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Abstract: Low-frequency electron paramagnetic resonance (EPR) is used to extract the EPR parameter
A-mid and support the approximate X-band value of g-mid for Ba(CoyZn1/3−yTa2/3)O3. Although
the cobalt hyperfine structure for the |±1/2〉 state is often unresolved at X-band or S-band, it is
resolved in measurements on this compound. This allows for detailed analysis of the molecular
orbital for the |±1/2〉 state, which is often the ground state. Moreover, this work shows that the EPR
parameters for Co substituted into Zn compounds give important insight into the properties of zinc
binding sites.

Keywords: electron paramagnetic resonance; EPR; multifrequency EPR; high-spin cobalt complex;
resolution of A-mid

1. Introduction

The electron paramagnetic resonance (EPR) parameters of high-spin cobalt(II) (Co2+) complexes
in small molecules and enzymes consist of g-values, zero field splitting parameters D and E/D,
and sometimes resolution of the Co hyperfine for the |± 3/2〉 doublet; most often, they do not include
resolution of the Co hyperfine for the | ± 1/2〉 doublet [1–3]. Copper hyperfine and superhyperfine
lines, particularly the hyperfine lines about g-parallel, are better resolved at low frequencies due to less
g- and A-strain [4–7]. To the best of our knowledge, this is the first paper to show that the hyperfine
lines for high-spin Co for the Co site in Co-doped barium zinc tantalite (BZT) (i.e., Ba(Zn1/3Ta2/3)O3)
are resolved for the | ± 1/2〉 doublet at low frequencies. The determination of Co A-mid provides
an EPR parameter that is more sensitive to adduct formation and the electron density distribution
in the | ± 1/2〉 state. It is anticipated that recording hyperfine values due to the better resolution
at low frequency along with a more accurate determination of the geff-mid value would lead to the
classification of types of cobalt sites and to identification of nitrogen, oxygen, and sulfur donor atoms,
as is done for cupric sites [5]. Then, A-mid for Co could be used to characterize zinc (Zn) sites, where Co
is substituted for Zn.

2. Results and Discussion

2.1. No Resolvable Hyperfine Structure at X-Band

EPR spectra were obtained for Ba[(Zn1−yCoy)1/3Ta2/3]O3, where y is 0.03. The X-band spectrum
gives a central geff value of 4.76 and possibly exchange-narrowed and/or dipolar-broadened lines for
the interaction of the nearest neighbors, but the Co hyperfine structure is unresolved (Figure 1) [8].
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Figure 1. X-band (9.488 GHz) spectrum at 12 K for Co-doped barium zinc tantalate (BZT); eight short 
vertical lines for expected but unresolved Co hyperfine lines; vertical lines with arrows may depict 
exchange-narrowed and/or dipolar-broadened lines for the interaction of the nearest neighbors. Weak 
lines at g = [9.39 and 2.26] are not assigned. 

2.2. Cobalt Hyperfine Lines Resolved at Low Frequencies: S-Band and L-Band 

The S-band spectrum (3.216 GHz) has four of eight resolved Co hyperfine lines, for which a geff-
mid value of 4.76 and an A-mid of 65 G (432 MHz) are readily apparent (Figure 2). A simulation using 
EasySpin and a least squares fitting routine gives geff values [4.83, 4.56, 2.14] and A values [432, 402, 
130 MHz] (Figure 2). The simulation is consistent with, but not proof of, the parameters for the 
experimental spectrum, because other parameters such as line width variation, Euler angles, etc., are 
not included and the simulation may not be unique. The number of variables is underdetermined for 
three multifrequency spectra. Simulations suggest that the structure is slightly rhombic, but the geff 
value of 4.76 confirms that E/D falls close to the tetragonal value. Nevertheless, clear values for geff-
mid and A-mid are obtained. A geff value of 4.8 suggests that the g-mid and A-mid are for the | ± 1/2〉 
state from the rhombogram [9]. 

Figure 1. X-band (9.488 GHz) spectrum at 12 K for Co-doped barium zinc tantalate (BZT); eight short
vertical lines for expected but unresolved Co hyperfine lines; vertical lines with arrows may depict
exchange-narrowed and/or dipolar-broadened lines for the interaction of the nearest neighbors. Weak
lines at g = [9.39 and 2.26] are not assigned.

