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The social brain hypothesis proposes that large neocortex size evolved to

support cognitively demanding social interactions. Accordingly, previous

studies have observed that larger orbitofrontal and amygdala structures

predict the size of an individual’s social network. However, it remains

uncertain how an individual’s social connectedness reported by other

people is associated with the social brain volume. In this study, we found

that a greater in-degree network size, a measure of social ties identified by

a subject’s social connections rather than by the subject, significantly corre-

lated with a larger regional volume of the orbitofrontal cortex, dorsomedial

prefrontal cortex and lingual gyrus. By contrast, out-degree size, which is

based on an individual’s self-perceived connectedness, showed no associ-

ations. Meta-analytic reverse inference further revealed that regional

volume pattern of in-degree size was specifically involved in social inference

ability. These findings were possible because our dataset contained the social

networks of an entire village, i.e. a global network. The results suggest that

the in-degree aspect of social network size not only confirms the previously

reported brain correlates of the social network but also shows an association

in brain regions involved in the ability to infer other people’s minds. This

study provides insight into understanding how the social brain is uniquely

associated with sociocentric measures derived from a global network.
1. Introduction
Primates have evolved to adapt to complexities of social living and their higher-

order intellect is primarily suited to social problem-solving [1]. To deal with

such social problems, the utilization of adaptive cognitive abilities including

mind reading, tactical deception and coalition-formation are required [2,3].

According to the ‘social brain hypothesis,’ living in a large social group imposes

computationally demanding information, so primates evolutionarily developed

a bigger neocortex volume to adapt to such a load [4]. The ontogenetic evidence

supports this conception in that complexities of the species’ social environment

(e.g. group size) correspond well to brain neocortex size [5]. As functioning in a

highly interrelated society requires individuals to process and encode con-

siderable social information, the maximum number and complexity of social

relationships are likely to be limited by individual differences in cognitive

capacity [6,7]. Thus, it is possible to predict that individuals with greater

brain resources for social information processing can effectively manage

larger social networks.

Recent human neuroimaging studies further support the social brain

hypothesis in that regional volume and connectivity of the ‘social brain’ regions

are correlated with the size of social network one maintains. The social brain

refers to the brain regions that consistently show activation in neuroimaging
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studies while engaging in a variety of social cognitive tasks.

Specific regions of the social brain are typically comprised

of two network systems: the amygdala network [8] and the

mentalizing network [9]. Disruptions in the amygdala–

orbitofrontal cortex (OFC) network result in severe social

impairment possibly due to difficulties in facial emotion

judgement [10], social punishment learning [11], social

value processing [12] and affiliative behaviours [13] indicat-

ing its central role in social functioning. Accordingly,

structural and functional characteristics of the amygdala

and its highly connected OFC regions have shown the most

consistent positive correlation with the individual differences

in social network size [14–21]. On the other hand, brain

regions involved in the ability to infer other people’s minds,

also known as the theory of mind (TOM), can be another

neuroanatomical basis of social network size [17,18,22,23].

Mentalizing process reliably recruits activities in the dorso-

medial prefrontal cortex (dmPFC), temporo-parietal junction

(TPJ) and precuneus. Larger brain capacity in these regions

is associated with better performance in social cognition

tasks [23–25]. While the two social brain systems are ana-

tomically and functionally distinct from each other, both

systems simultaneously play an important role in perceiv-

ing value-laden social information, thus comprising the

core brain regions in addressing complex social problems

[22,26,27].

In the context of the social brain hypothesis, various indi-

ces including the Social Network Index [28], the Norbeck

Social Support Network Score [29] and the number of friends

in online social networks [18], have been used to measure the

complexities of social group and to investigate whether larger

social brain volume predicts greater capacity in managing

one’s social relationships. These indices measure social con-

nectedness ranging from coarse online social connections to

emotionally supportive and intimate relationships. However,

it remains unexplained how the different properties of social

network indices are associated with specific social brain

structures. Moreover, although most of the studies have

repeatedly reported the association between social network

size in the OFC and amygdala grey matter structure across

various indices [15], the regional volumes in the mentalizing

network (e.g. dmPFC, TPJ and precuneus) do not show

consistent association [8,15,20].

