
Wang et al. BMC Cancer          (2022) 22:879  
https://doi.org/10.1186/s12885-022-09927-0

RESEARCH

Construction of immune-related signature 
and identification of S100A14 determining 
immune-suppressive microenvironment 
in pancreatic cancer
Chengcheng Wang†, Yuan Chen*†, Yin Xinpeng†, Ruiyuan Xu, Jianlu Song, Rexiati Ruze, Qiang Xu* and 
Yupei Zhao* 

Abstract 

Pancreatic cancer (PC) is a highly lethal and aggressive disease with its incidence and mortality quite discouraging. A 
robust prognostic signature and novel biomarkers are urgently needed for accurate stratification of the patients and 
optimization of clinical decision-making. Since the critical role of immune microenvironment in the progression of PC, 
a prognostic signature based on seven immune-related genes was established, which was validated in The Cancer 
Genome Atlas (TCGA) training set, TCGA testing set, TCGA entire set and GSE71729 set. Furthermore, S100A14 (S100 
Calcium Binding Protein A14) was identified as the gene occupying the most paramount position in risk signature. 
According to the GSEA, CIBERSORT and ESTIMATE algorithm, S100A14 was mainly associated with lower proportion 
of CD8 + T cells and higher proportion of M0 macrophages in PC tissue. Meanwhile, analysis of single-cell dataset 
CRA001160 revealed a significant negative correlation between S100A14 expression in PC cells and CD8 + T cell 
infiltration, which was further confirmed by tissue microenvironment landscape imaging and machine learning-based 
analysis in our own PUMCH cohort. Additionally, analysis of a pan-pancreatic cancer cell line illustrated that S100A14 
might inhibit CD8 + T cell activation via the upregulation of PD-L1 expression in PC cells, which was also verified by 
the immunohistochemical results of PUMCH cohort. Finally, tumor mutation burden analysis and immunophenoscore 
algorithm revealed that patients with high S100A14 expression had a higher probability of responding to immuno-
therapy. In conclusion, our study established an efficient immune-related prediction model and identified the poten-
tial role of S100A14 in regulating the immune microenvironment and serving as a biomarker for immunotherapy 
efficacy prediction.
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Introduction
Pancreatic cancer (PC) is one of the most lethal malig-
nancies, with a five-year survival rate of only 11% in the 
United States [1]. The global burden of PC has increased 
dramatically over the past few decades and is expected 
to become the second most common cause of cancer-
related mortality by 2030 after lung cancer [2, 3]. Beyond 
the scarcity of sensitive screening methods and the 
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emergence of chemoresistance, this dismal situation is 
largely attributable to the lack of effective risk prediction 
signature and biomarkers [4], which hinders the indi-
vidualized treatment of PC to some extent. Therefore, it 
is of great significance to establish validated prediction 
signature and screen potential novel biomarkers for the 
accurate assessment of patient’s prognosis and optimiza-
tion of clinical decision-making.

Tumor immune microenvironment (TIME), defined 
as all immunological components within tumors, mainly 
comprises innate immune cells, adaptive immune cells, 
extracellular immune factors and cell surface molecules 
[5, 6]. Extensive studies have shown that tumor immune 
microenvironment possessed profound effect on tumor 
development [7, 8]. For example, IL-10 prevents dendritic 
cell-mediated CD8 + T cell apoptosis, thus potentiat-
ing CD8 + T cell-mediated antitumor immunity [9]. And 
transforming growth factor beta (TGFβ) functions as an 
immunosuppressive factor through inhibition of CXCR3 
in CD8 + T cells, thereby limiting their trafficking into 
tumors [10]. Therefore, we consider a risk prediction sig-
nature based on immune-related genes (IRGs) to better 
predict the prognosis of PC and assist clinical decision-
making. Furthermore, the most paramount gene in the 
risk signature was further explored, as well as its poten-
tial mechanisms and ability to serve as a novel biomarker 
for the efficiency of immunotherapy.

In the present study, we constructed a prediction sig-
nature of PC prognosis consisting of seven IRGs and 
the corresponding nomogram, which was validated in 
the training set, testing set, entire set and GSE71729 set 
respectively. Furthermore, S100A14 (S100 Calcium Bind-
ing Protein A14), a highly conserved elongation factor 
(EF)-hand calcium-binding protein, was identified as the 
gene occupying the most paramount position in the risk 
signature. GSEA, CIBERSORT and ESTIMATE algo-
rithm suggested that S100A14 might be closely related to 
the PC immune microenvironment. Meanwhile, analy-
sis of the single-cell dataset CRA001160 illustrated that 
CD8 + T cells might be the primary target of S100A14 
function. Subsequently, tissue microenvironment land-
scape imaging and machine learning-based analy-
sis were applied to visualize and analyze the immune 
microenvironment of PC patients in our independent 
cohort (PUMCH cohort). And the results showed a sig-
nificant negative correlation between S100A14 expres-
sion and CD8 + T cell infiltration in tumor. In addition, 
a pan-pancreatic cancer cell analysis of CCLE database 
and iRegulon analysis suggested that S100A14-FOXL1-
PD-L1 pathway may be a potential signal axes inhibiting 
the activation of CD8 + T cells, which was also verified 
by immunohistochemical results of PUMCH cohort. 
Finally, it was predicted that patients with high S100A14 

expression had a higher probability of responding to anti-
PD-1 and anti-CTLA-4 therapy, suggesting that S100A14 
may serve as a potential biomarker for predicting PC 
immunotherapy efficiency.

Materials and methods
Datasets sources and processing
IRGs were extracted and integrated from the ImmPort 
database (https:// immpo rt. niaid. nih. gov; ≤ Mar 1, 2021) 
[11]. The RNA sequencing (RNA-seq) data, muta-
tion profile and clinicopathological information of the 
patients were downloaded from The Cancer Genome 
Atlas (TCGA) database (https:// portal. gdc. cancer. 
gov/; ≤ March 1, 2021) and the University of California 
Santa Cruz (UCSC) Xena website (https:// xenab rowser. 
net/ datap ages/; ≤ March 1, 2021) (Table  1, detailed in 
Table S1). Patients with incomplete clinical information 
and follow-up period less than 30  days were excluded. 
Finally, 166 PC patients were included in the study. 
The gene expression data were normalized to tran-
scripts per million (TPM) values and transformed to 
log2(TPM + 0.01) for further analysis unless otherwise 
noted.