2.2. Cobalt Hyperfine Lines Resolved at Low Frequencies: S-Band and L-Band

The S-band spectrum (3.216 GHz) has four of eight resolved Co hyperfine lines, for which a
geff-mid value of 4.76 and an A-mid of 65 G (432 MHz) are readily apparent (Figure 2). A simulation
using EasySpin and a least squares fitting routine gives geff values [4.83, 4.56, 2.14] and A values [432,
402, 130 MHz] (Figure 2). The simulation is consistent with, but not proof of, the parameters for the
experimental spectrum, because other parameters such as line width variation, Euler angles, etc.,
are not included and the simulation may not be unique. The number of variables is underdetermined
for three multifrequency spectra. Simulations suggest that the structure is slightly rhombic, but the
geff value of 4.76 confirms that E/D falls close to the tetragonal value. Nevertheless, clear values for
geff-mid and A-mid are obtained. A geff value of 4.8 suggests that the g-mid and A-mid are for the
| ± 1/2〉 state from the rhombogram [9].
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Figure 2. S-band (3.216 GHz) spectrum (black) for Co-doped BZT at 17 K. Exp: 28 dB, 5 G mod., time 
constant 0.1285 s. Simulation (red): EasySpin, least squares, simplex, geff = [4.83, 4.56, 2.14], A = [432, 
402, 130 (fixed) MHz], HStrain = [200, 200, 200 MHz]. 

The L-band spectrum is well resolved but complicated (Figure 3). None of the splittings between 
the resolved lines directly correspond to the 65 G for A-mid obtained at S-band, presumably from the 
overlap of lines. It is difficult to determine whether the resolved lines are S-shaped, as would be 
obtained for geff-mid and A-mid, or hills and valleys, as would be obtained for the low- and high-field 
EPR parameters. The second harmonic of the L-band spectrum was measured to accurately 
characterize the line shape (Figure 3), as it does very well for sharp lines. Starting with parameters 
from S-band, a simulation (red spectrum) was obtained using EasySpin with least squares fitting by 
Monte Carlo (Figure 3). The EPR parameters obtained are geff = [5.04, 4.01, 2.14], where 2.14 is 
arbitrarily fixed, i.e., set without resolved or even unresolved lines, and A = [472, 393, 130 (fixed) 
MHz]. A-max from the simulation equals 67 G and A-mid equals 67 G; these are in good agreement 
with the S-band value of 65 G. The simulation is also consistent with the experimental parameters 
(Table 1). It is noted that the simulations come with a warning that there are looping transitions and 
possible discontinuities at the ends of the spectrum. Looping transitions occur when S = 3/2 and pairs 
of non-crossing levels vary nonlinearly with the magnetic field [10]. A single pair of energy levels is 
in resonance before and after a crossing or near-crossing [11]. However, the agreement with the 
experimental spectrum is evidence that the simulated parameters are sensitive to geff and A values. 

Figure 2. S-band (3.216 GHz) spectrum (black) for Co-doped BZT at 17 K. Exp: 28 dB, 5 G mod., time
constant 0.1285 s. Simulation (red): EasySpin, least squares, simplex, geff = [4.83, 4.56, 2.14], A = [432,
402, 130 (fixed) MHz], HStrain = [200, 200, 200 MHz].