One of the challenges being raised in previous studies is

the systematic bias and inaccuracy of the sociometrics solely

relying upon respondent-centred methods. As social connec-

tions are not necessarily symmetric and reciprocal, using

social network information derived from other individuals

may provide a full picture of the interconnected nature of

social relationships. When a social network index considers

information beyond an individual level, it may allow an eco-

logically valid investigation of the neural basis of social

networks [30,31]. However, none of the previous studies

investigated how this directional information of social

network size is specifically associated with regional brain

volume in concert with the social brain hypothesis.

Based on the complete mapping of the social network of

an entire town, it should be possible to measure two types of

individual social network size: out-degree and in-degree. The

out-degree size of an individual’s social network is the

number of people in the whole network with whom an indi-

vidual respondent most frequently or importantly interacts.

The out-degree measure has been a rudimentary instrument
in social network studies, not because it best quantifies

the size and complexity of social networks but because it

is the only measure that can be obtained from a sample via

traditional survey questionnaire responses. Out-degree is

generally believed to gauge the perceived amount of avail-

able social resources. On the other hand, the in-degree size

of an individual social network is a measure of the number

of people who cite the respondent as an important social

relationship, and is obtainable through a survey that collects

real names in these social networks and maps the social net-

works of all people in the population. Unlike the out-degree

size, the in-degree size reflects the properties of popularity

and aptitude of the respondent as a social tie. For example,

in figure 1, individual A’s out-degree network size is four

because this respondent has four outbound social connections

(A ! b, c, d, e), whereas the in-degree network size is one

because the respondent has only one inbound social connec-

tion (d ! A). This approach delineates two qualitatively

different directional aspects of social network size.

Meanwhile, the association between social network and

brain structure may also arise from general health mechan-

isms, especially in the elderly population [32]. Socially

integrated older adults may benefit from instrumental and

emotional support via social connections. Thus, a rich social

network has been suggested as one of the protective factors

against adverse late-life health outcomes including cardio-

vascular fitness [33] and inflammatory response [34]. Although

the amygdala volume showed parallel correlations among

both young and older adults in a previous study [14], it is

possible that brain areas contributing to a larger social net-

work are significantly affected by age-related changes and

the health benefits of social networks [35]. Based on our pre-

vious study reporting the association between self-rated

health and in-degree size of an individual’s social network

[36], further investigation is necessary to clarify how individ-

ual differences in general health status account for brain

structure in the elderly population.

The main purpose of this study is to construct the social

network of an entire town, identify the directional infor-

mation (i.e. in-degree and out-degree) of its social network

and compare neuroanatomical correlates of two social

network size indices. By examining both in-degree and out-

degree types of social network size, this study purports to

clarify the nature of brain correlates of social network size.

We used voxel-based morphometry (VBM) analysis to quan-

tify regional grey matter density (rGMD) and investigated

how inter-individual differences in social network size have

their brain structural basis [37]. More specifically, we exam-

ined whether VBM analysis results indicate specific effects

within the volume of social brain regions including the amyg-

dala network and the mentalizing network. Since the elderly

population shows extensive brain volume decrease across

regions, we also examined whether the identified neuroana-

tomical correlates are especially vulnerable to general health

and ageing factors.
2. Material and methods
(a) Participants
Participants in this study were a subsample from the Korean

Social Life, Health and Aging Project (KSHAP). The KSHAP is

a community-based cohort study that collected information on
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Figure 1. Complete network of Township K. The entire social network of community members is represented by dot-shaped nodes (n ¼ 835) and directional lines
(!). The subsample of MRI-scanned participants (n ¼ 68) is indicated in blue. A node can have outbound ties from oneself to other nodes and inbound ties from
other nodes to oneself. The largest component of 768 nodes (a) and the smaller or separated nodes components (b) are indicated.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20172708

