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ABSTRACT Mycobacteriophage phiT46-1 is a newly isolated Mycobacterium phage
that was isolated by spontaneous release from Mycobacterium abscessus strain
Taiwan-46 and infects M. abscessus strain BWH-C. Phage phiT46-1 is unrelated to pre-
viously described mycobacteriophages, has a 52,849-bp genome, and includes a pol-
ymorphic toxin-immunity cassette associated with type VII secretion systems.

M ycobacterium abscessus is a nontuberculous mycobacterium (NTM) that is ubiqui-
tous in the environment and is common in water and soil (1). M. abscessus is a

common cause of pulmonary and disseminated infections in immunocompromised
individuals, particularly those with cystic fibrosis (2, 3). Antibiotic treatment of NTM
infections is challenging, with widespread multidrug resistance and nonresponsiveness
to antibiotic therapy (4). Mycobacteriophages are viruses that infect mycobacterial
hosts and, although many have been isolated on Mycobacterium smegmatis, few infect
M. abscessus (5). Isolation and characterization of M. abscessus phages will advance our
understanding of M. abscessus and their potential therapeutic utility (5).

Many strains of M. abscessus carry prophages (6–9) and are expected to spontaneously
release phage particles. Phage phiT46-1 was isolated by plating a culture supernatant of
M. abscessus Taiwan-46 (provided by Chidiebere Akusobi and Eric Rubin) onto a lawn ofM.
abscessus BWH-C on solid medium at 37°C, using standard methods (10). Phage were
picked from infected areas, plaque purified, and amplified on BWH-C, and DNA was
extracted by phenol-chloroform-isoamyl alcohol extraction (10). A sequencing library was
prepared from genomic DNA using a NEBNext Ultra II FS kit with dual-indexed barcoding
and was included as one of a pool of 48 phage genome libraries on an Illumina MiSeq sys-
tem, yielding 931,342 paired-end 300-base reads and 2,400-fold coverage of the phiT46-1
genome. These reads were assembled using Newbler v2.9 with default settings, yielding a
single 52,849-bp contig with a G1C content of 64%. The contig was evaluated for com-
pleteness and accuracy using Consed v29. Sequencing read alignments did not identify
unique genome ends, and either there are multiple distinct termini or the contig is circu-
larly permuted (11); for genome representation, it was linearized with coordinate 1 at the
first codon of the small terminase subunit gene. Phage phiT46-1 is not closely related to
other actinobacteriophages (nucleotide identities span ,4% of the total genome length
[12]) but shares several virion structural genes with cluster Q phages (13). phiT46-1 does
not infectM. smegmatis.

The programs GeneMarkS v4.30 (14), Glimmer v3.02 (15), Phamerator Actino_prophage
v5 (16), and DNA Master v5.23.5 (http://cobamide2.bio.pitt.edu) were used to identify
78 protein-coding genes in the phiT46-1 genome. All tools were run with default pa-
rameters unless otherwise specified. The genome has no tRNA genes, as indicated by
ARAGORN v1.2.41 (17). Of the 78 predicted genes, 45% were assigned putative func-
tions using BLAST (18) and HHpred (19, 20). The virion structure and assembly genes
suggest that phiT46-1 has a siphoviral morphology (family Siphoviridae), and repressor
and tyrosine integrase genes are consistent with its temperate nature. The pre-
dicted early lytic genes also include an HNH endonuclease, a phosphoadenosine
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phosphosulfate (PAPS) reductase, an oxidoreductase, WhiB, and a RecET-like recom-
bination system.

Interestingly, phiT46-1 contains a cassette coding for a polymorphic toxin (PT), an
immunity (Imm63) protein, and an ESAT-6-like protein (Fig. 1). The 50-kDa PT has an
N-terminal WXG-100 motif (21) and a C-terminal domain containing a tuberculosis
necrotizing toxin (TNT) (22). The genomic location of the cassette, adjacent to the
integration apparatus, suggests that these genes may be lysogenically expressed
(23), likely with secretion via a type VII secretion pathway (24). The TNT motif is asso-
ciated with escape of M. tuberculosis from phagosomes, and phiT46-1 is thus impli-
cated in the survival of M. abscessus T46 in infected human cells.

Data availability. The phiT46-1 sequence is available in GenBank with accession
no. MW353181, and sequencing reads are available with accession no. SRX9186031.
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