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Natural visual scenes are rich in information, and any neural system analysing them must piece together

the many messages from large arrays of diverse feature detectors. It is known how threshold detection of

compound visual stimuli (sinusoidal gratings) is determined by their components’ thresholds. We

investigate whether similar combination rules apply to the perception of the complex and suprathreshold

visual elements in naturalistic visual images. Observers gave magnitude estimations (ratings) of the

perceived differences between pairs of images made from photographs of natural scenes. Images in some

pairs differed along one stimulus dimension such as object colour, location, size or blur. But, for other

image pairs, there were composite differences along two dimensions (e.g. both colour and object-location

might change). We examined whether the ratings for such composite pairs could be predicted from the two

ratings for the respective pairs in which only one stimulus dimension had changed. We found a pooling

relationship similar to that proposed for simple stimuli: Minkowski summation with exponent 2.84 yielded

the best predictive power (rZ0.96), an exponent similar to that generally reported for compound grating

detection. This suggests that theories based on detecting simple stimuli can encompass visual processing of

complex, suprathreshold stimuli.
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1. INTRODUCTION
Our visual world encompasses a rich combination of cues:

size, shape, colour, lightness, motion, depth and others.

Feature integration binds all this information together, so

that we have a useful representation of the natural visual

environment (von der Malsburg 1995; Treisman 1996;

Ghose & Maunsell 1999; Wolfe & Cave 1999). Straight-

forward combination rules for neural channels have been

proposed for object detection (e.g. Ennis et al. 1988) and

salience (e.g. Koch & Ullman 1985; Shepard 1987;

Li 2002), but these have generally been demonstrated

only for simple visual images where the information

content is fully specified (e.g. Shepard 1964; Graham

1989; Koene & Zhaoping 2007; Zhaoping & May 2007).

Here, we investigate whether such simple combination

rules also apply to complex, naturalistic images containing

recognizable objects and scenes.

The first factor in discrimination tasks is detectability.

Campbell & Robson (1968) first proposed a multiple-

channel model whereby visual input at any location

is processed by several parallel neural channels, each

responsive, e.g. to different stimulus orientations and spatial

frequencies. It has since been demonstrated many times

that, the more channels a composite visual stimulus

activates, the greater the probability that the stimulus will

be detected and the lower is its detection threshold (e.g.

King-Smith & Kulikowski 1975; Tolhurst 1975; Graham

1977; Robson & Graham 1981). In experiments where the

stimulus consists of two or more component sinusoidal
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gratings, the detectability of the compound stimulus can be

estimated by a nonlinear (weighted) summation of the

detectability of its components. The summation rule derives

from Quick’s (1974) pooling function, otherwise known as

Minkowski summation (Shepard 1964); it is given by
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where Sc is the sensitivity (reciprocal of threshold contrast)

for the compound stimulus, Si is the sensitivity to each

component stimulus, n is the number of components and m

is the summating Minkowski exponent. Robson & Graham

(1981) showed that a Minkowski exponent of approximately

3.5 yielded the strongest predictions in a number of grating

detection tasks. Similar values have been reported in many

other summation experiments and models based on simple

visual stimuli such as lines and Gabor grating patches (e.g.

Watson & Nachmias 1980; Watson 1982; Wilson & Gelb

1984; Bonneh & Sagi 1998, 1999; Meese & Williams 2000;

Meinhardt & Persike 2003; Watson & Ahumada 2005). The

useful applicability of Minkowski summation to predicting

thresholds for composite stimuli is clear, but the mechanism

is only hypothesized. Detection is probabilistic; the sum-

mation rule has generally been interpreted as describing

Probability Summation (Quick 1974; Graham 1989),

although this has been debated (see §4). The probability of

detecting a composite stimulus (Pc) would be calculated

from the probabilities of detecting the n components

(Pi) independently,

Pc Z 1K
Yn

iZ1
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The Minkowski parameter (m) is then interpreted as

a measure of the slope of the psychometric probability

function (Robson & Graham 1981) that relates probability

of detection to the contrast (or intensity) of the stimulus.