3

an entire population of older adults in Township K [38]. Initial

recruitment in the first wave investigation identified people

who were 60 years old or older and their spouses among the

1864 residents of Township K. In the follow-up recruitment in

the third wave of the study, 591 participants completed a face-

to-face survey and a health examination either at home or at a

community centre. All measures of social network size for this

study were derived from the third wave of the social network

survey. Of the 591 participants who completed the survey, 194

were administered neuropsychological tests. We excluded par-

ticipants with any history of neuropsychiatric or neurocognitive

disorders based on a procedure reported in a previous study

[39]. According to the Health Screening Exclusion Criteria [40],

58 elderly individuals were further ruled out based on one of

the following exclusion criteria: psychiatric or neurological

disorders, vision or hearing problems, possessing metals in

the body that cannot be removed, hypertension or diabetes

uncontrollable by drugs or insulin, and having a history of

losing consciousness due to head trauma, infarction or stroke.

Subsequently, participants who had a high probability of

having a neurocognitive disorder were excluded based on neuro-

psychological tests (according to age and education-based

norms) and semi-structured interviews. Of the 136 participants,

73 older adults volunteered for further MRI scans. Three partici-

pants were excluded due to neurological conditions identified by

a radiologist, while two participants were excluded due to not

completing the scans and poor image quality. The remaining

68 participants were included in the final dataset. The group

included healthy older adults (42 females) who were on average

71.38 (s.d. ¼ 6.40, range ¼ 59–84) years old and who had an

average of 6.47 (s.d. ¼ 3.95, range ¼ 0–20) years of formal edu-

cation. The study was approved by the Institutional Review

Board of Yonsei University, and all participants provided written

informed consent for the research procedures.

(b) Social network measures
Social network variables were created using the third wave of the

KSHAP data. The KSHAP adopted a name generator from the

General Social Survey and National Social Life, Health and

Aging Project [38,41,42]. Individuals’ social connections were

constructed from a name generator that identifies social network
members, including a spouse if any and up to five discussion

partners, with information on real names, gender and residence.

The questionnaire read as follows: From time to time, most people
discuss things that are important to them with others. For example,
these may include good or bad things that happen to you, problems
you are having, or important concerns you may have. Looking back
over the last 12 months, who are the people with whom you most
often discussed things that were important to you?

To create a global (or complete) social network of Township

K based on the network survey of 591 respondents, we first

excluded the social ties of the respondents who were not married

to any of the respondents and lived outside Township K. Then,

we identified the people who appeared in different respondents’

networks as identical based on the following criteria: (i) at least

two out of three Korean characters in their names matched,

(ii) their gender was the same, (iii) their age difference was less

than 5 years and (iv) their addresses belonged to the same Ri

(the smallest administration unit in South Korea). As a result,

we identified a complete network of 835 township residents

and 1285 social ties between them. The in-degree and out-

degree social network size of an individual were defined as the

number of discussion partners generated by the others or oneself,

respectively. Thus, in-degree network size measured how many

people cited the respondent as their discussion partner, while

out-degree network size was based on how many people the

respondent cited as their discussion partners. Within the total

MRI participants (n ¼ 68), average in-degree network size was

2.09 (s.d. ¼ 1.81), while out-degree network size was 2.28

(s.d. ¼ 1.62).

(c) MRI acquisition and preprocessing
MRI images were acquired using a 3-Tesla MAGNETOM Trio 32

channel coil. Whole-brain T1-weighted images were recon-

structed from 224 sagittal slices of 1 mm thickness using an

MPRAGE sequence with the following parameters: TR ¼ 2.3 s,

TE ¼ 2.3 ms, FOV ¼ 256 � 256 mm2 and FA ¼ 98. The time

between social network measurement and MRI acquisition was

16–21 months. Image preprocessing was carried out using

tools implemented in Statistical Parametric Mapping software

(SPM12; Wellcome Department of Imaging Neuroscience,

London, UK) and executed in MATLAB (MathWorks, Natick,
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Massachusetts). We used the New Segmentation algorithm

implemented in SPM12 [43]. T1 images were bias-corrected

and segmented into five tissue classes based on nonlinearly

registered tissue probability maps. The East Asian International

Consortium for Brain Mapping template was used for local

optimization affine regularization. To spatially normalize grey

matter images into a standard space with enhanced accuracy of

inter-subject registration [44,45], we used Diffeomorphic Ana-

tomical Registration Exponentiated Lie algebra (DARTEL). A

customized template was created from imported versions of

the grey matter tissue images. Then, the deformation field was

applied to previously segmented grey matter images to

implement nonlinear transformation into standardized Montreal

Neurological Institute (MNI) space. During these nonlinear

transformations, the total volume of grey matter was preserved

with modulated images. All images were smoothed using an

8-mm full-width at half-maximum Gaussian kernel.