In addition, GSE15471, GSE28735, GSE62165 and GSE71729 
dataset were downloaded from Gene Expression Omnibus 
(GEO) (http:// www. ncbi. nlm. nih. gov/ geo/) [12–15], which were 
performed on GPL570, GPL6244, GPL13667 and GPL20769 
platform. Expression values were calculated using the robust 
multi-array average (RMA) algorithm except GSE71729. The 
normalized expression matrix of microarray data can be directly 
download from the GEO dataset. Proteomic data from Clinical 
Proteomic from Tumor Analysis Consortium (CPTAC) were 
analyzed in the UALCAN database (http:// ualcan. path. uab. edu/ 
index. html) [16, 17].

Furthermore, the processed single-cell dataset CRA001160 
(including over 57,000 cells from 24 primary PDAC sam-
ples and 11 normal samples) was downloaded from Tumor 
Immune Single-cell Hub (TISCH) database (http:// tisch. 
comp- genom ics. org/) [18, 19] (Table 2, detailed in Table S2). 
And the RNA-seq data and proteomics data of all pancreatic 
cell lines was extracted from the Cancer Cell Line Encyclo-
pedia (CCLE) database (https:// porta ls. broad insti tute. org/ 
ccle) [20].

Establishment and validation of the prognostic signature 
based on IRGs
Limma package was applied to screen differentially expressed 
genes (DEGs) in GSE15471, GSE28735, GSE62165 and 
GSE71729 datasets respectively [21]. |Fold Change|> 1.5 and 
false discovery rate (FDR) < 0.05 were set as the cutoffs for the 
DEGs. The intersection of the four differential gene sets was 
then used for least absolute shrinkage and selection operator 
(LASSO) regression analysis and multivariate Cox regression 

https://immport.niaid.nih.gov
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://www.ncbi.nlm.nih.gov/geo/
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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analysis to obtain most effective prognostic model. Accord-
ing to the regression coefficient and the corresponding gene 
expression in the signature, the risk signature was established 
as follows: Risk score =  (exprgene1 ×  Coefgene1) +  (exprgene2 ×  
Coefgene2) + … +  (exprgenen ×  Coefgenen). The Kaplan–Meier 
(KM) survival analysis, time-dependent receiver operating 
characteristic (ROC) curves and survival point diagram were 
utilized to evaluate the predictive efficiency of the risk signa-
ture. Meanwhile, univariate and multivariate Cox regression 
analysis were performed to determine the independence of 

the risk signature. Gene mutation status of the seven genes 
was obtained from the cBioportal database (http:// www. 
cbiop ortal. org/) [22], and protein expression images in nor-
mal and tumor tissues was downloaded from the Human 
Protein Atlas (HPA) database (https:// www. prote inatl as. org/).

In addition, the nomogram was also established to pre-
dict the 1-, 2-, 3-year survival probability based on the 
risk score and other clinicopathological characteristics. 
Univariate and multivariate Cox regression analysis were 
conducted to screen for valid clinicopathological factors 

Table 1 Clinical and pathologic information of training set, testing set and entire set

Training set Testing set Entire set

Character NUMBER % NUMBER % NUMBER %

Age
Median 65 64.5 65

Range 35–88 39–81 35–88

Os (m)
Median 15.5 15.9 15.6

Range 1.0–76.2 3.2–91.4 1.0–91.4

Status
 Alive 57 49.14 19 38.00 76 45.78

 Dead 59 50.86 31 62.00 90 54.22

Gender
 Male 65 56.03 25 50.00 90 54.22

 Female 51 43.97 25 50.00 76 45.78

AJCC_Stage
 I 12 10.35 6 12.00 18 10.84

 II 102 87.93 39 78.00 141 84.94

 III 1 0.86 2 4.00 3 1.81

 IV 1 0.86 3 6.00 4 2.41

Grade
 G1 17 14.66 9 18.00 26 15.66

 G2 63 54.31 28 56.00 91 54.82

 G3 34 29.31 13 26.00 47 28.31

 G4 2 1.72 0 0.00 2 1.21

T stage
 T1 4 3.45 2 4.00 6 3.61

 T2 16 13.79 5 10.00 21 12.65

 T3 95 81.90 41 82.00 136 81.93

 T4 1 0.86 2 4.00 3 1.81

N stage
 N0 31 26.72 14 28.00 45 27.11

 N1 84 72.42 34 68.00 118 71.08

 Nx 1 0.86 2 4.00 3 1.81

M stage
 M0 59 50.86 17 34.00 76 45.78

 M1 1 0.86 3 6.00 4 2.41

 MX 56 48.28 30 60.00 86 51.81

http://www.cbioportal.org/
http://www.cbioportal.org/
https://www.proteinatlas.org/
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included in the nomogram, and the corresponding time-
dependent ROC curves, C-index calculation and calibra-
tion curves were applied to assess the efficiency of the 
nomogram.

GSEA and iRegulon analysis for DEGs between S100A14 
high and low expression group
Patients in the TCGA entire set were divided into 
S100A14 high expression group (n = 83) and S100A14 
low expression group (n = 83) according to the median 
expression of S100A14. DEGs between the two 
groups were obtained by edgeR package in R language 
(|Log2FC|> 2 and FDR < 0.001), followed by GSEA anal-
ysis to determine the potential role of S100A14 in PC 
development [23]. The ALL ontology of the DEGs was 
analyzed by Gene Ontology (GO) [24], while pathway 
enrichment was analyzed by the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [25]. The number of ran-
dom sample permutations was set at 1000, and NOM 

p-value < 0.05 and FDR q-value < 0.25 were set as the sig-
nificance threshold. For transcription factors prediction, 
DEGs between S100A14 high and low expression group 
were analyzed by iRegulon tools in Cytoscape (version 
v3.7.1) [26].

