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Abstract

State-of-the-art approaches for the prediction of drug–target interactions (DTI) are based on

various techniques, such as matrix factorisation, restricted Boltzmann machines, network-

based inference and bipartite local models (BLM). In this paper, we propose the framework

of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical

reality compared with conventional regression techniques. Furthermore, we propose to use

an asymmetric loss model with BLM to predict drug–target interactions accurately. We eval-

uate our approach on publicly available real-world drug–target interaction datasets. The

results show that our approach outperforms state-of-the-art DTI techniques, including

recent versions of BLM.

Introduction

When developing new drugs and identifying their side effects [1], pharmaceutical science

relies on findings from related branches of science, including statistics and computer science.

An essential step in this process is the identification of interactions between drugs and phar-

macological targets. Although the existence of interactions can be reliably confirmed by in
vitro binding assays, see e.g., [2–5], such methods are expensive and time consuming [6]. In

order to address this bottleneck, computational approaches have been designed and imple-

mented for the estimation of the probability of interactions. Therefore, most promising candi-

dates for in vitro experiments may be selected based on in silico approaches.

The importance of drug–target interaction prediction is further emphasised by the costs of

drug development. While estimates vary, they agree that it costs hundreds of millions of dollars

to bring a new drug to the market, see e.g. [7] for an overview. Furthermore, the process may

take more than 10 years in total.

Drug–target interaction prediction (DTI) techniques promise to reduce the aforemen-

tioned costs and time, and to support drug repositioning [8], i.e., the use of an existing medi-

cine to treat a disease that has not been treated with that drug yet.
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Drug repositioning is especially relevant for the treatment of rare diseases, including neuro-

logical disorders. While each of the rare diseases affect only few people, due to the large num-

ber of rare diseases, in total 6-8% of the entire population is affected by one of those diseases.

This results in a paradox situation: although a significant fraction of the population is suffering

from one of the rare diseases, it is economically irrational to develop new drugs for many of

them. However, drug repositioning may potentially lead to breakthroughs in such cases.

In silico approaches for DTI include techniques based on docking simulations [9], ligand

chemistry [10], text mining [11, 12] and machine learning. Text mining is inherently limited

to the identification of entities and interactions that have already been documented, although

the output of approaches based on text mining, i.e., the identified interactions, may serve as

input data for other approaches, such as the ones based on machine learning. A serious limita-

tion of docking simulations is that information about the three-dimensional structure of can-

didate drugs and targets is required. In many cases, e.g. for G-protein coupled receptors

(GPCR) and ion channels, such information may not be available. Moreover, the performance

of ligand-based approaches is known to decrease if only few ligands are known.

For the aforementioned reasons, state-of-the-art DTI techniques are based on machine

learning [13–17]. Moreover, the increasing interest is also catalysed by the analogies between

DTI and the well-studied recommendation tasks [18–20], which resulted in DTI approaches

based on matrix factorisation [21–23]. Further recent DTI techniques are based on support

vector regression [6], restricted Boltzmann machines [24], network-based inference [25, 26],

decision lists [27], positive-unlabelled learning [16] and bipartite local models (BLM) [28].

Extensions of BLM include semi-supervised prediction [29], improved kernels [30], the incor-

poration of neighbour-based interaction-profiles [31] and hubness-aware regression [19].

Despite all the aforementioned efforts, accurate prediction of drug–target interactions still

remained a challenge. In this paper, we propose a new regression technique for accurate DTI

predictions. We use a novel loss function that reflects the needs of drug–target interaction bet-

ter than wide-spread loss functions, such as mean squared error or logistic loss. Our generic

framework of asymmetric loss models (ALM) works with various regressors. For simplicity,

we instantiate ALM with linear regression which leads to asymmetric loss linear regression
(ALLR). We propose to use this new regressor in BLM for drug–target interaction prediction.

Note that ALM is substantially different from hubness-aware regressors that we used with

BLM in our previous work [19]. As ALLR is a modified version of linear regression, we call

our approach Drug–Target Interaction Prediction with Modified Linear Regression, or

MOLIERE for short. We evaluate MOLIERE on publicly available real-world datasets and

show that our approach outperforms state-of-the-art DTI techniques, including recent ver-

sions of BLM and the cases when conventional loss functions are used. Furthermore, we show

that MOLIERE is able to predict medically relevant drug–target interactions that are not con-

tained in the original datasets.