(d) Voxel-based morphometry analysis
Preprocessed imaging data were analysed statistically using

SPM12. Total intracranial volume (TIV) was calculated as the

sum of total volumes from each segmented image of grey

matter, white matter and cerebrospinal fluid. Every voxel value

was proportionally scaled with TIV to adjust for total brain

volume effect. Age, education, gender and the time gap between

social network survey and MRI acquisition were introduced as

covariates of no interest. Multiple regression models tested

whether the social network measures were significantly co-

rrelated with specific voxel density. We applied multiple

comparison adjustments based on FWE-corrected p , 0.05 with

a cluster defining threshold of p , 0.001 (Z ¼ 3.09) estimated

by the Gaussian random field method implemented in SPM12

[46]. To reduce the probability of false negatives due to lack of

sensitivity [47], we also opted to report clusters at a more lenient

threshold of k . 200 considering the effect size reported in the

previous studies [14,15,17]. Subjects identified as outliers in the

multiple regression analysis were excluded and re-analysed to

confirm the robustness of the results.

Two additional VBM analyses were conducted to examine

how the late-life general health factor accounts for the relation-

ship between the identified rGMD and social network size.

First, the effect of interaction was tested in the multiple

regression models by adding an age�in-degree size term and

checked whether the association between in-degree size and

rGMD differs across age. An attenuated age-related decrease in

rGMD would be interpreted as a protective effect on brain

volume reduction [48–50]. Second, we repeated VBM testing

by adding terms into the regression model for possible

confounding variables: depressive symptoms (30 items) [51]

and self-rated health (five-point single item from ‘poor’ to

‘excellent’) [52]. An attenuated association between rGMD

and social network size would indicate the mediating role of

the added covariates.

(e) Meta-analytic decoding with Neurosynth
To better characterize the functional implications of our VBM

results, we used meta-analytic reverse inference using the Neuro-

synth framework (http://neurosynth.org) consisting of 11 405

fMRI studies and 3107 meta-analysed terms [53]. This method

allows the identification of cognitive terms that are most prob-

ably associated with specific brain images. We uploaded the

unthresholded T-map representing the GMD spatial pattern of

each degree network size. The relative similarities between the

cognitive terms and VBM result image were shown in a rank

order of correlation. Among 50 terms of the highest correlation,

methodological, redundant (e.g. mind tom, tom, TOM) and

anatomical (e.g. prefrontal, medial) terms were excluded.
We also extracted the term-based reverse inference map of

‘theory mind’ comprised of 140 fMRI studies (FDR p , 0.01,

k . 700) and the brain regions overlapping with the thresholded

social network size clusters were visually inspected. The over-

lapping clusters between social network size regions and

Neurosynth-derived regions were identified to infer the possible

social cognitive property of the VBM results.
3. Results
Sixty-eight elderly residents of a rural village in South Korea

completed a social network survey, neuropsychological

assessments and MRI scans. Both in-degree and out-degree

sizes showed positively skewed distributions (in-degree

skewness ¼ 2.10, out-degree skewness ¼ 0.77). Independent-

sample t-tests for demographic differences between sampled

participants (n ¼ 68) and the rest of the social network popu-

lation in the village (n ¼ 523) revealed that the sampled

participants had significantly more years of formal educa-

tion (t ¼ 2.42, p ¼ 0.02) and a larger in-degree network size

(t ¼ 2.46, p ¼ 0.02), and were younger (t ¼ 22.87, p , 0.01).