Rohaly et al. (1997) have extended the applicability of

Minkowski summation to the detection of objects against

backgrounds in images of natural scenes. They found that

summating the absolute differences between the back-

ground alone and the background with target using a

Minkowski exponent of 4 could generate good predictions

about the detectability of the target. We have also had

some success in modelling the detectability of morphed

changes in the shape, texture and colour of naturalistic

images of objects and faces (Párraga et al. 2005; Tolhurst

et al. 2005; Lovell et al. 2006). While earlier detection

experiments combined cues in the same feature dimension

(e.g. spatial frequency), these two experiments demon-

strate the applicability of the Minkowski combination rule

across feature dimensions. These observations therefore

illustrate the potential relevance of the Minkowski

summation model to more complex visual stimuli. Yet

the question remains whether this straightforward but

powerful model of detection processes can be extended to

even more realistic viewing situations, where the natural

images contain differences that lie comfortably above

detection and discrimination thresholds.

Then, perhaps, we would be investigating not detect-

ability but saliency, another factor that must be considered

when discussing perception of natural scenes that contain

noticeable changes. Saliency refers to how much an object

contrasts from its surrounding, thereby attracting atten-

tion to itself (Titchener 1908). Koch & Ullman (1985)

proposed that features are first processed independently

and then summed up at a later stage to form a salience

map. However, Li (2002) designed a V1 model based on

the physiological and anatomical properties of V1 neurons

and suggested that saliency is determined at an earlier

stage by the most active V1 cells, i.e. the location of the

visual field eliciting the strongest response from V1

neurons will most probably be selected for further

attentional processing. Recent visual studies have

supported the V1 model: reaction times for locating a

target (or texture border) are better explained using

this maximum rule than by a simple summation rule

(Koene & Zhaoping 2007; Zhaoping & May 2007).

Furthermore, in the context of natural images, Lewis &

Zhaoping (2005) report that a maximum rule is more

accurate in predicting salient locations in a database of

natural scenes. Because a maximum rule is equivalent to

Minkowski summation with power of infinity, this

reinforces the potential significance of the Minkowski

summation model in our investigation.

In this paper, we ask human observers to rate the

perceived suprathreshold differences between pairs of

images made from the photographs of natural scenes. In

particular, we examine the perception of the difference

between paired scenes that contain two visible and

recognizable differences (e.g. differences in blur or colour

or object size or location), and ask how the perception of

these composite differences relates to the perception

of image pairs where there is only one difference. Our

experiments differ from those described above in several

aspects. First, by contrast to most studies, our stimulus

sets are composed of hundreds of complex naturalistic
Proc. R. Soc. B (2008)
images, a step towards studying vision in the real world.

Second, the image differences presented in these experi-

ments are not only substantially above threshold, but also

span across a wide range of categories, e.g. colour, blur,

shape change, etc. This allows us to investigate how a

larger array of cues integrate in a more realistic set up.

Third, unlike the detection and saliency experiments, no

thresholds or reaction times are recorded: our observers

are asked to enter ratings that indicate how they perceive

differences between the images. Our ratings experiments

will show that a Minkowski summation rule describes the

relations very well.
2. MATERIAL AND METHODS
(a) Display apparatus

Stimuli were presented on a 19 00 SONY CRT display driven

with 800!600 pixels and a frame rate of 120 Hz by a ViSaGe

system (Cambridge Research Systems). The display was

viewed in a darkened room from 2.28 m, so that the visible

area subtended 10 by 7.58; each square pixel subtended

0.75 min. The stimuli were square (256!256 pixel) coloured

images constructed from digitized photographs of natural

scenes, occupying 3.28 square in the centre of the display.

Each pixel in the stimuli was represented with eight bits each

of red, green and blue, and the pixel values were fed through

linearizing look-up tables to be displayed through 14 bit

DACs; thus, each colour plane was presented with 256

equally spaced precise luminance steps (Pelli & Zhang 1991).

When and where the display was not occupied by a stimulus,

it was held at a mid-brightness grey (55 cd mK2; CIE x,y

0.28, 0.29), except for a small dark fixation dot in the centre

of the screen. The fixation dot was extinguished when stimuli

were present. The brightest white pixel across the stimuli had

a luminance of 110 cd mK2.

(b) Construction of stimuli

Images of natural scenes were captured using three digital

cameras, as follows: a Nikon Coolpix 950 (1600!1200

pixels), a Nikon Coolpix 5700 (2560!1920 pixels) and a

JVC GR-DVL-9700 digital camcorder. The details are

described in the electronic supplementary material.