Materials and methods

Data

We used four publicly available real-world drug–target interaction datasets (Table 1), namely

Enzyme, Ion Channel (IC), G-protein coupled receptors (GPCR), Nuclear Receptors (NR).

The datasets are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. These

datasets have been used in various studies, such as [17, 19, 20, 22, 28, 29].

Each dataset contains an interaction matrix M between drugs and targets, a drug–drug

similarity matrix SD
and a target–target similarity matrix ST

. Similarities between targets were
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determined by the Smith-Waterman algorithm, see [17, 32] for details. Chemical structure

similarities between drugs were computed using the SIMCOMP algorithm [33].

Each entry mi,j of the interaction matrix M indicates whether the interaction between the i-
th drug (denoted as di) and j-th target (denoted as tj) is known:

mi;j ¼
þ1 if there is a known interaction between di and tj

� 1 otherwise:

(

ð1Þ

Note that in case of these datasets, only the information about the presence of interactions is

explicit, there is no explicit information about the absence of interactions. In particular, the

semantics of mi,j = −1 is that the corresponding drug di and target tj may or may not interact.

In fact, some of the drug–target pairs denoted as −1 actually interact, however, the interaction

was unknown when these datasets were created, roughly 10 years ago. In order to allow for a

fair comparison with other works in the literature, in our experiments reported in Tables 2–4,

we used the original datasets without these “new” interactions.

In order to illustrate that our approach is indeed able to predict unknown interactions, we

show that using the original data, we could predict many of those interactions that have been

discovered meanwhile (Tables 5–7).

Problem formulation

We define the Drug–Target Interaction Prediction problem as follows. We are given a set D ¼
fd1; . . . ; dng of n drugs, a set T ¼ ft1; . . . ; tmg of m pharmaceutical targets, an n × n drug simi-

larity matrix SD
, an m ×m target similarity matrix ST

and an n ×m interaction matrix M. For

Table 2. The performance of our approach, MOLIERE, compared with BLM and weighted profile (WP) with kd =

kt = 5.

Dataset Method AUC AUPR

Enzyme MOLIERE 0.990 0.924

BLM 0.973 0.841

WP 0.955 0.868

Ion Channel MOLIERE 0.990 0.954

BLM 0.970 0.779

WP 0.974 0.837

GPCR MOLIERE 0.974 0.837

BLM 0.953 0.667

WP 0.943 0.648

NR MOLIERE 0.921 0.731

BLM 0.858 0.600

WP 0.886 0.602

https://doi.org/10.1371/journal.pone.0230726.t002

Table 1. Number of drugs, targets and interactions in the datasets used in our study.

Dataset Drugs Targets Interactions

Enzyme 445 664 2926

Ion Channels (IC) 210 204 1476

G-protein coupled receptors (GPCR) 223 95 635

Nuclear Receptors (NR) 54 26 90

https://doi.org/10.1371/journal.pone.0230726.t001
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Table 4. The performance of our approach, MOLIERE, compared with state-of-the-art DTI techniques. The best

results are highlighted using bold font, the symbol •/� denotes whether the difference compared with the best approach

is statistically significant (•) or not (�).

Dataset Method AUC AUPR

Enzyme MOLIERE 0.985 0.897

BLM-NII 0.966 • 0.628 •

BRDTI 0.968 • 0.635 •

HLM 0.966 • 0.832 •

WNN-GIP 0.945 • 0.708 •

NetLapRLS 0.959 • 0.784 •

Ion Channel MOLIERE 0.983 0.912

BLM-NII 0.960 • 0.626 •

BRDTI 0.941 • 0.644 •

HLM 0.980 • 0.867 •

WNN-GIP 0.947 • 0.663 •

NetLapRLS 0.966 • 0.827 •

GPCR MOLIERE 0.952 0.753

BLM-NII 0.929 • 0.387 •

BRDTI 0.925 • 0.521 •

HLM 0.947 � 0.686 •

WNN-GIP 0.928 • 0.513 •

NetLapRLS 0.910 • 0.580 •

NR MOLIERE 0.911 0.683

BLM-NII 0.879 • 0.543 •

BRDTI 0.868 • 0.397 •

HLM 0.864 • 0.576 •

WNN-GIP 0.862 • 0.550 •

NetLapRLS 0.810 • 0.428 •

https://doi.org/10.1371/journal.pone.0230726.t004

Table 3. The performance of our approach, MOLIERE, compared with the cases when using standard linear

regression or logistic regression instead of the proposed regression technique.