Alternatively, out-degree network size (t ¼ 0.79, p ¼ 0.43)

and gender ratio (x2 ¼ 0.23, p ¼ 0.70) were not significantly

different. Males had marginally larger out-degree network

sizes than females (t ¼ 22.00, p ¼ 0.05), but in-degree

network size did not show a significant gender difference

(t ¼ 21.06, p ¼ 0.30). Importantly, in-degree and out-degree

sizes were not significantly correlated (r ¼ 0.143, p ¼ 0.25),

indicating that these two indices represented distinct dimen-

sions of an individual’s social network. Neither in-degree

nor out-degree network size correlated with age and years of

education (ps¼ 0.24).

Next, multiple regression models testing the associations

between rGMDs and social network size were analysed while

adjusting for covariates of no interest. The results showed

that the rGMD of right superior frontal gyrus (dmPFC) was

positively correlated with in-degree size ( p ¼ 0.044, FWE cor-

rected), while left OFC (p ¼ 0.055, FWE corrected) and

fusiform gyrus (p ¼ 0.077, FWE corrected) showed a tendency

towards positive associations (table 1 and figure 2a). Several

regions including posterior middle temporal gyrus (pTPJ),

inferior and middle frontal gyrus, and cerebellar regions also

showed positive correlation with in-degree size, although

they did not remain significant in the multiple comparison

corrections. Importantly, no significant association with

out-degree size was observed in the whole-brain analysis.

To test the robustness of the findings, we excluded two

subjects who showed unlikely Mahalanobis distances (D2)

in the multiple regression models predicting social network

size ( p , 0.05). These subjects were identified as outliers,

with one showing excessively large in-degree network size

(greater than +3 s.d.). In the outlier-excluded analysis

(n ¼ 66), the right OFC rGMD consistently showed a robust

association with in-degree network size (Z ¼ 4.73, p ¼ 0.032,

voxel-level FWE corrected, k ¼ 697). However, the dmPFC

area was no longer a cluster of significant association in the

FWE-corrected analysis.

Supplementary analyses were conducted to assure how

age or health-related factors account for the association

between in-degree size and rGMD. However, no age�
in-degree size interaction effect was observed, indicating that

neither of the identified rGMDs showed differential associ-

ation across age. When self-rated health was introduced as a

http://neurosynth.org
http://neurosynth.org


Table 1. Brain regions showing positive correlations between regional grey matter density and in-degree social network size adjusting for age, education,
gender and time gap between survey to MRI acquisition (cluster defining threshold of p , 0.001, uncorrected, k . 200).

brain regions
peak
Z-value

cluster
size (k)

cluster-level
FWE p-value

MNI coordinates

X Y Z

L fusiform/lingual gyrus 4.295 683 0.077 212 259 0

R lingual gyrus 3.932 566 0.126 17 253 22

R superior frontal gyrus (dmPFC) 4.258 820 0.044 18 60 26

R superior frontal gyrus (dmPFC) 3.713 243 0.524 12 51 45

L orbitofrontal cortex (OFC)/amygdala 4.132 765 0.055 232 29 212

R orbitofrontal cortex (OFC) 3.956 369 0.303 42 41 26

R inferior frontal gyrus 4.131 241 0.528 44 11 14

R middle temporal gyrus ( pTPJ) 4.076 216 0.585 45 250 12

R middle frontal gyrus 4.015 400 0.264 44 41 21

cerebellar vermis 3.762 236 0.539 2 265 29

(a)

(b)

OFC dmPFC

dmPFC

vermis

amygdala

pTPJ

pTPJ

overlapping cluster
in-degree network size cluster
Neurosynth theory mind cluster

lingual
fusiform gyrus

inferior/middle
frontal gyrus

Figure 2. (a) Brain regions showing positive correlations between regional grey matter density and in-degree social network size adjusting for age, education,
gender, and time gap between survey and MRI acquisition (cluster forming threshold of p , 0.001, uncorrected, k . 200). (b) Overlapping regions (yellow)
between Neurosynth reverse inference map of ‘theory mind’ (red) and clusters correlating with in-degree network size (green).
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covariate, both right OFC (Z ¼ 4.29, FWE corrected p ¼ 0.030)

and dmPFC (Z ¼ 4.66, p ¼ 0.027, FWE corrected) showed

significant effects. The regression model including depres-

sive symptoms also showed consistent results in left OFC/

amygdala (Z ¼ 4.14, p ¼ 0.005, FWE corrected), right OFC

(Z ¼ 4.26, p ¼ 0.039, FWE corrected), fusiform/lingual gyrus

(Z ¼ 4.23, p ¼ 0.005, FWE corrected) and dmPFC (Z ¼ 4.12,

p ¼ 0.051, FWE corrected).