Estimation of tumor immune microenvironment
The ESTIMATE algorithm was able to estimate the 
content of mesenchymal and immune cells in PC tissue 
based on RNA-seq data [27], resulting in stromal score, 
immune score and estimate score. And the CIBERSORT 
algorithm was performed to quantify the relative abun-
dance of 22 immune cells infiltrated in tumor microen-
vironment by a deconvolution algorithm [28]. These 
two algorithms were applied in the TCGA entire set and 
GSE71729 dataset respectively to evaluate the relation-
ship between S100A14 expression and immune infiltra-
tion in the two datasets.

Tumor mutation burden analysis
The mutation profile was acquired from TCGA data por-
tal (https:// portal. gdc. cancer. gov/; ≤ March 1, 2021). The 
landscape of somatic mutation in S100A14 low and high 
expression group was analyzed and visualized through 
“maftools” package in R language respectively [29]. 
Meanwhile, tumor mutation burden (TMB) and muta-
tion frequency of top 10 genes were calculated and com-
pared between S100A14 low and high expression groups.

Prediction of the patients’ response to immunotherapy
Immunophenoscore (IPS), a scoring system for the quan-
tification of tumor immunogenicity, has been verified to 
positively correlated to the responding rate to immuno-
therapy of PC patients [30]. The IPS data of PC patients 
was extracted from The Cancer Immunome Atlas 
(https:// tcia. at/) for the following analysis, including the 
scores for anti-PD-1 therapy, anti-CTLA-4 therapy and 
the combination of the two therapies.

Clinical specimens and immunohistochemical analysis
A total of 38 patients with primary PDAC who under-
went surgical resection at Peking Union Medical College 
Hospital (PUMCH) were included in this study (PUMCH 
cohort, Apr. 2020-Nov. 2020). Informed consent was 
obtained from all patients, and this study was approved 
by the ethical committees of Peking Union Medical Col-
lege Hospital. Manual staining was performed as the pro-
tocol previously described [31]. For primary antibody 
incubation of each patient, sections were incubated with 
rabbit monoclonal anti-PD-L1 antibody (1: 200) (Abcam, 
ab205921) for 1 h.

Table 2 Clinical and pathologic information of CRA001160 set 
and PUMCH cohort

CRA001160 Set PUMCH COHORT

Character Number % Number %

Age
Median 59 65.5

Range 36–72 38–80

Gender
 Male 11 45.83 17 44.74

 Female 13 54.17 21 55.26

AJCC_Stage
 I 9 37.50 9 23.68

 II 12 50.00 21 55.26

 III 3 12.50 7 18.42

 IV 0 0 1 2.64

Diabetes
 Y 10 41.67 19 50.00

 N 14 58.33 19 50.00

T stage
 T1 4 16.67 5 13.16

 T2 14 58.33 22 57.90

 T3 5 20.83 9 23.68

 T4 1 4.17 2 5.26

N Stage
 N0 10 41.67 15 39.47

 N1 11 45.83 19 50.00

 N2 3 12.5 4 10.53

M Stage
 M0 24 100.00 37 97.36

 M1 0 0.00 1 2.64

https://portal.gdc.cancer.gov/
https://tcia.at/
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Cell culture
All pancreatic cancer cell lines and pancreatic normal 
ductal cell line were purchased from the American Type 
Culture Collection (ATCC, Manassas, VA, USA). Mean-
while, all of the cells were authenticated by short tandem 
repeat (STR) analysis and regularly tested for myco-
plasma contamination. BxPC-3 and HPAF-II cell lines 
were cultured in RPMI-1640 medium (Corning, #10–
040-CV). CFPAC-1 and Capan-1 cell lines were cultured 
in Iscove’s Modified Dulbecco Medium (IMDM; Corn-
ing, #15–016-CV). PANC-1, MIA PaCa-2, SW1990, PaTu 
8902, AsPC-1, T3M4 and Panc 10.05 cell lines were cul-
tured in high glucose Dulbecco’s Modified Eagle Medium 
(DMEM; Corning, #10–013-CMR). All medium were 
supplemented with 10% fetal bovine serum (HyClone, 
#SH30073.03) and 1% Penicillin–Streptomycin (Life 
Technologies, #15,140–122). Cells were routinely main-
tained at 37℃ with 5% CO2.

RNA isolation and qRT‑PCR
The specific operation process has been described in the 
previous article [32]. All the values were normalized to 
GAPDH, and the 2-ΔCt method was used to quantify the 
fold change. The primer sequences used for qRT-PCR 
were as follows:

S100A14: Forward 5′- GAG ACG CTG ACC CCT TCT 
G-3’,

Reverse 5′- CTT GGC CGC TTC TCC AAT CA-3’;
GAPDH: Forward 5′-GTC TCC TCT GAC TTC AAC 

AGCG-3’,
Reverse 5’-ACC ACC CTG TTG CTG TAG CCAA-3’.

Western blot analysis
Western blot analysis was performed as described pre-
viously [33]. The blot was cut prior to hybridisation 
with antibodies during blotting. Primary antibody for 
S100A14 was purchased from ProteinTech (10,489–1-AP, 
ProteinTech). And primary antibody for β-actin antibody 
was purchased from LabLead (A0101, LabLead).

scRNA‑seq data quality control, dimension reduction 
and cell clustering
The single-cell dataset CRA001160 was already processed 
by the author [19]. The Seurat package implemented in R 
language was applied to conduct following analysis. Low 
quality cells (< 200 genes/cell, < 3 cells/gene, > 5% mito-
chondrial genes, total expressed genes < 200 and total 
expressed genes > 7000) were removed. The gene expres-
sion profiles were then normalized and the top 2000 
highly variable genes were generated to perform princi-
pal component analysis (PCA). Significant principal com-
ponents were determined using JackStraw analysis and 

Elbow plot. PCs 1 to 15 were used for graph-based clus-
tering (res = 1.0), which was visualized by the uniform 
manifold approximation and projection (UMAP) analy-
sis. The cell types were annotated according to the mark-
ers provided by the author [19]. Meanwhile, T cells and 
macrophages were then extracted for further analysis.

