, USA). The MEK inhibitor
U0126 and the PI3K inhibitor LY294002 were purchased from Calbiochem
(Merck KGaA, Darmstadt, Germany). Human Stat3 and Smad7 siRNAs were
from Santa Cruz, whereas the fluorescein-labeled control siRNA was from
Qiagen (Qiagen, SA Biosciences, Frederick, MD, USA).

Cells and cell culture
The epidermoid carcinoma cell line A431, the head-and-neck carcinoma
cell line HN5, the human embryonic kidney cell line HEK-293T (293T) and
the EGFR-Flag tagged stably transfected HEK-293T-EGFR (293T-EGFR) cell
line, the lung carcinoma cell line A549, the glioblastoma cell line U87MG
and EGFR stable transfected U87MG-EGFR have all been previously
described.42–46 The HN5-Stat3 shRNA clones (designated S1, S2 and S3)
and A431-Stat3 shRNA clones (designated A-S1 and A-S2) were generated
by transfecting cells with the SureSilencing Stat3-shRNA construct (Qiagen)
using FuGENE HD transfection reagent (Roche, Basel, Switzerland)
following the manufacturer’s instructions, and selected for using
Geneticin (Roche). Similarly, the HN5-Smad7 shRNA clones were
generated by transfecting cells with the SureSilencing Smad7-shRNA
construct (Qiagen) as above. Control HN5 cells were generated by stably
transfecting a negative-control shRNA (Qiagen). All cells were maintained
in Dulbecco’s Modified Eagle’s Medium containing 10% fetal bovine serum
(FBS) (DKSH, Hallam, VIC, Australia), 2 mM glutamine, 100 U/ml penicillin
and 100mg/ml streptomycin (Invitrogen). Cells were incubated in a
humidified atmosphere of 90% air and 10% CO2 at 37 1C.

Western blot and immunoprecipitation analysis
Cells were lysed in a lysis buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1%
Triton-X-100, 50 mM NaF, 2 mM MgCl2, 1 mM Na3VO4 and protease inhibitor
cocktail (Roche)) and clarified by centrifugation (13 000g for 15 min at 4 1C).
Tumor xenografts were snap-frozen and lysed in RIPA buffer (50 mM Tris
(pH 7.4), 5 mM EDTA, 150 mM NaCl, 0.5% Na Deoxycholate, 0.5% SDS, 10 mM

NaF and protease inhibitor cocktail (Roche)) and also clarified by
centrifugation. For Immunoprecipitation experiments, anti-TGFbRI anti-
body and protein-A-Sepharose beads (Amersham Biosciences Corporation,
Piscataway, NJ, USA) were added to clarified proteins for 4 h at 4 1C.
Immune complexes were washed three times in ice-cold PBS. Proteins
were then separated by SDS–PAGE (Invitrogen), blotted onto nitrocellulose
and probed with the indicated primary antibodies. The signal was
visualized using the ECL chemoluminescence detection kit (GE Healthcare,
Rydelmere, NSW, Australia) following incubation with appropriate second-
ary antibodies.

Luciferase assays
The firefly luciferase constructs pAPRE-luc,47 pSmad7-luc48 and pCAGA12-
luc49 have all been previously described. Cells were transiently transfected
with the construct using the FuGENE HD transfection kit (Roche). After a
24-h transfection period, cells were washed with PBS and cultured with
TGF-b, EGF, AG1478, U0126 and/or LY294002 at the concentrations
indicated for a further 24 h. Cells were then lysed and assessed for
luciferase activity using the Luciferase Reporter Assay Kit (Promega
Corporation, Madison, WI, USA) following the manufacturer’s instructions.
To assess for the effects of Stat3 and Smad7 knockdown on Smad3 and

Smad7 promoter activity, cells were transiently transfected with Stat3,
Smad7 or fluorescein-labeled control siRNA using the HiPerFect
transfection reagent (Qiagen) as per the manufacturer’s instructions 24 h
after transfection with p(CAGA)12-luc and pSmad7-luc constructs. The
creation of the Adenoviral Smad3 reporter (Ad-pCAGA-luc) has been
described previously.50