To better characterize the functions implied by the regions

identified with VBM analyses, we conducted meta-analytic

decoding using the Neurosynth framework. The VBM results

of both in-degree and out-degree social network size were

decoded. When top-ranking terms were compared, the

rGMD association pattern of in-degree was spatially similar

to the reverse inference map of ‘theory of mind’, ‘autobiogra-

phical memory’ and ‘mentalizing’, whereas out-degree
indicated the highest similarities with ‘finger movements’

and ‘motor’ terms (table 2). When the meta-analysed reverse

inference map of ‘theory mind’ was overlapped on the thre-

sholded VBM map of in-degree size (figure 2a), right

dmPFC (k ¼ 191) and right pTPJ (k ¼ 113) showed partial

overlapping clusters (figure 2b).
4. Discussion
Social network size was differentially associated with grey

matter structure depending on the directionality of the

social relationship. Social connectedness designated by

other people (in-degree size) was associated with brain

volumes which have been implicated in inferring social

information. By contrast, self-reported social connectedness



Table 2. Neurosynth meta-analytic decoding of the VBM results. Relative similarities between the cognitive terms and the VBM map of each social network size
are noted with correlation. Among the highest 50 terms, redundant and non-cognitive terms were excluded from the list.

in-degree social network size out-degree social network size

term
correlation
(similarity) term

correlation
(similarity)

autobiographical 0.120 movements 0.132

navigation 0.102 motor 0.111

theory mind 0.101 hand 0.105

emotion 0.100 finger movements 0.101

episodic 0.097 spatial 0.085

mentalizing 0.096 motor imagery 0.079

neutral 0.094 coordination 0.077

memories 0.090 imagery 0.077

social 0.084 finger tapping 0.073

mental states 0.081 navigation 0.073

pictures 0.079 rhythm 0.073

foot 0.078 index finger 0.069

scenes 0.076

valence 0.076

affective 0.074
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(out-degree size) did not show any association. These results

provide important support for the social brain hypothesis

and delineate the nature of social networks that was effective

in our prediction that larger social brain volume will contrib-

ute to better management of social relationships; i.e. the

in-degree size. It is noteworthy that by examining the complete

social network of an entire village, we were able to measure

and compare out-degree and in-degree sizes of social net-

works and their association with brain volumes for the first

time, to our knowledge.

Out-degree directly measures the perceived amount of

available social support to the respondent and shares simi-

larities with many preceding social network indices [15]. By

contrast, in-degree size measures social connections to the

individual as reported by other people, indicating popularity

and the capacity to attract other people for their own interest

[54]. Although these two types of indices count the number of

significant social relationships of real-world community dwell-

ers, it is notable that the correlation between the two indices

was statistically insignificant. Since out-degree size is based

on egocentric measurement, this null result may have been

due to the susceptibility to expansiveness bias of over-reporting

one’s actual social connections [54]. More importantly, it may

not be cognitively demanding for an individual to judge and

designate one’s own important social ties. By contrast, in

order to be designated as an important social tie (or discus-

sion member in our survey) by others, one needs to prove

that he or she remembers and understands others’ various

social conditions and can provide valuable social support.

This can be a cognitively demanding task, especially if the

person has to deal with many people of diverse backgrounds,

needs and values (a large in-degree network). Consistent

with the social brain hypothesis [4], the capacity to process

such demanding information via the social brain would

more likely to predict the number of important social
connections reported by others, rather than subjective

perception of social connections. Our findings suggest a fun-

damentally distinctive underlying mechanism of the capacity

to maintain a large in-degree social network compared to

a large out-degree social network.