In experiment 1, images were separated into six broad and

partly overlapping thematic categories, as follows: animals,

landscape, objects, people, plants and garden or still-life

scenes. Each category contained 30 parent images each

matched with 5 variants, to make up 900 different image pairs

in total. Examples of parent images and image pairs can be

seen in figures 1a and 3. For 325 of the pairs, the variant was

a second photograph of the same scene taken when, say,

an object had moved or when changes in the illumination

had changed the shadowing. Other variants were made

from originals using PAINTSHOPPRO ( JASC software) or code

written in MATLAB (The Mathworks). In some variants, part

or the entire scene could be blurred to varying degrees, or

the hue and saturation of objects or the whole scene could be

changed, while leaving the brightness relatively unaffected.

Objects could be ‘painted out’ or, by cut-and-paste they

could be duplicated or moved within scenes.

The 900 image variants were designed to test a number of

different models or hypotheses (e.g. Lovell et al. 2005, 2006).

However, for the present purpose, many of the variants

contributed to 136 combination sets. Each combination set was

made up of three image pairs based on a single parent image
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Figure 1. (a) some examples of image pairs used in experiment 1. Three pairs are shown, constituting one combination set:
starting from a single reference image, the comparison image could vary in either of the two stimulus dimensions or in both.
(b) The same pairs used in experiment 2, after they had been inverted and the pixel colours distorted. (c) The standard pair used
in experiments 1 and 2; the difference between these two images was defined as having a magnitude of 20. (d ) Sample
combination sets from one of six families used in experiment 3. Starting from a single reference image, the contrast of the
shadows could be changed to six new levels (two are shown here), and the size of the bushes could also be changed to six new
levels (three are shown here). Altogether there could be 49 images, including the reference.
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(see figure 1a): in two pairs, the images differed from the

parent along different single dimensions (e.g. object colour,

location or presence, size, blur); the third image pair was a

composite, differing along both the dimensions. Some image

pairs contributed to more than one combination set.

In experiment 1, observers were presented with natural

scene images. For experiment 2, we wanted to present stimuli

with the same spatial and colour complexity as the natural

ones, but with the semantic content difficult to discern.

Inverting or negating images of faces or objects makes them

difficult to recognize (e.g. Yin 1969; Bruce & Langton 1994;

Haxby et al. 1999; Rossion et al. 2002; Vuong et al. 2005). We

were able to present images upside down, but making

negatives (subtracting each pixel value in each colour plane

from 256) was not successful, because it made the images

look desaturated. Instead we made pseudo-negatives as

follows. The R, G and B planes were processed separately.

In each plane the pixel values were ranked and then the

ranking was reversed, before the three reversed planes were

combined again to form the ‘modified’ image that resembled

the negative of the original. This image was then inverted.

Some examples are shown in figure 1b. There were, of course,

136 combination sets in this experiment as well.

The stimulus set for experiment 3 contained 588 image

pairs, including 432 combination sets (many of the

image pairs contributed to several combination sets). These

were made from only six parent images; for each parent there

were 48 variants. Starting with a parent image, variants could

be made by changing, say, the size or colour of an object in six
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steps. Also, variants could be made by changing the contrast

of shadows in six steps. It was possible to construct 49 images

from the parent, including those where there was change in

one (or neither) of the two dimensions. For any given change

in one dimension, it was possible to make an image variant

that had seven different values (including no change from the

original) in the second dimension. Figure 1d shows some

examples from one of the six families. In this experiment,

each of the 294 image pairs was presented once upright

and once inverted, the order of presentation of upright and

inverted images being randomized.
(c) Procedure

(i) Experiments 1 and 2

Difference ratings were collected for 900 upright natural

scene image pairs from each observer (see the electronic

supplementary material), who was initially instructed during

a quick demonstration session, where he/she was shown the

different types of differences that could be presented to

him/her. A training session then followed the demonstration

programme. In this phase, observers were asked to rate 51

image pairs presented in a random order. All images used in

the demonstration and training phases were different from

those to be used in the testing phase proper. During the

demonstration and testing phases for experiments 1 and 2,

observers were repeatedly presented with the same standard

‘lily’ image pair (figure 1c), whose magnitude difference was

defined as ‘20’. They were instructed that their ratings of the

subjective difference between any other image pair should be
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based on this standard pair: if they perceived the difference

between the test pairs to be lesser, equal or greater than the

standard pair, their ratings should be less, equal or greater

than 20, respectively. They were instructed to use a ratio scale

so that, if a given image pair seemed to have a difference twice

as large as that of the reference pair, they would assign a

value twice as large to that image pair (in this case, 40).