Dataset Method AUC AUPR

Enzyme MOLIERE 0.990 0.924

linear regression 0.980 0.924�

logistic regression 0.971 0.870

Ion Channel MOLIERE 0.990 0.954

linear regression 0.982 0.952

logistic regression 0.973 0.891

GPCR MOLIERE 0.974 0.837

linear regression 0.963 0.832

logistic regression 0.917 0.752

NR MOLIERE 0.921 0.731

linear regression 0.888 0.724

logistic regression 0.825 0.676

� In this case, the performance of MOLIERE with ALLR and MOLIERE with linear regression differs in the last digits

that are not shown in the table.

https://doi.org/10.1371/journal.pone.0230726.t003
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Table 5. Top 20 new interactions predicted by our approach, MOLIERE, on the Enzyme dataset. As additional

information, we provide whether the interaction is validated ($) or not (−), and if it was predicted by other DTI

techniques.

Drug Target Val. Also predicted by

1 D00542 hsa1571 $ BLM-NII, HLM, NetLapRLS, WNN-GIP, BRDTI

2 D00528 hsa1549 $ BLM-NII, HLM, NetLapRLS, WNN-GIP

3 D00437 hsa1559 $ BLM-NII, HLM, NetLapRLS, WNN-GIP, BRDTI

4 D00097 hsa5743 $ BLM-NII, NetLapRLS, BRDTI

5 D00139 hsa1543 $ BLM-NII, HLM, NetLapRLS, WNN-GIP

6 D03670 hsa1579 − BLM-NII, HLM, NetLapRLS, WNN-GIP

7 D00574 hsa1589 $ HLM, NetLapRLS, WNN-GIP

8 D03670 hsa9420 − HLM, NetLapRLS, WNN-GIP

9 D00437 hsa1585 $ BLM-NII, HLM

10 D03670 hsa51004 − NetLapRLS

11 D03670 hsa51302 − HLM, NetLapRLS

12 D00410 hsa1543 $ BLM-NII, HLM, NetLapRLS, WNN-GIP

13 D00449 hsa5742 − HLM

14 D00410 hsa1583 $ HLM, NetLapRLS

15 D00947 hsa4129 − −
16 D03670 hsa4353 $ −
17 D05458 hsa4128 $ HLM

18 D00043 hsa1990 $ BLM-NII, WNN-GIP

19 D00043 hsa1991 $ BRDTI

20 D00691 hsa5152 − HLM, NetLapRLS

https://doi.org/10.1371/journal.pone.0230726.t005

Table 6. Top 20 new interactions predicted by our approach, MOLIERE, on the GPCR dataset. As additional infor-

mation, we provide whether the interaction is validated ($) or not (−), and if it was predicted by other DTI

techniques.

Drug Target Val. Also predicted by

1 D00283 hsa:1814 $ BLM-NII, HLM, NetLapRLS, WNN-GIP

2 D04625 hsa:154 $ BLM-NII, HLM, BRDTI

3 D02358 hsa:154 $ BLM-NII, HLM, BRDTI

4 D02614 hsa:154 − BLM-NII, HLM, BRDTI

5 D00110 hsa:1813 − −
6 D00765 hsa:1128 $ BRDTI

7 D00760 hsa:1128 − BRDTI

8 D00604 hsa:147 $ NetLapRLS

9 D02356 hsa:152 − NetLapRLS

10 D00437 hsa:152 − HLM, NetLapRLS, WNN-GIP

11 D02147 hsa:153 $ BLM-NII, HLM, BRDTI

12 D00095 hsa:155 $ BLM-NII, HLM

13 D02359 hsa:153 − BLM-NII, BRDTI

14 D00397 hsa:1131 $ −
15 D00726 hsa:1129 $ −
16 D00255 hsa:152 $ HLM, NetLapRLS

17 D04375 hsa:151 $ −
18 D01103 hsa:1129 $ −
19 D05792 hsa:153 $ BRDTI

20 D01386 hsa:153 $ BRDTI

https://doi.org/10.1371/journal.pone.0230726.t006
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some of the drug–target pairs the presence or absence of interaction is unknown (or simulated

to be unknown in order to evaluate our approach). The task is to predict the likelihood of

interaction for these unknown pairs.