Our result identified several social brain regions for main-

taining a large in-degree social network. First, we identified

the association between in-degree social network size and

bilateral OFC volume. It has been suggested that this region

is involved in various higher-order valuation processes [55],

integrating and forming models about the value system in

the environment. Individuals who successfully adapt to

different social contexts may possess accurate valuation for

social rewards, which makes OFC a convincing candidate

for the neural substrate of adaptive social functioning.

Accordingly, OFC has shown the most consistent positive

association with various social network size indices in the

previous review [15]. It has been shown that a larger pos-

terior OFC volume is associated with a stronger disposition

for social interaction [56], extraversion [57] and social compe-

tence [58], all of which contribute to constructing and

maintaining a supportive personal social network. It is

worth noting that unlike several previous studies showing

the association of the ventromedial OFC with social networks

[17,19], we found a positive association in the lateral portion

of the OFC, which may be more relevant to memory and

face processing rather than self-referential processing [59].

Consistent with previous studies, we found that the cluster

of left OFC includes amygdala structure, confirming the

amygdala as a hub in brain networks that support social

living [8]. Lesions in the amygdala structure can cause pro-

found social impairment and changes in social interest and

affiliative behaviours, suggesting its importance in social

functioning [8,10,13,60]. Among the distinctive sub-nuclei of

the amygdala, it is possible that connections between the
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ventrolateral amygdala and OFC may play a significant role

in perceiving and constructing representations of social

hierarchy [61,62].

In addition, the social brain regions which are well-

known neural correlates of mentalizing brain network [9,63]

positively correlated with the in-degree social network size.

More specifically, we identified a positive association in the

right superior frontal gyrus that extends to the dorsal and

medial parts of the prefrontal cortex. Along with other

mentalizing network regions (e.g. precuneus, TPJ), dmPFC

is a robustly activated region when encoding and inferr-

ing other people’s impressions, traits, and false beliefs

[24,63,64]. Accordingly, a larger brain volume or parametric

activation increase in dmPFC predicts the performance of a

task requiring complex levels of perspective-taking [24] or

to read other people’s minds through the eyes [23]. The ros-

tral and dorsal PFC were the regions where the brain

volume increased when macaque monkeys were assigned

to different sizes of social groups [65]. This homologous

brain volume change was also associated with the success

in accommodating social rank order among these macaques,

suggesting a possible link between mentalizing capacity and

success in managing social relationships. On the other hand,

in the exploratory analysis with a liberal threshold, we

observed a positive association in another mentalizing net-

work region. The posterior TPJ and its adjacent region in

the posterior superior temporal sulcus (pSTS) are engaged

in inferring other people’s goals and intentions at a more per-

ceptual level of representation [9]. Regional volume and

neural activation of this area have been identified to be corre-

lated with both social network size and performances of

biological motion or gaze processing [22,25], indicating that

the individual differences in personal social networks may

result from basic social information processing capacity.

While the amygdala–OFC network regions are involved in

processing affective information of social relationships and

affiliative behaviours, the mentalizing network regions

appear to be mainly involved in inferences oriented toward

other people’s explicit behaviour [8,9]. Importantly, however,

these two network systems interact with each other when

processing information regarding hierarchy and popularity

of real-world social network members [26,27].

It is notable that the mentalizing network regions were

where previous studies failed to show a consistent effect

[15,17,20] as opposed to the amygdala–OFC network. Our

study suggests that when the in-degree aspect of social net-

work size is specifically examined, the mentalizing network

indeed plays a role as the social brain hypothesis would pre-

dict. The larger social brain volume involved in social

perception and mentalizing is more likely to play a role in

managing an individual’s popularity and attractiveness (in-

degree aspect), rather than subjectively perceiving the

number of social connections (out-degree aspect) per se.