[3H]-thymidine incorporation assays
Cells were plated in 96-well plates in DMEM-10% FBS and allowed to
adhere overnight. Quadruplicate wells were treated with TGF-b and/or
AG1478 at the concentrations indicated for 48 h and then incubated with
0.2mCi of [3H]-thymidine/well for an additional 4 h. Cells were lysed with
0.5 M NaOH, harvested using a Filtermate Harvester (Packard Instrument
Co., Meriden, CT, USA) and the incorporated [3H]-thymidine measured with
a Microplate Scintillation Counter (Packard Instrument Co.). To assess for
the effects of Stat3 and Smad7 knockdown on [3H]-thymidine incorpora-
tion, cells were transiently transfected with Stat3, Smad7 siRNA or
fluorescein-labeled control siRNA using the HiPerFect transfection reagent
in solution and seeded in 96-well plates 24 h before TGF-b treatment.

Immunofluorescence staining and confocal microscopy
A431 cells were seeded onto coverslips in six-well plates in DMEM-10% FBS
and allowed to adhere overnight. Cells were stimulated with or without
EGF in serum-free media overnight, followed by treatment with TGF-b for
15 min. Cells were then washed twice in PBS, fixed in formaldehyde and
permeabilized with PBS containing 0.2% Triton-X-100. Following blocking
in PBS-Tween20 containing 5% BSA, cells were stained with anti-Smad2
antibody. Tumor xenografts were excised from mice at the end of the
experiment and processed in 10% formalin/PBS before being embedded in
paraffin. Tumor sections (4mm) were then dewaxed, fixed, permeablized
and blocked as described above and stained with either pSmad2 or Smad7
antibody. Visualization was achieved with either Alexa546- or Alexa488-
conjugated secondary antibody using confocal microscopy as described.49

Tumor growth and bioluminescence Imaging in vivo
A431 cells and all derivatives (3� 106) or HN5 cell and all derivatives
(1� 107) were inoculated subcutaneously into both flanks of 4- to 6-week-
old BALB/cnu/nu female mice (Animal Research Center, WA, Australia).
Tumor volume in mm3 was determined using the formula (length�
width2)/2, where length was the longest axis and width the measurement
at right angles to the length.51 This research project was approved by the
Animal Ethics Committee of the Ludwig Institute for Cancer Research and
Department of Surgery, University of Melbourne at the Royal Melbourne
Hospital. For bioluminescence imaging, cells were infected with an
Adenoviral Smad3 reporter construct (Ad-pCAGA12-Luc) 24 h before
subcutaneous inoculation into BALB/cnu/nu female mice. Mice were then
injected intraperitonealy with 150mg/kg D-luciferin (Xenogen Corp.,
Alameda, CA, USA) in PBS, anesthetized with isofluorane and placed
under the IVIS camera (Xenogen Corp). The bioluminescence images were
recorded between 10 and 20 min after each D-luciferin injection, and
bioluminescence intensity was quantified as the sum of detected photons
per second within the region of interest using the LivingImage software
(Xenogen Corp).

RNA extraction and qRT–PCR
RNA from cells or xenograft lysates were extracted using TRIzol reagent
(Invitrogen), and converted to cDNA using SuperScript III First-Strand
Synthesis SuperMix as per the manufacturer’s instructions (Invitrogen).
RT-PCR was performed using an ABI 7700 Real-Time PCR system (Applied
Biosystems, Life Technologies, Mulgrave, Victoria, Australia). The following
primers were used: Stat3, 50-GAGGACTGAGCATCGAGCA-30 (forward) and
50-CATGTGATCTGACACCCTGAA-30 (reverse); Smad7, 50-CTGCAACCCCCAT
CACCTTA-30 (forward) and 50-CCCTGTTTCAGCGGAGGAA-30 (reverse); and
GAPDH, 50-TGCACCACCAACTGCTTAGC-30 (forward) and 50-GGCATGGAC
TGTGGTCATGAG-30 (reverse). Triplicate reactions with SYBR Green (Invitro-
gen) were performed using a two-step amplification program of initial
denaturation at 95 1C for 10 min, followed by 40 cycles of 95 1C for 20 s and
60 1C for 30 s. A melting-curve analysis step was carried out at the end of
the amplification, consisting of denaturation at 95 1C for 1 min and re-
annealing at 55 1C for 1 min. Each change in gene expression is expressed
as percentage compared with the control and normalized to GAPDH Data
acquisition, and analysis was performed using the ABI 7700 Real-Time PCR
system software.
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