The L-band spectrum is well resolved but complicated (Figure 3). None of the splittings between
the resolved lines directly correspond to the 65 G for A-mid obtained at S-band, presumably from
the overlap of lines. It is difficult to determine whether the resolved lines are S-shaped, as would
be obtained for geff-mid and A-mid, or hills and valleys, as would be obtained for the low- and
high-field EPR parameters. The second harmonic of the L-band spectrum was measured to accurately
characterize the line shape (Figure 3), as it does very well for sharp lines. Starting with parameters from
S-band, a simulation (red spectrum) was obtained using EasySpin with least squares fitting by Monte
Carlo (Figure 3). The EPR parameters obtained are geff = [5.04, 4.01, 2.14], where 2.14 is arbitrarily fixed,
i.e., set without resolved or even unresolved lines, and A = [472, 393, 130 (fixed) MHz]. A-max from
the simulation equals 67 G and A-mid equals 67 G; these are in good agreement with the S-band value
of 65 G. The simulation is also consistent with the experimental parameters (Table 1). It is noted that
the simulations come with a warning that there are looping transitions and possible discontinuities at
the ends of the spectrum. Looping transitions occur when S = 3/2 and pairs of non-crossing levels vary
nonlinearly with the magnetic field [10]. A single pair of energy levels is in resonance before and after
a crossing or near-crossing [11]. However, the agreement with the experimental spectrum is evidence
that the simulated parameters are sensitive to geff and A values.
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Figure 3. L-band (1.362 GHz) spectrum (black, top) at 16.7 K. Exp: 28 dB, 5 G mod., time constant 
0.128 s; second harmonic (black, bottom) 1% Bessel function using Sumspc, see Section 3.2 for details; 
Simulation (red), EasySpin, least squares, Monte Carlo: g = [5.04, 4.01, 2.14 (fixed)], A = [472, 393, 130 
(fixed) MHz]. 

Table 1. Electron paramagnetic resonance A-mid values and geff for Co-doped BZT from spectra and 
simulations. 

 g-max g-mid A-max A-mid 
X-band (9.488 GHz, exp) ------ 4.76 ------ ------ 
S-band (3.216 GHz, exp) ------ 4.76 ------ 64.9 G 
S-band (3.216 GHz, sim) 4.83 4.56 63.8 G 63.0 G 
L-band (1.362 GHz, sim) 5.04 4.01 66.9 G 67.0 G 

2.3. Summary 

A-mid and geff-mid from low-frequency spectra for Ba[(Zn1−yCoy)1/3Ta2/3]O3, where y is 0.03, were 
determined from the experimental S-band spectrum and from simulations of S-band and L-band EPR 
spectra. It was estimated that E/D from a rhombogram is less than or equal to 0.1, indicating that the 
crystal field is tetragonal, almost octahedral. This study shows that the Co hyperfine value can be 
obtained for the | ± 1/2〉 ground state for high-spin Co2+ complexes. This is the first Co site for which 
we have resolved both S-band and L-band hyperfine spectra. Thus, these spectra for Co-doped BZT 
serve as a model for Co complexes where the Co hyperfine is resolved at L-band but not S-band, as 
is usually found in other complexes [12,13]. It is suggested that EPR values for A-mid will be a more 
sensitive parameter for determining the coordination of and differences in the coordination of high-
spin Co complexes. Zn sites outnumber cobalt sites and other metal sites in metalloenzymes [2]. 

Figure 3. L-band (1.362 GHz) spectrum (black, top) at 16.7 K. Exp: 28 dB, 5 G mod., time constant
0.128 s; second harmonic (black, bottom) 1% Bessel function using Sumspc, see Section 3.2 for details;
Simulation (red), EasySpin, least squares, Monte Carlo: g = [5.04, 4.01, 2.14 (fixed)], A = [472, 393, 130
(fixed) MHz].

Table 1. Electron paramagnetic resonance A-mid values and geff for Co-doped BZT from spectra
and simulations.

g-max g-mid A-max A-mid

X-band (9.488 GHz, exp) —— 4.76 —— ——
S-band (3.216 GHz, exp) —— 4.76 —— 64.9 G
S-band (3.216 GHz, sim) 4.83 4.56 63.8 G 63.0 G
L-band (1.362 GHz, sim) 5.04 4.01 66.9 G 67.0 G