At the first glance, the above DTI problem seems to be similar to the problems considered

in the recommender systems community. Note, however, that most recommender techniques

consider only the interactions (“ratings”) because even a few ratings are thought to be more

informative than metadata, such as users’ similarity based on their demographic information

[34]. In contrast, drug–drug and target–target similarities play an essential role in DTI.

Bipartite local models

BLM considers DTI as a link prediction problem in bipartite graphs [28]. The vertices in one

of the vertex classes correspond to drugs, whereas the vertices in the other vertex class corre-

spond to targets. There is an edge ei,j between drug di and target tj if and only if mi,j = 1.

The likelihood of unknown interactions is predicted as follows: we consider an unknown

pair ui,j = (di, tj) and calculate the likelihood of interaction as the aggregate of two independent

predictions.

The first prediction, called drug-centric prediction (Fig 1, left panel), is based on the rela-

tions between di and the targets. Each target tk (except tj) is labelled as “+ 1” or “−1” depending

on mi, k. Then a model is trained to distinguish “+ 1”-labelled and “−1”-labelled targets. Subse-

quently, this model is applied to predict the likelihood of interaction for the unknown pair ui,j.
This first prediction is denoted by ŷ 0i;j. (When describing BLM, in accordance with our data,

we assumed that only the information about the presence of an interaction is explicit, and

therefore we train the model to distinguish known interacting pairs from pairs with unknown

Table 7. Top 20 new interactions predicted by our approach, MOLIERE, on the IC dataset. As additional informa-

tion, we provide whether the interaction is validated ($) or not (−), and if it was predicted by other DTI techniques.

Drug Target Val. Also predicted by

1 D00438 hsa:779 $ BLM-NII, HLM, BRDTI

2 D00294 hsa:10060 − BLM-NII

3 D00552 hsa:6331 $ HLM, NetLapRLS

4 D00542 hsa:3736 − −
5 D00649 hsa:8911 $ −
6 D00726 hsa:1138 − BLM-NII, HLM, NetLapRLS, WNN-GIP

7 D03365 hsa:1137 $ HLM

8 D02098 hsa:8645 − BLM-NII

9 D00538 hsa:6331 $ HLM, NetLapRLS

10 D00136 hsa:116443 − −
11 D00349 hsa:773 − BLM-NII, HLM

12 D00640 hsa:6336 $ HLM, NetLapRLS

13 D02356 hsa:6833 − NetLapRLS

14 D00438 hsa:781 − HLM

15 D00547 hsa:2570 − BLM-NII, WNN-GIP

16 D00528 hsa:1080 − BLM-NII

17 D00477 hsa:6336 $ BLM-NII, HLM, BRDTI

18 D00775 hsa:2898 $ BLM-NII

19 D00799 hsa:3782 − BRDTI

20 D00638 hsa:8645 − −

https://doi.org/10.1371/journal.pone.0230726.t007
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status. In contrast, if both known interacting and known non-interacting drug–target pairs are

given, one may train the model using only the known interacting and known non-interacting

pairs).

The second prediction, called target-centric prediction, ŷ 00i;j, is obtained similarly, but instead

of considering the interactions of drug di and labelling the targets, the interactions of target tj
are considered and drugs are labelled (Fig 1, right panel). The models that make the first and

second predictions are called drug-centric and target-centric local models.
In order to obtain the final prediction of BLM, we average the predictions of the aforemen-

tioned local models:

ŷi;j ¼
ŷ 0i;j þ ŷ 00i;j

2
ð2Þ

Note that instead of averaging, other aggregation functions, such as minimum or maximum

are possible as well. According to our observations, our approach achieves most accurate

results when the two predictions are averaged. However, the effect of the aggregation function

can be considered as minor: when we repeated our experiments reported in Table 4 with min
and max aggregation functions, we observed that our approach consistently outperformed its

competitors for all the three aggregation functions. For example, on the GPCR dataset, our

approach achieved an AUPR of 0.737 and 0.730 using min and max respectively, whereas we

obtained an AUPR of 0.753 in case of averaging the two predictions.

BLM is a generic framework in which various regressors or classifiers can be used as local

models. For example, Bleakley and Yamanishi [28] used support vector machines with a

domain-specific kernel, whereas Buza and Peška used a hubness-aware regressor [19]. In our

current work, we use BLM with asymmetric loss linear regression which will be described in

the next section.