Tissue microenvironment landscape imaging 
and machine‑learning based analysis
4  μm sections from the PUMCH cohort were used for 
tissue microenvironment landscape analysis through 
multiplex immunohistochemical kit (Panovue Biological 
Technology, 0,081,100,100). Sections were deparaffinized 
and tissues were fixed with 10% formalin, followed by 
antigen retrieval in heated EDTA buffer (pH 9.0, OriGene 
Technologies, ZLI-9069) for 15  min. Each section was 
put through three sequential rounds of staining, which 
includes blocking, primary antibody incubation, second-
ary horseradish peroxidase-conjugated polymer incuba-
tion and covalent binding of a different fluorophore using 
tyramide signal amplification. Between the two rounds, 
an additional antigen retrieval in heated EDTA Buffer 
(pH 9.0) for 15  min was conducted to remove bound 
antibodies. After all three sequential reactions, sections 
were counterstained with DAPI and mounted with anti-
fade mounting medium. Slides were imaged and analyzed 
using the Vectra Multispectral Imaging System version 2 
(Perkin Elmer) and the supporting software. Filter cubes 
used for multispectral imaging were DAPI, opal540, 
opal620, opal690. The corresponding imaging channels 
and antibody incubation are shown in Table S3.

Statistical analysis
All statistical analysis were performed using R software 
(version 4.1.0) and GraphPad Prism 8 (version 8.0.1), 
including DEGs analysis, LASSO regression analysis, 
multivariate Cox regression analysis, clinicopathologi-
cal factor analysis, K-M survival analysis, ROC curve 
analysis and correlation analysis. For qRT-PCR, data are 
means ± Standard Error of Mean (SEM) of three inde-
pendent experiments. A two-sided P value < 0.05 was 
regarded to be statistically significant.

Results
Seven immune‑related genes were screened 
out for constructing the risk signature
The process of the whole analysis was illustrated in Fig-
ure S1. A total of 1793 IRGs were integrated from the 
ImmPort database (Table S4). First, DEGs between nor-
mal and tumor samples were analyzed by limma package 
in GSE15471, GSE28735, GSE62165 and GSE71729 data-
sets. |Fold Change|> 1.5 and FDR < 0.05 were regarded 
as statistically significant, and 50 genes with the most 



Page 6 of 20Wang et al. BMC Cancer          (2022) 22:879 

significant differences in each dataset were shown in the 
heatmap (Fig. 1A-D).

By taking the intersection of these four differential 
gene sets, 59 common DEGs were obtained (Fig.  1E). 
Subsequently, LAASO regression analysis was applied to 
avoid overfitting problems and further screen the can-
didate genes (Fig.  1F-G, log(lambda.min) = -2.529272). 
And multivariate Cox analysis was then used to explore 

an appropriate gene combination for establishing the 
risk signature for PC patients. Finally, seven genes 
(ALB, CXCL10, IAPP, LIFR, LYZ, MET, S100A14) were 
screened out (Fig. 1H). Among them, LIFR and LYZ were 
protective factors for PC patients with Hazard Ratio 
(HR) < 1, and ALB, CXCL10, IAPP, MET and S100A14 
were risk factors with HR > 1. Meanwhile, the mutation 
status and protein expression status of these genes were 

Fig. 1 Screening out immune-related genes for risk signature construction. A-D Heatmap of immune-related DEGs between normal tissue and 
PC in GSE15471, GSE28735, GSE62165 and GSE71729. E Venn plot of the intersection of four DEGs datasets. F LASSO coefficient profiles of 59 
prognostic IRGs. G Cross-validation for tuning parameter selection in the LASSO model. H Seven IRGs were screened out for constructing a risk 
signature
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explored through the cBioportal database and HPA data-
base (Figure S2-S3).

Risk signature construction and evaluation for predicting 
survival rate of PC
Based on the gene expression and the regression coef-
ficient derived from the multivariate Cox regression 
model, a risk-score formula was designed for PC patients’ 
survival prediction. The risk score for each patient was 
calculated as follows: Risk score = (0.0893 × expres-
sion level of ALB) + (0.1935 × expression level 

of CXCL10) + (0.0635 × expression level of 
IAPP) + (-0.2633 × expression level of LIFR) + (-0.2338 × expres-
sion level of LYZ) + (0.2893 × expression level of 
MET) + (0.2177 × expression level of S100A14). After 
that, each patient was assigned a risk score according to 
the above formula.

In order to verify the validity of the model, we con-
ducted internal validation in training set, testing set and 
entire set, as well as external validation in GSE71729 set 
(Fig.  2A). According to the Kaplan–Meier (K–M) curve 
analysis, patients in the high-risk group had significantly 

Fig. 2 Effectiveness validation of the risk signature for survival prediction in training set, testing set, entire TCGA set and GSE71729 set. A The 
process of the risk signature validation. B-E Kaplan–Meier analysis of OS of the risk signature in training set, testing set, entire TCGA set and 
GSE71729 set. F-I) Time-dependent ROC analysis of the risk signature in the four datasets. J-M Heatmap of the nine hub genes expression, the risk 
scores distribution and survival status plots of the patients in the four datasets
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lower overall survival (OS) than those in the low-risk 
group in training set, testing set, entire set and GSE71729 
set (Fig. 2B-E). At the same time, the area under curves 
(AUCs) of the risk signature for predicting 1-, 1.5-, 2-, 
2.5-, and 3-year survival of PC patients were 0.850, 0.726, 
0.766, 0.756, 0.812 in the training set, 0.702, 0.550, 0.670, 
0.697, 0.793 in the testing set, 0.808,0.672, 0.745, 0.748, 
0.823 in the entire set, and 0.607, 0.686, 0.671, 0.682, 
0.661 in GSE71729 set respectively (Fig.  2F-I). These 
results demonstrated a high predictive efficacy of the 
signature in predicting the prognosis of PC. Meanwhile, 
compared with the low-risk group, the expressions of 
ALB, CXCL10, IAPP, MET and S100A14 increased in 
the high-risk group, whereas the expressions of LIFR and 
LYZ decreased. Consistently, the scatter plot of survival 
showed a gradual increase in the number of deaths as the 
risk score rose (Fig. 2J-M).