Another important aspect of our result is the use of meta-

analytic decoding on the VBM results using Neurosynth. We

found that social cognitive functions (i.e. TOM and mentaliz-

ing) strongly corresponded with in-degree VBM results,

especially in dmPFC and pTPJ regions, whereas the spatial

pattern of out-degree VBM map showed no relevant terms

indicating social function. More specifically, the subtle

GMD pattern associated with larger out-degree size does not

imply social cognitive ability even without a certain statistical

threshold.
Other brain regions with positive correlations with

in-degree network size included the posterior and medial

temporal lobe. Although these regions are not part of the

major social brain networks, and they have not been represen-

tative structures involved in higher-order social inference, it is

possible that the fusiform gyrus plays a role in the perception

of subtle facial cues [66–68] or the encoding of the faces of

socially important peer group members [27].

Meanwhile, due to the limitations of the cross-sectional

design, it is possible that socially engaged individuals benefit

from their larger brain volume by its general protective effect,

especially in the elderly population [69]. In this study, we

partly ruled out the possible effect of health status on the

brain volume. The non-significant interaction (age �
in-degree) model result also implies that the identified brain

association is the result of pre-existing individual differences

rather than a buffered ageing effect. Nevertheless, since

age-related brain atrophy in the population older than 60 s

is a prominent factor that can obscure or eliminate a large

amount of variance, our interpretation between brain structure

and social life is still open to bidirectional interpretation and

further health-related exploration using cohort longitudinal

data [70,71].

One interesting finding from our elderly sample was that

contrary to observations of larger social network size in

elderly females compared to males in previous studies from

Western elderly communities [42], elderly males showed

larger out-degree social network size in our study [38]. Situ-

ated in a relatively isolated rural area in the northwest shore

of South Korea, the elderly people appear to have preserved a

strong patriarchal community where social activities were

patriarch-centred. This may have had limiting effects on the

social networking of elderly females who have catered to

the needs of male spouses including social relations and

activities.

We note several limitations to this study. First, the unique

social and cultural characteristics of the rural village and the

specific age range of the older adults may not be representa-

tive of the general population. The social networks of older

adults residing in rural areas of South Korea exhibit a

higher proportion of family kinship within a personal net-

work and tend to be more cohesive than urban social

networks. Additional studies in urban areas of South Korea

and elsewhere are required to confirm the generality of our

findings. Moreover, the range of social connections to be

included was not the same as in social network indices of

previous studies [15]. Specifically, we measured the size of

the social network from the name generator of ‘important

discussion members,’ which constitutes the inner-most core

within hierarchical layers of personal network. This inner

core of the personal network is conceptually commensurate

with ‘support clique’ typically constrained within five

people [4]. Further investigation of extended layers of social

relationships (e.g. interacting regularly) may provide more

integrated understanding of how the social network is associ-

ated with the social brain structure and function. Last, brain

volume is an underspecified measure in the link between

brain functioning and associated cognitive processes. The

exact cellular basis of regional grey matter volume is largely

unknown. The VBM method, however, generally reflects a

mechanism associated with synapse density, dendritic

arbour, microvasculature, and cell bodies [72,73], and such

neuroanatomical characteristics sensitively detect a wide
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range of individual differences in behaviour and cognition

[74]. We believe that individual differences in the regional

grey matter can be construed as a localized abundance of

neural resources and its associated cognitive capacity.

Recently, sociocentric methods have been used to quan-

tify the patterns and structures of social relationships and

have revealed that structural position within a social network

can be uniquely associated with individual differences of

social cognition and brain function [26,27,39,75,76] or late-

life health outcome [34,77]. This approach not only effectively

operationalizes sociological concepts but also characterizes

how an individual gets access to social capital and gains

advantage from the social network around the ego [30,31].

In summary, using social network information obtained

from the complete social network of the entire village, our

study has demonstrated that the two directional aspects of

social connectedness, in-degree and out-degree, rely on

different neural bases. The study not only confirmed the pre-

viously reported neural correlates of the amygdala network

but also identified associated regions involved in mentalizing

ability, extending the theoretical framework of the social

brain hypothesis. It appears that individuals with small in-
degree social networks might have had limiting compu-

tational capacity to manage complex social dynamics,

whereas those who successfully maintained large in-degree

networks were able to exercise superior social cognitive abil-

ity using their social brain capacity. This is the first study, to

our knowledge, to investigate the association between two

directional types of social network size and brain structure.
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