Fig 1. Predictions with BLM. Two predictions are calculated for the likelihood of each unknown interaction, i.e., for the presence of an edge ei,j. When

calculating the first (second, respectively) prediction, targets (drugs, respectively) are labelled, and a local model is trained using these labels.

Subsequently, the local model is used to predict the likelihood of the interaction between di and tj.

https://doi.org/10.1371/journal.pone.0230726.g001
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Asymmetric loss models

Local models are the heart of BLM. Next, we propose a new regression technique that we use

as a local model.

Given a regression model fθ where θ is the vector of parameters, fθ estimates the value of the

target y for an instance x as ŷ ¼ fyðxÞ. In order to determine the appropriate parameter values

θ�, usually, a loss function LD(θ) is minimised:

y
�
¼ argmin

y
LDðyÞ: ð3Þ

Note that the actual value of LD(θ) depends both on the dataset D and parameters θ. How-

ever, once the dataset is fixed, in particular, while the model is being trained using a given

training dataset D, the loss can be seen as a function of the parameter vector θ. Therefore, we

aim at finding parameters θ� that minimise the loss. A wide-spread loss function is mean
squared errors:

LDðyÞ ¼
1

jDj

X

ðx;yÞ2D
ðfyðxÞ � yÞ2; ð4Þ

where |D| is the number of instances in D.

While the sum of squared errors is popular, we argue that in case of DTI, it is not fully con-

sistent with the underlying chemical reality. In particular, binding energy may be different for

various interactions. Consequently, in case of the presence of an interaction (y = + 1), we

should not penalise a model that predicts a score that is higher than + 1. Similarly, in case of an

unknown interaction (y = −1), we do not want to penalise a model that predicts a score that is

lower than −1. Therefore, we propose an asymmetric loss function. First, we define the error of

the model fθ for a single prediction fθ(x), for instance x with label y as

errðfy; x; yÞ ¼

0 if fyðxÞ > þ1 and y ¼ þ1

0 if fyðxÞ < � 1 and y ¼ � 1

ðfyðxÞ � yÞ2 otherwise:

8
>>><

>>>:

ð5Þ

We define mean asymmetric loss (MAL) as the mean of the above errors for all instances of

the dataset D:

MALDðyÞ ¼
1

jDj

X

ðx;yÞ2D
errðfy; x; yÞ: ð6Þ

The above loss can be minimised with various optimisation techniques ranging from gradi-

ent-based methods to more advanced approaches, see e.g. [35]. For simplicity, we decided to

use gradient descent. The partial derivative
@MALDðyÞ

@y
of MALD(θ) is:

@MALDðyÞ

@y
¼

1

jDj

X

ðx;yÞ2D

@errðfy; x; yÞ
@y

; ð7Þ
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where

@errðfy; x; yÞ
@y

¼

0 if fyðxÞ > þ1 and y ¼ þ1

0 if fyðxÞ < � 1 and y ¼ � 1

2 fyðxÞ � yð Þ
@fyðxÞ
@y

otherwise:

8
>>>>><

>>>>>:

ð8Þ

In case of linear regression where x = (x1, . . ., xk), θ = {w0, w1, . . .wk}, and the model is

fyðxÞ ¼ w0 þ
Pk

i¼1
wixi, the partial derivatives of err(fθ, x, y) according to wi, 1� i� k, are

@errðfy; x; yÞ
@wi

¼

0 if fyðxÞ > þ1 and y ¼ þ1

0 if fyðxÞ < � 1 and y ¼ � 1

2ðfyðxÞ � yÞxi otherwise;

8
>>><

>>>:

ð9Þ

while the partial derivative according to w0 is

@errðfy; x; yÞ
@w0

¼

0 if fyðxÞ > þ1 and y ¼ þ1

0 if fyðxÞ < � 1 and y ¼ � 1

2ðfyðxÞ � yÞ otherwise:

8
>>><

>>>:

ð10Þ

We propose to use stochastic gradient descent to optimise MALD. The pseudocode of the

resulting asymmetric loss linear regression (ALLR) is shown in Fig 2.

Weighted profile

One of the shortcomings of the BLM approach is that it does not handle the case of new drugs/

targets. With new drug (or new target, respectively), we mean a drug d (target t) that does not

have any known interaction in the (training) data. In such cases, BLM labels all targets (drugs)

as “−1”, consequently, no reasonable local model can be learned. In order to alleviate this prob-

lem, we use the weighted profiles [17] of the most similar drugs/targets to obtain predictions

for new drugs/targets.