To further explore whether the predictive power of the 
signature was independent of other clinicopathological 
factors, univariate and multivariate Cox regression anal-
ysis was conducted in the training set, testing set, and 
entire set respectively. The results suggested an excel-
lent independence of the risk signature, which was inde-
pendent of gender, age, grade, AJCC_stage, T stage and 
N stage (Figure S4, P < 0.05 in all dataset for risk score). 
Meanwhile, the predictive efficacy of the signature was 
also tested in different subgroups stratified by gender, 
age, tumor grade and T stage. It was found that in almost 
all subgroups, patients in the high-risk group suffered 
significantly worse prognosis than those in the low-risk 
group (Figure S5, P < 0.05 in all subgroup except T1 + T2 
group), further confirming the excellent independence of 
risk signature for PC prognosis prediction.

Establishment and validation of a nomogram based 
on the seven‑gene signature of PC
In order to optimize the prediction efficiency of the 
model, clinicopathological factors were also incorporated 
to construct a nomogram, including gender, age, grade, 
AJCC_stage, T stage and N stage. First, univariate Cox 
regression analysis was applied to preliminarily screen 
for various clinicopathological factors in training set, 
and factors with P < 0.2 were included in the multivari-
ate Cox regression analysis (Fig.  3A-B). Concomitantly, 
we reconfirmed the independence of the risk signature 
in this process. Finally, risk score, age and N stages were 
incorporated into the establishment of nomogram for 
predicting 1-, 2-, and 3-year survival rate of PC. In the 
nomogram, the patients’ survival rates were estimated 
by the total points obtained by adding up the point of 
each factor (Fig.  3C). The C-index for the nomogram 
was 0.727, 0.603 and 0.689 in training set, testing set 

and entire set respectively, indicating that the nomo-
gram possessed excellent predictive performance. Sub-
sequently, the predictive power of the nomogram was 
further evaluated by calibration plot and time-dependent 
ROC curve. The calibration curves presented satisfied 
coherence between predicted and actual 1-year, 2-year 
and 3-year OS in training set, testing set and entire set 
(Fig.  3D-F). In addition, The AUCs of ROC curves for 
predicting 1-,2-, and 3-year survival were 0.791, 0.791, 
and 0.819 in the training set (Fig. 3G), 0.565, 0.746, and 
0.835 in the testing set (Fig.  3H), and 0.728, 0.778, and 
0.830 in the entire set, respectively (Fig. 3I).

S100A14 was highly expressed and correlates 
with unfavorable prognosis in PC
Among the seven hub genes in the risk signature, 
S100A14 was the risk factor accompanied by the smallest 
P value. Furthermore, due to its high HR and coefficient 
in the risk signature, we tended to consider that S100A14 
occupied the most paramount position in the risk sig-
nature. A joint analysis of TCGA and GTEx databases 
confirmed the remarkably high expression of S100A14 
in tumor tissues (Fig. 4A). Meanwhile, the analysis from 
CPTAC database also indicated that S100A14 was sig-
nificantly overexpressed in tumor tissue at the protein 
level (Fig.  4B). In addition, patients in the TCGA data-
set were divided into high expression group (n = 83) and 
low expression group (n = 83) according to the median 
expression of S100A14. And the prognosis of patients in 
high expression group was significantly worse than that 
in low expression group (Fig.  4C). Concomitantly, the 
relationship between S100A14 expression and clinico-
pathological information of patients were further ana-
lyzed. Notably, the results revealed that the expression of 
S100A14 increased significantly with the progression of 
AJCC_stage, tumor grade, age and T stage (Fig. 4D-I).

S100A14 predicts the infiltration of immune cells into PC 
microenvironment
Subsequently, in order to explore the in-depth mecha-
nism of S100A14 leading to poor prognosis of PC, 
the patients in the TCGA entire set were divided into 
S100A14 high expression group (n = 83) and low expres-
sion group (n = 83). DEGs analysis was performed on 
the two groups and GSEA analysis was then conducted 
(Fig.  5A). Five representative pathways for the Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis were presented respectively 
(Fig.  5B-C). Overall, these pathways suggested that the 
function of S100A14 in pancreatic cancer may be related 
to the immunosuppressive tumor microenvironment 
in vivo.
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Therefore, the ESTIMATE algorithm was applied to 
estimate the proportion of stromal cell and immune 
cell in PC patients, which revealed that a lower content 
of stromal cells and immune cells in the S100A14 high 
expression group (Fig. 5D). And the results of CIBER-
SORT, an algorithm which was designed to detect the 
proportions of 22 kinds of immune cells in tissues, 

revealed that relatively lower proportion of CD8 + T 
cells, activated memory CD4 + T cells and monocytes 
were found in the S100A14 high expression group 
compared with the low expression group. On the con-
trary, patients in S100A14 high expression group also 
possessed higher proportion of M0 macrophages cells 
and memory B cells (Fig.  5E-F). Moreover, in order 

Fig. 3 Nomogram construction for predicting 1-, 2- and 3-year survival rate of PC. A-B Univariate Cox regression analysis and multivariate Cox 
regression analysis in training set. C Nomogram integrating seven IRGs-based risk score, age and N stage. D-F The calibration plot of the nomogram 
for coherence test between 1-, 2- and 3-year OS prediction and actual outcome in the training set, testing set and entire set. G-I Time-dependent 
ROC analysis of the nomogram in training set, testing set and entire set
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to prove the universality of the results, the immune 
microenvironment of GSE71729 dataset (n = 125) was 
also analyzed. It was illustrated that the expression of 
S100A14 possessed a remarkable negative correlation 
with CD8 + T cells and significant positive correlation 
with M0 macrophages and Treg cells (Fig.  5G-I). In 
addition, the score for the tumor microenvironment by 

ESTIMATE package was similar in GSE71729 dataset 
(Fig. 5J), which further supported our hypothesis.