No upper limit was set so that observers could rate the

differences as highly as they saw fit. Observers were also told

that sometimes image pairs may be identical and, in such

cases, they should set the rating to zero.

The testing phase was divided into 6 blocks of 150 image

pairs. The image presentation sequence was random so that a

given combination stimulus might have been presented

before or after one or both of the single-change stimuli; the

order was randomized differently for each observer. Each

block started with the presentation of the standard lily image

pair, and this standard was regularly presented after every 15

trials to remind the observers of the standard difference of 20.

On each trial, the fixation dot was extinguished and a

randomly selected image from the current image pair was

presented for 833 ms; then the fixation point was presented in

the centre of the grey screen for 83 ms; then the other image

from the image pair was presented for 833 ms; the fixation

point was presented again for 83 ms, and finally the first

image shown within the current trial was presented again

(833 ms). Observers were asked to gaze at the central fixation

point between image presentations and to maintain this

fixation during image presentations. The 83 ms interval was

long enough that observers could not gain any cue about

potential image differences from apparent motion of objects

in changed positions. The featureless display during the

interval was not intended to be a distractor and the image

changes were generally clear and unsurprising. Although the

presence of the blank interval made the changes in some

image pairs harder to detect, we were not trying to imitate

some kinds of ‘change blindness’ paradigm (Simons &

Rensink 2005) where large changes are disguised by the

nature of the image transition or interval; once recognized,

those changes become easy to see. However, despite the

interstimulus interval, changes presented in the following

experiments were generally noticeable and easily identifiable.

Following these presentations, a random number between

10 and 30 appeared at the centre of the screen, and the

observers were asked to modify this number using a

Cambridge Research Systems CB6 response box until their

choice of difference rating was reached.
(ii) Experiment 3

The procedure was essentially identical, except that a

different standard pair was used, one more thematically

similar to the landscape or garden scenes in the experiment.

The experiment was conducted in 4 blocks of 147 trials.
(d) Data collation

In each of the three experiments, the ratings of the observers

were averaged together for further analysis. Typically,

the median rating given by each observer over the whole

experiment was approximately 20. The results for each

observer were first divided by their median value and the

ratings were rescaled to give a median of exactly 20. Then,

the scaled ratings of the several observers were averaged

together, typically with standard errors of approximately 2.5.
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3. RESULTS
Observers were presented with pairs of coloured images

derived from photographs of natural scenes, and were asked

to give numerical magnitude estimates (Stevens 1975;

Gescheider 1997) of how different the images in each pair

seemed to be. The robustness of these measures of visual

performance is assessed in the electronic supplementary

material. The aim of the experiments was to determine

how the visual system combines multiple cues in order to

provide a single judgement about natural image difference.

The experiments were based around combination sets.

Starting from a single reference image, the observers rated

the perceived difference between that image and three others

(e.g. figure 1a). In the first pair (a component pair), the

images might differ in one dimension such as colour; in

the second pair (a second component), the images would

differ in a second dimension such as object shape; in the final

pair (the composite), the images would differ in both the

dimensions. All image pairs were presented in a different

random order for each observer. We averaged the ratings

given by 11 or more observers for each image pair, and we

examine below how the ratings to two component changes

are combined to give a rating for the composite stimulus.

Results are evaluated from three different experiments.

In experiment 1, 11 observers were presented with a wide

variety (900) of image pairs, which mostly looked like

normal digitized photographs (e.g. figures 1a and 3) that

included 136 combination sets. In experiment 2, we

repeated the procedure using the same image-pairs but

after they were both inverted and colour distorted

(figure 1b) on 11 new observers; the inversion and colour

distortion were intended to allow us to examine the role

of semantic context and higher-level features. In experi-

ment 3, we examined summation of stimulus dimensions

in a more systematic way, testing 15 observers on 432

further combination sets (both normal and inverted),

generated from six parent images by summing coupled

cues in various proportions (figure 1d ).

Figure 2 examines how well several different com-

bination rules were able to predict the measured rating

(R3) to the composite stimulus in each combination set

from the separate ratings (R1 and R2) to its two component

image pairs. Figure 2a(i)–c(i) shows the simplest predic-

tion: that the rating to the composite image is the simple

arithmetic sum of the ratings to the two component images.