Given a new drug di, and a target tj, we predict the likelihood of the interaction between di
and tj as follows:

ŷ 0i;j ¼

X

r2ND
ðdiÞ

mr;jS
D
i;r

X

r2ND
ðdiÞ

SD
i;r

; ð11Þ

where N D
ðdiÞ denotes the set of indices of the kd most similar drugs to di (not including di

itself) based on the drug–drug similarities SD
.

The intuition behind Eq (11) is that similar drugs are likely to behave similarly in terms of

their interaction with a given target. Therefore, drugs are weighed according to their similarity

to the new drug di and we calculate the weighted average of the known interactions of other

drugs with the same target.

The case of new targets is analogous. Given a new target tj and a drug di, the weighted pro-

file approach can be used to calculate the prediction for the likelihood of the interaction
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between di and tj as follows:

ŷ 00i;j ¼

P

r2N T
ðtjÞ

mi;rS
T
j;r

P

r2N T
ðtjÞ

ST
j;r

; ð12Þ

where N T
ðtjÞ denotes the set of indices of the kt most similar targets to tj (not including tj

itself) based on the target-target similarities ST
.

Although the weighted profile approach is more general than BLM, in the sense that it can

be used for new drugs/targets as well, the predictions of the weighted profile approach are usu-

ally less accurate than the predictions of BLM. Therefore, we use the weighted profile approach

instead of BLM only in case of new drugs and targets.

Our approach

We summarise our approach as follows. We use BLM for drug–target interaction prediction

with the proposed asymmetric loss linear regression as local model in cases when the corre-

sponding drug (target) has at least one known interaction and therefore the local model has at

least one positive training instance. When initialising the parameters of ALLR, we use σ =

10−8. We train each ALLR model with a learning rate η = 10−3 for e = 100 epochs. According

to our observations, ALLR is robust in the sense that the aforementioned settings allowed

Fig 2. Pseudocode of asymmetric loss linear regression (ALLR).

https://doi.org/10.1371/journal.pone.0230726.g002
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ALLR to converge to a model that outperformed other DTI techniques on all the examined

datasets (see Table 4).

While predicting the interaction score between drug d and target t with ALLR, we represent

each drug (target) as a vector of its similarities to all the drugs (targets) and its interactions,

except the interactions with t (or d respectively), because the interactions with d (t) serve as

labels for the local models, see Fig 3 for an illustration.

In case of new drugs (targets), we predict the likelihood of interactions using the weighted

profile approach with kd = kt = 5.

Results

Comparison with baselines

As our approach, MOLIERE, is based on BLM, and uses weighted profile (WP) in case of new

interactions, first, we compared the performance of MOLIERE to that of the original BLM and

WP according to the widely used leave-one-interaction-out cross-validation protocol, see e.g.

[28, 30, 31].

The predictions were evaluated both in terms of Area Under ROC Curve (AUC) and Area

Under Precision-Recall Curve (AUPR). Table 2 shows that MOLIERE clearly outperforms

both BLM and WP, both in terms of AUC and AUPR.

Fig 3. Representation of drugs and targets and labels of local models. In this example, the prediction is made for the interaction denoted by the

question mark. Similarities with all drugs (targets, respectively) and interactions with all the targets (drugs), except the interactions with the target (drug)

corresponding to the question mark, are used as features. The interactions with the target (drug) corresponding to the question mark are used as labels

of the local models. Tables on the right represent the data used by the local model, i.e., ALLR in our case.

https://doi.org/10.1371/journal.pone.0230726.g003
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As the proposed asymmetric loss linear regression is a key component of MOLIERE, we

examined the performance in case of alternative regression techniques, in particular we exam-

ined the cases when we use (a) standard linear regression and (b) logistic regression instead of

ALLR. As expected, the proposed asymmetric loss linear regression indeed improves the qual-

ity of predictions, see Table 3.

Comparison with recent DTI techniques

We compared MOLIERE with state-of-the-art drug–target interaction prediction techniques:

two recent versions of BLM and three further prominent DTI approaches. The former include

BLM with neighbour-based interaction-profile inferring (BLM-NII) [31] and hubness-aware

regressors as local models (HLM) [19], while the later refer to net Laplacian regularized least

squares (NetLapRLS) [29], a combination of weighted nearest neighbour and Gaussian inter-

action profile kernels (WNN-GIP) [36], and Bayesian Ranking for Drug–Target Interaction

Prediction (BRDTI) [20].