Verification of the negative correlation between S100A14 
expression and CD8 + T cells infiltration in PC
The algorithms above suggested that S100A14 was 
closely related to the immune microenvironment 
in PC, especially CD8 + T cells, CD4 + T cells and 

Fig. 4 The correlation of the S100A14 expression and clinicopathological features of PC patients in TCGA entire set. A Expression difference of 
S100A14 between normal tissue and PC tissue according to RNA-seq data. B Expression difference of S100A14 between normal tissue and PC tissue 
according to proteomics data. C Kaplan–Meier analysis of OS between the high S100A14 expression group and low S100A14 expression group. D-I 
The correlation of S100A14 expression with tumor grade, AJCC_stage, age, T stage, N stage and status. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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macrophages. Here, we further explored the effect of 
S100A14 on the immune microenvironment at the 
single-cell level. The single-cell dataset CRA001160 
was analyzed in this process, which included 24 tumor 
samples and 11 normal samples. Firstly, dimension-
ality reduction clustering and expression distribu-
tion analysis of S100A14 showed that S100A14 was 
mainly expressed in tumor cells (Fig.  6A-B), and the 
expression of S100A14 in tumor cells was significantly 
higher than that in normal ductal cells (Fig. 6C). Subse-
quently, according to the S100A14 expression in tumor 
cells, patients were divided into S100A14 low expres-
sion group, S100A14 medium expression group and 
S100A14 high expression group (Fig. 6D). The number 
of CD8 + T cells, CD4 + T cells and macrophages were 

counted in each sample. Consistent with the previ-
ous results, with the increase of S100A14 expression, 
the proportion of CD8 + T cells gradually decreased 
(Fig.  6E). However, there was no significant trend in 
the relationship between the expression of S100A14 
and the proportion of CD4 + T cells and macrophages 
(Fig. 6F-G).

To further confirm this conclusion, tissue microenvi-
ronment landscape imaging and analysis were conducted 
on sections of 38 patients in our own PUMCH cohort, in 
which the association between the expression of S100A14 
in tumor cells and the infiltration of CD8 + T cells was 
explored through machine learning. First, the tumor 
part and stroma part were separated by machine learn-
ing, and all the individual cells in the section were also 

Fig. 5 Immune cell infiltration difference between S100A14 high and low expression groups. A Heatmap of top 50 DEGs in PC between S100A14 
high and low expression groups. B-C GSEA between S100A14 high and low expression groups. The representative 5 GO enrichments (B) and KEGG 
enrichments (C) were shown respectively. D Immunity score obtained by ESTIMATE algorithm in high and low S100A14 expression groups in TCGA 
dataset. E–F The abundance difference of the 22 types of immune cells between S100A14 high and low expression groups. G-I Correlation analysis 
between the S100A14 expression and the proportion of immune cells in GSE71729 dataset. Immune cell types with P < 0.05 were displayed. H 
Immunity score obtained by ESTIMATE algorithm in high and low S100A14 expression groups in GSE71729 dataset
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separated simultaneously. Tumor cells were automatically 
scored for S100A14 expression, and cells in the stroma 
were also identified automatically through the membrane 
staining (CD3 + CD8 + cells were considered as CD8 + T 

cells). It was discovered that CD8 + T cell infiltration was 
extremely limited in tissues with high S100A14 expres-
sion. Conversely, CD8 + T cell infiltration was abun-
dant in areas with low S100A14 expression (Fig.  7A-D). 

Fig. 6 Analysis of S100A14 expression and immune cell infiltration in single-cell dataset CRA001160. A The UMAP plots of diverse cell types in PDAC 
tissues colored by major cell lineage. B Expression distribution of S100A14 in all cell types. C Comparison of S100A14 expression in normal ductal 
and PC cells. D Relative expression of S100A14 in cancer cells of each patient (ranked from high to low). E–G Comparison of infiltration of CD8 + T 
cells (E), CD4 + T cells (F) and macrophages (G) in S100A14 high, medium and low expression group. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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Consistently, statistical results also demonstrated that 
there was a significant negative correlation between the 
expression of S100A14 in tumor cells and the infiltration 
of CD8 + T cells in the stroma (Fig. 7E-F).

The expression of S100A14 was positively correlated 
with PD‑L1 in PC cells
Since we have proved that S100A14 is associated with 
reduced infiltration of CD8 + T cells in the immune 
microenvironment of PC, the mechanism by which 
S100A14 lead to the deficiency of CD8 + T cells would 
be further explored. Firstly, a pan-cancer analysis of 

Fig. 7 Tissue microenvironment landscape imaging and machine learning-based analysis in PUMCH cohort. A-B Representative images of 
samples with high S100A14 expression in PC cells and the process of tumor immune microenvironment analysis based on machine learning. C-D 
Representative images of samples with low S100A14 expression in PC cells and the process of tumor immune microenvironment analysis based 
on machine learning. E The proportion of CD3 + CD8 + T cells in stromal cells in S100A14 high and low expression group. F Correlation analysis of 
S100A14 expression in PC cells and proportion of CD8 + T cells in stromal cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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S100A14 revealed that PC experienced one of the most 
remarkably increase of S100A14 expression among all 
types of cancer (Fig.  8A), which was also confirmed by 
qRT-PCR and western blot in pancreatic normal ductal 
cell line and pancreatic cancer cell lines (Fig. 8B-C).

Subsequently, RNA-seq data and proteomics data of all 
pancreatic cancer cell lines were obtained from the CCLE 
database to explore whether the deficiency of CD8 + T 
cells was related to the high expression of immune check-
points in PC cells. The results showed that the expres-
sion of S100A14 was significantly positively correlated 

with the expression of PD-L1, but not with the expres-
sion of PD-L2 at both RNA and protein levels (Fig. 8D-
E). In addition, the results were also validated in our own 
PUMCH cohort, in which the PD-L1 immunohistochem-
ical score of S100A14 high expression group was signifi-
cantly higher than that of S100A14 low expression group 
(Fig. 8F-G).