2.3. Summary

A-mid and geff-mid from low-frequency spectra for Ba[(Zn1−yCoy)1/3Ta2/3]O3, where y is 0.03,
were determined from the experimental S-band spectrum and from simulations of S-band and L-band
EPR spectra. It was estimated that E/D from a rhombogram is less than or equal to 0.1, indicating
that the crystal field is tetragonal, almost octahedral. This study shows that the Co hyperfine value
can be obtained for the | ± 1/2〉 ground state for high-spin Co2+ complexes. This is the first Co
site for which we have resolved both S-band and L-band hyperfine spectra. Thus, these spectra for
Co-doped BZT serve as a model for Co complexes where the Co hyperfine is resolved at L-band
but not S-band, as is usually found in other complexes [12,13]. It is suggested that EPR values for
A-mid will be a more sensitive parameter for determining the coordination of and differences in the
coordination of high-spin Co complexes. Zn sites outnumber cobalt sites and other metal sites in
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metalloenzymes [2]. Substitution of cobalt for zinc provides a paramagnetic site using the ligands
for a non-paramagnetic zinc site or using the same ligands plus one or two ligands by, for example,
expanding a four-coordinate tetrahedral site to a five- or six-coordinate site [2]. Perhaps the most
important use of cobalt EPR may be as a substitute to probe zinc sites.

3. Materials and Methods

The methods to obtain the microwave ceramic, Co-doped BZT (Co-doped Ba(Zn1/3Ta2/3)O3), are
given in reference [8].

3.1. Molecular Structure

Co2+ ions are substituted for Zn2+ in Ba(Zn1/3Ta2/3)O3 [8]. The Co2+ ions are in a slightly distorted
octahedral crystal field, and the ground state has symmetry T1g.

3.2. EPR Spectrometers

Data were obtained from a low-frequency spectrometer station assembled at the National
Biomedical EPR Center at the Medical College of Wisconsin (Milwaukee, WI, USA). The station
incorporates an in-house-built L-band (1–2 GHz) bridge, Varian V-7200 Electromagnet, Varian V-7700
Magnet Power Supply, and Bruker BH-15 Magnetic Field Controller. The 100 KHz field modulation
and signal phase-sensitive detection were provided by a Varian E-109 System EPR console. EPR signals
from the phase-sensitive detector were recorded on a PC with Windows 7 running a custom LabVIEW
program. The program also controlled the BH-15 Field Controller and performed multiple-scan signal
averaging, when needed.

The L-band bridge in the spectrometer utilizes a low-phase-noise, mechanically and electronically
tunable fundamental transistor oscillator capable of 50 mW power output to the sample resonator
port at 0 dB main power attenuator setting. A loop-gap resonator was used to collect samples [6,7].
The oscillator microwave frequency was locked to the sample resonator frequency by a 70 KHz
automatic frequency control system in the bridge, operating through the electronic tuning port of the
oscillator. A low-noise amplifier in the microwave signal receiver prior to signal mixing improved the
overall bridge sensitivity.

L-band simulations were completed assuming that S = 1/2 using an online version of
EasySpin [14]. Starting with parameters from S-band, A-max, A-mid, g-max, and g-mid were varied
over a weekend using the Monte Carlo option. The second harmonic was obtained using the SUMSPC
program developed by J. Ratke at the National Biomedical EPR Center at the Medical College of
Wisconsin (Milwaukee, WI, USA). Sumspec is available at no cost from the National Biomedical EPR
Center (Milwaukee, WI, USA).

S-band spectra (3.2 GHz) were acquired using a loop-gap resonator, which is one of the
spectrometers housed at the National Biomedical EPR Center at the Medical College of Wisconsin
(Milwaukee, WI, USA) [6,7]. The hyperfine constant for Co at S-band was obtained by taking the value
from the spectrum assuming an S-shaped line (Figure 2). The g value was obtained by taking the center
of the eight-line pattern of which four lines are resolved (Figure 2). The geff values were set at g = [4.76,
4.76, 2.14] and A = [432, 432, 100]. The first Amin and Amid were fit using the Nelder/Med simplex least
squares routine from EasySpin; then, gmin and gmid were varied, assuming a spin of S = 1/2.

X-band spectra were obtained at Marquette University (Milwaukee, WI, USA) using an updated
EMX spectrometer and a Bruker cryogen-free system. The only parameter taken from the X-band
spectrum was the g value at the center of the S-shaped line, g = 4.76 (Figure 1), as calculated from the
resonant frequency from the frequency counter and the magnetic field at the center of this line.
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