Pahikkala et al. [37] pointed out that leave-one-out cross-validation may lead to overopti-

mistic results. Therefore, in this section, we used the interaction-based 5 × 5-fold cross-valida-

tion protocol, i.e., 5-fold cross-validation is repeated 5-times with different initial data splits.

In each of the 5 × 5 rounds of the cross-validation, one fifth of the drug–target pairs were in

the test data and AUC and AUPR values were calculated. The reported results are averaged val-

ues. In order to judge if the observed differences are statistically significant, we used paired t-
test with significance threshold of p = 0.01.

Essential hyperparameters of BLM-NII, HLM, WNN-GIP, NetLapRLS and BRDTI were

learned via grid-search in internal 5-fold cross-validation on the training data. For other

hyperparameters that are not expected to have major impact on the results, we used default

values according to the publication in which the approach was published.

In particular, for BLM-NII, as proposed by Mei et al. [31], the max function was used to

generate final predictions and the weight α for the combination of structural and collaborative

similarities was learned from {0.0, 0.1, . . ., 1.0}.

In case of HLM, according to [19], we performed experiments with N = 25 base prediction

models, while the number of nearest neighbours for the local model ECkNN and the number

of selected features, were learned from {3, 5, 7} and {10, 20, 50} respectively.

The decay hyperparameter of WNN-GIP was learned from {0.1, 0.2, . . ., 1.0} and the weight

α for combination of structural and collaborative similarities was learned from {0.0, 0.1, . . .,

1.0}.

The hyperparameters of NetLapRLS (β = βdrug = βtarget and γ = γdrug = γtarget), were learned

from {10−6, 10−5, . . ., 102}.

The content regularisation λc of BRDTI was learned from {0.1, 0.5, 0.9, 1.5}. The number of

latent factors f, number of iterations, global regularisation λg and initial learning rate η were

set to 100, 50, 0.01 and 0.1 respectively.

The results are shown in Table 4 and Fig 4 which show the precision-recall curves for

MOLIERE and its competitors. Our approach, MOLIERE, outperforms all the examined com-

petitors in case of Enzyme, Ion Channel, GPCR and NR datasets, both in terms of AUC and

AUPR. In the vast majority of the cases, the difference is statistically significant.

The results indicate that our approach, MOLIERE, is the overall best-performing approach

out of the examined DTI techniques.
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Prediction of new interactions

In order to demonstrate that our approach is able to predict new interactions, we followed the

same protocol as in [19], i.e., we trained our approach, MOLIERE, as well as its competitors,

BLM-NII, HLM, NetLapRLS and WNN-GIP using all the interactions of the original datasets.

As mentioned before, these datasets have been extracted roughly a decade ago and several

additional interactions have been validated meanwhile. Our experiment aims to check whether

these recently validated interactions can be predicted based on the original interactions.

In particular, we considered those drug–target pairs that have unknown interaction status

in the original datasets. We ranked these pairs according to their predicted interaction scores.

For simplicity, we use the term predicted interaction for the top-ranked 20 drug–target pairs.

Fig 4. Precision-recall (PR) curves (averaged over the 5 × 5 folds of the cross-validation). As one can see, our approach, MOLIERE consistently

outperforms its competitors: the PR-curve of MOLIERE is consistently above the PR-curves of its competitors.

https://doi.org/10.1371/journal.pone.0230726.g004
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We say that a predicted interaction is validated if it is included in the current version of KEGG

[38], DrugBank [39] or Matador [40].

The results are shown in Tables 5–7 for Enzyme, GPCR and IC datasets (for drug and target

identifiers, see: http://www.kegg.jp/). As one can see, many of the predicted interactions are

validated. We point out that some of the validated interactions were only predicted by our

approach, especially in case of the GPCR dataset.

MOLIERE for drug repurposing

In order to illustrate how our predictions may contribute to drug repurposing, we discuss

some of the predicted interactions in more details.

First, we consider Diazoxide (KEGG ID: D00294) and “adenosine triphosphate binding

cassette, sub-family C member 9” (ABCC9), also known as “sulfonylurea receptor 2” (SUR2)

(KEGG ID: hsa:10060), i.e., the second predicted interaction listed in Table 7. According to

KEGG, Diazoxide is an adenosine triphosphate (ATP) sensitive potassium channel opener. It

opens potassium channel in beta cells of the pancreas and causes insulin secretion inhibition

thus elevating blood sugar level. It is used in insulinoma [41] and congenital hyperinsulinism

[42]. Diazoxide treatment can cause pulmonary hypertension and relax smooth muscle [43].