Meanwhile, we further explored the potential mecha-
nism of elevated PD-L1 expression in patients with high 
S100A14 expression. The gene co-expression network 
of patients with high S100A14 expression was analyzed 

Fig. 8 Expression of S100A14 in tumor cells and its relationship with PD-L1/2 expression. A A pan-cancer analysis of S100A14 on 33 types of 
tumors. Red represented a significant increase in tumor, green represented a significant decrease in tumor, and black meant no significant 
change. B Comparison of S100A14 expression between pancreatic normal ductal and PC cell lines detected by qRT-PCR. The difference between 
each PC cell line and HPNE was analyzed. C Comparison of S100A14 expression between pancreatic normal ductal and PC cell lines detected by 
western blot. D Relationship between S100A14 expression and PD-L1/2 expression at RNA level in PC cell lines. E Relationship between S100A14 
expression and PD-L1 expression at protein level in PC cell lines. F Representative images of PD-L1 expression in S100A14 high and low expression 
group in PUMCH cohort. G Comparison of PD-L1 expression in S100A14 high and low expression group in PUMCH cohort. H Prediction of major 
downstream regulators caused by elevated S100A14 using iRegulon tools. I Relationship between S100A14 expression and FOXL1 expression
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by iRegulon in Cytoscape, which indicated that the 
transcription factor FOXL1 (Forkhead Box L1) may 
play a major regulatory role in the effect caused by high 
S100A14 expression (Fig.  8H). Moreover, the transcrip-
tion factor was also predicted to regulate the expression 
of PD-L1 (Fig.  8H), and it was significantly positively 
correlated with S100A14 (Fig.  8I), suggesting that the 
S100A14-FOXL1-PD-L1 pathway may be one of the main 
signal axes regulating the immune desert microenviron-
ment of PC induced by S100A14.

S100A14 is associated with patients’ tumor mutation status 
and response to immunotherapy
Mutation profiles of both the S100A14 high expression 
group and low expression group were analyzed and visu-
alized (Figure S6-S7). For the S100A14 high expression 
group, the genes with the highest mutation rate were 
KRAS, TP53, SMAD4, CDKN2A, RNF43, TGFBR2, 
TTN, GNAS, COL5A1 and FLG. And for the S100A14 
low expression group, the top 10 frequently mutation 
genes were KRAS, TP53, TTN, SMAD4, CDKN2A, 
MUC16, ARID1A, HECW2, RELN and DCHS1. It’s 
worth noting that although KRAS and TP53 were genes 
with the highest mutation rate in both groups, the 
mutation rate was significantly different between the 
two groups (Fig.  9C, 91%: 63% for KRAS, 76%: 56% for 
TP53). Therefore, we further calculated the TMB for each 
patient and found that TMB in S100A14 high expression 
group was significantly higher than that in S100A14 low 
expression group (Fig.  9D), although TMB was not sig-
nificantly associated with patients’ prognosis (Fig. 9E).

IPS, a machine learning-based scoring system, was 
able to predict the efficiency of immunotherapy, includ-
ing anti-PD1 therapy, anti-CTLA4 therapy and a 
combination of the two therapies. According to the 
comprehensive analysis of S100A14 expression and IPS 
score, patients with high S100A14 expression possessed 
a relatively higher probability of responding to anti-PD1 
therapy, anti-CTLA4 therapy and the combination of 
anti-PD1 and anti-CTLA-4 therapy (Fig.  9F-K). There-
fore, S100A14 is expected to be a predictor of the efficacy 
of immunotherapy in PC patients, which is consistent 
with the previous conclusion that S100A14 might con-
tribute to the progression of PC by promoting immune-
suppressive tumor microenvironment.

Discussion
PC is one of the most aggressive malignancies, which is 
expected to become the second leading cause of cancer-
related death by 2030 [3]. The reasons for this situation 
are various, and the vital one is the lack of reliable pre-
dictive models and biomarkers, which hinders individu-
alized treatment of PC. Herein, since the critical role of 

tumor immune microenvironment has been gradually 
revealed in recent years [5, 34], an IRGs-based predic-
tive model was established to accurately assess the prog-
nosis of PC patients, which is also verified in its validity 
and independence from different dimensions. Among the 
seven genes in the risk signature, CXCL10, IAPP, LIFR 
and MET have been reported to be involved in the car-
cinogenesis and progression of PC [35–38], which also 
demonstrates the considerable prognostic value of the 
risk signature to some extent. However, there has been 
limited coverage of ALB, LYZ and S100A14 in the field 
of PC, especially in the tumor immune microenviron-
ment. Since S100A14 was the risk factor with the lowest 
P value, and S100A14 possessed relatively large HR and 
accounted for a high proportion in the risk signature, 
it was considered that S100A14 might occupy the core 
position in the risk signature. Therefore, S100A14 was 
paid special attention in the following analysis.

S100A14, an important member of S100 family pro-
teins, is able to modulate biological process by func-
tioning both as intracellular and extracellular factors 
[39, 40]. Meanwhile, S100A14 has been reported to be 
differentially expressed in various human malignancies 
and implicated in tumorigenesis and tumor progres-
sion [41, 42]. Notably, the effects of S100A14 are dual to 
some extent, depending on different biological processes 
and tumor types. Li et  al. have reported that S100A14 
could promote breast cancer metastasis by increas-
ing the expression and secretion of CCL2/CXCL5 via 
RAGE-NF-κB pathway [43]. Conversely, another study 
conducted by Meng et al. identified S100A14 as a func-
tional regulator suppressing nasopharyngeal carcinoma 
metastasis by inhibition of the NF-kB signaling pathway 
[44]. Here, the results of our study supported its deterio-
rating role during PC progression. To be specific, in the 
field of PC, studies have shown that S100A14 was able 
to promote proliferation, invasion, migration and gem-
citabine resistance of PC cells [45]. However, the role 
of S100A14 in PC immune microenvironment has been 
limitedly reported, which is also the main content of this 
manuscript.

GSEA analysis illustrated that the high expression 
of S100A14 was associated to the weakened immune 
response in  vivo. Therefore, CIBERSORT and ESTI-
MATE algorithm was further applied to reveal the pro-
portion of various immune cells in PC patients’ tissues. 
Patients with high S100A14 expression had significantly 
reduced CD8 + T cells, activated memory CD4 + T cells 
and monocytes, as well as increased M0 macrophages 
cells and memory B cells. In addition, the results of CIB-
ERSORT algorithm in GSE71729 dataset also showed a 
similar trend. Based on the results of the two datasets, 
S100A14 may be associated with reduced CD8 + T cells 
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and increased M0 macrophages in the immune micro-
environment of PC. Subsequently, analysis of single-cell 
dataset CRA001160 revealed that S100A14 was mainly 
expressed in tumor cells. In addition, CD4 + T cells, 
CD8 + T cells and macrophages from each patient were 
extracted in from the single-cell dataset CRA001160. 
And the percentage of each immune cells to all stromal 
cells in each patient was then calculated. As a result, 

CD8 + T cells were significantly reduced in patients with 
high S100A14 expression, while there were no significant 
changes in CD4 + T cells and macrophages. Accord-
ing to the above results, the effect of high expression of 
S100A14 in tumor cells on the immune microenviron-
ment of PC was finally focused on CD8 + T cells, the 
immune cell possessing the most prominent tumor kill-
ing ability [46, 47].