ABCC9 gene encodes a protein that is a subunit of an ATP sensitive potassium channel (ATP-

binding cassette transporter) [44]. It is expressed in skeletal and heart muscle and in smooth

muscles of the vasculature [44]. Mutation of the gene can cause dilated cardiomyopathy type

10 [45], and reduced cardiac stress adaptation [44]. ABCC9 knock-out mice showed elevated

blood pressure and coronary artery vasospasm [46]. Other mutations of the ABCC9 gene

(https://omim.org/entry/601439) can cause familial atrial fibrillation type 12 and hypertricho-

tic osteochondrodysplasia (Cantú syndrome) [47]. Diazoxide is not used in the treatment of

these diseases. However, as Diazoxide can open the ATP sensitive potassium channel, it would

be worth to examine the possible usage of Diazoxide in some ABCC9 gene defects where the

transporter still can be activated to some extent.

Next, we consider the predicted interaction between Isradipine (KEGG ID: D00349) and

“Calcium Voltage-Gated Channel Subunit Alpha1 A” (CACNA1A), also known as “spinocere-

bellar ataxia type 6” (SCA6) (KEGG ID: hsa:773), listed in the 11th line of Table 7. According

to KEGG, Isradipine is an L type dihydropyridine calcium channel blocker that is used in

hypertension. CACNA1A gene encodes the alpha-1A subunit of P/Q type voltage-dependent

calcium channel. Mutations of this gene can cause spinocerebellar ataxia, early infantile epilep-

tic encephalopathy, episodic ataxias, hemiplegic migraine and hemiconvulsion-hemiplegia-

epilepsy syndrome. Some mutations of the gene increases the density of functional channels

and their open probabilities in familial hemiplegic migraine [48]. Since our method takes into

consideration the similarity of the two different calcium channels, it may be worth to try Isra-

dipine inhibition of the P/Q type voltage-dependent calcium channel in experimental settings.

Finally, we consider the predicted interaction between Caffeine (KEGG ID: D00528) and

Cystic fibrosis transmembrane conductance regulator (CFTR, KEGG ID: hsa:1080), listed in

the 16th line of Table 7. Caffeine is a central nervous system stimulant, adenosine receptor

antagonist and phosphodiesterase inhibitor (1). CFTR is a chloride channel that conducts

chloride ions in lung, pancreas, liver, digestive tract and reproductive tract epithelial cell mem-

branes. According to KEGG, gene mutations can cause cystic fibrosis (CF), hereditary pancre-

atitis and congenital bilateral absence of vas deferens. In rats caffeine intake increased CFTR

chloride secretion in intestine [49]. Although, caffeine consumption is basically not recom-

mended for CF patients, if some of the patients actually drink coffee, it would be interesting to

compare their disease status with other CF patients not drinking coffee. Such a survey should
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be carefully designed in order to avoid biases. For example, the number of patients involved in

the study should be large enough, one should take into account that people who have more

sever disease may pay more attention to the health and lifestyle suggestions, while the type of

mutations is also important.

Conclusion

In this paper, we focused on drug–target interaction prediction and proposed a new method,

MOLIERE for this task. Despite the fact that MOLIERE is a relatively simple approach, experi-

ments on real-world datasets show that MOLIERE outperforms state-of-the-art DTI methods.

By discussing some of the predictions in detail, we showed how our approach may lead to

medically relevant hypothesis and support drug repositioning.

As mentioned, the DTI problem shares inherent characteristics with recommender systems

tasks, therefore, we expect that MOLIERE will be adapted for recommendation tasks in the

future. Furthermore, we point out that the proposed framework of asymmetric loss models is

not limited to drug–target interaction prediction, but it may be useful in other cases where the

class label is originally continuous (due to the underlying physical, chemical, biological phe-

nomena), but it has been transformed to a binary label.

As for the limitations of our study, we note that our approach is not designed to predict

interactions in case of new drugs/targets, i.e., for drugs/targets for which not even one interac-

tion is known. In our current work, we assumed that only few new drugs/targets are consid-

ered, and we used the simple weighted profile approach in this case. Therefore, further

methodical enhancements are required, if predictions are desired for new drugs/targets.
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