Fig. 9 The mutation profile, TMB and relative probabilities of responding to immunotherapy in S100A14 high and low expression groups. A-B 
Mutation profile of PC patients in S100A14 high expression group and low expression group. C Mutation rate comparison of genes with high 
mutation rate between S100A14 high and low expression group. D The comparison of TMB between S100A14 high and low expression groups. E 
Kaplan–Meier analysis of OS between high and low TMB group. F-K The relationship between S100A14 expression and the relative probabilities of 
responding to immunotherapy, including anti-PD-1 therapy, anti-CTLA-4 therapy and the combination therapy. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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Tissue microenvironment landscape imaging system 
is a technology favoring the visualization and analysis of 
the tumor microenvironment through machine learn-
ing, which is able to automatically divide the tumor part 
and the stroma part, and identify the stroma cell type 
through the immunofluorescence of the cells. Here, we 
conducted tissue microenvironment landscape imaging 
in our PUMCH cohort (n = 38) to further explore the 
relationship between S100A14 expression and CD8 + T 
cell infiltration. The machine was designed to automati-
cally segment the tumor cells and score the expression of 
S100A14 on the tumor cells. Subsequently, for stromal 
cells, CD3 + CD8 + cells were recognized as CD8 + T 
cells and their proportion in stromal cells was counted. 
Consistent with bioinformatics analysis, patients with 
high S100A14 expression had a lower proportion of 
CD8 + T cells in their cancer tissues, further confirming 
the above results from another dimension.

Afterwards, we aimed to explore how S100A14 leads 
to the deficiency of CD8 + T cells. Since the results 
above showed that S100A14 was mainly expressed in 
tumor cells, and previous studies had proved that S100 
family proteins might up-regulate the expression of 
PD-L1 [32, 48], we hypothesized that S100A14 might 
be related to the dysregulation of immune checkpoints 
including PD-L1 and PD-L2, which had been widely 
acknowledged to inhibit T cell activation through activa-
tion of PD-1 receptors [49–51]. Therefore, the RNA-seq 
and proteomics data of all pancreatic cancer cell lines in 
the CCLE database were integrated and analyzed, which 
proved the expression of S100A14 was significantly posi-
tively correlated with the expression of PD-L1 in PC cell 
lines. Therefore, it was suggested that S100A14 might 
inhibit proliferation of CD8 + T cells and promote apop-
tosis of CD8 + T cells by up-regulating PD-L1 expression 
in PC cells.

Cancer immunotherapies, which manipulate the immune 
system to recognize and attack cancer cells, have become a 
powerful clinical strategy for treating cancer [52, 53]. How-
ever, immunotherapy has shown very limited efficacy in PC 
[54, 55]. Promisingly, a small subset of patients who exhib-
ited high effector T-cell infiltration in tumor had longer 
overall survival [56, 57], suggesting that immunotherapy 
is still a potential treatment strategy for PC patients. And 
what we need to do is to identify patients with a high prob-
ability of responding to immunotherapy or explore opti-
mal drug combinations to improve the effectiveness of 
immunotherapy.

Since we had explored the role of S100A14 in the 
immune microenvironment of PC, we wondered whether 
S100A14 might be a promising biomarker for predicting 

the immunotherapy response of PC patients. It has been 
widely reported that patients with high TMB had a rel-
atively higher probability of responding to immuno-
therapy [58, 59]. Therefore, we explored the relationship 
between S100A14 expression and TMB, which suggested 
that patients with high S100A14 expression possessed a 
higher TMB, indicating a higher response rate to immu-
notherapy in this group. Consistently, the application of 
IPS algorithm also reached similar conclusion, indicating 
that S100A14 could be used as a potential biomarker for 
predicting the efficacy of immunotherapy in PC patients.

In spite of the positive results, the limitation of cur-
rent study should be addressed as well. First of all, IPS is 
an algorithm based on machine learning to simulate the 
immunotherapy response of PC patients. Although its 
effectiveness has been widely verified in multiple data-
sets, it is still different from the real clinical situation to 
some extent. Secondly, due to the extremely poor prog-
nosis of PC, there are few patients in the cohort with 
more than three years of survival, which may affect the 
long-term prediction efficiency of the risk signature.

Conclusion
In summary, in this study, an IRGs-based prediction 
signature was constructed and validated in the training 
set, testing set, entire set and GSE71729 set respectively. 
Meanwhile, a nomogram was also established to further 
improve the prediction efficiency of the model. Subse-
quently, S10014 was identified as the gene occupying the 
most paramount position in this signature, which was 
proved to be increased significantly with the progres-
sion of AJCC_stage, tumor grade, age and T stage. GSEA, 
ESTIMATE and CIBERSORT algorithms demonstrated 
that the deteriorating effect of S100A14 on PC was mainly 
related to the dysregulation of immune microenviron-
ment. Exploration of the single-cell dataset CRA001160 
further demonstrated that high expression of S100A14 
was associated with reduced infiltration of CD8 + T 
cells in tumor tissue. Subsequently, tissue microenviron-
ment landscape imaging and machine learning-based 
immune microenvironment analysis were conducted in 
our PUMCH cohort, which confirmed the negative cor-
relation between S100A14 and CD8 + T cell infiltration 
from another dimension. In addition, a pan-pancreatic 
cancer cell lines analysis, iRegulon analysis and immuno-
histochemical results of PUMCH cohorts suggested that 
S100A14-FOXL1-PD-L1 pathway may be a potential sig-
nal axes inhibiting CD8 + T cell activation. Finally, TMB 
analysis and IPS algorithm implied that S100A14 may 
serve as a potential biomarker for predicting the efficacy 
of immunotherapy in PC.
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