Clearly, for each of the three experiments (figure 2 rows

a–c), arithmetic addition of the two component ratings

predicts a composite rating that is substantially higher than

that actually measured. We also examined whether the

composite rating could be predicted as the mean of the

two component ratings (graphs not shown), but the fit was

also poor. For all rules, the Pearson correlation coefficient

was above 0.9 (table 1), but this shows only that experiment

and prediction were proportional and not that they were

identical. Table 1 lists the sum of squared deviations

between measured and predicted R3 for all experiments

and putative summation rules, as a direct measure of

goodness of fit between experiment and prediction.

Figure 2a(ii)–c(ii) shows how well the measured rating to

the composite is matched by the maximum of the two

individual ratings to the component stimuli. The match

(see table 1) is very much better than for the arithmetic

sum, but the maximum slightly underestimates the

measured value of R3 in all experiments.
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The rightmost column of figure 2 shows that

Minkowski summation of the two component ratings gives

a good prediction of the actual rating to the composite

stimulus. Minkowski summation (equation (1.1)) is widely

used to model how the detection thresholds of simple and

complex visual stimuli depend on the thresholds for the

stimulus components (e.g. Stromeyer & Klein 1975;

Mostafavi & Sakrison 1976; Quick et al. 1978; Robson &

Graham 1981; Rohaly et al. 1997; Watson & Solomon

1997; Párraga et al. 2005; Watson & Ahumada 2005;

Lovell et al. 2006) and has been proposed as the basis

of a ‘general law’ of sensory encoding (Shepard 1987).

We have examined whether an analogous summation

rule applies to the perceived differences between natur-

alistic images,

predicted R3 Z ðR1m CR2mÞ1=m; ð3:1Þ

where m is the Minkowski exponent. It will be noted that

an exponent of unity is simple arithmetic summation (or

‘city-block summation’), an exponent of 2 is the Euclidian

distance, while the maximum is given by a high exponent

(Lewis & Zhaoping 2005; Koene & Zhaoping 2007;

Zhaoping & May 2007). For each of the three experiments

separately, we used an iterative search to find the value of

the exponent which minimized the sum of squared

deviations between the predicted value of R3 and the

measured value. Figure 2 and table 1 show that, for

the best-fitting exponents, Minkowski summation gives a

good prediction of the composite ratings. Figure 3 shows

pictorially how the Minkowski summation rule predicts

the rating to the composite stimuli for four combination

sets from experiment 1.

Figure 4a plots the measured and predicted ratings

for all 704 combination sets, pooled across the three

experiments. The single best-fitting value of the Min-

kowski exponent is 2.84, very similar to values that best

describe detection experiments with simple visual stimuli

(Robson & Graham 1981; Watson & Solomon 1997;

Watson & Ahumada 2005; and figure 4d, see §4).

However, when the ratings to the component stimuli

(R1 and R2) are very different, it will be noted that the

predictions of the arithmetic summation, maximum and

Minkowski summation rules will all be nearly the same,

i.e. the predicted value of R3 will be approximately the

same as the bigger of the two values R1 and R2 in all cases.

Indeed, the fits of the maximum rule and the Minkowski

summation rule are not very different in the combined

dataset (table 1). The graphs in figure 2 are therefore not

as stringent a test of the summation rules as we would like.

To verify that the Minkowski combination is indeed the

most effective model for feature pooling, we discarded

all those combination sets in which R1 and R2 differed

by more than a factor of 1.4, leaving 208 sets where

the two component ratings were of similar magnitude.

Figure 4b plots the measured and predicted ratings for the

composite stimuli of these remaining sets, calculated with

a best-fitting Minkowski exponent of 2.98. Table 1 shows

that, after discarding the combination sets that have little

predictive power, the sum of squared deviations per point

has decreased slightly for the Minkowski summation rule,

but it has increased more substantially for the maximum

rule. This does suggest that the Minkowski summation

rule is a better description of the pooling strategy than

the maximum rule.
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Figure 4c shows how the sum of squared deviations

between measured and predicted R3 depends upon the

exponent for the selected dataset of 208 combination sets;

similarly shaped graphs were found for the 3 individual

experiments and for the overall dataset of 704 com-

bination sets. There is an asymmetric minimum, which is

shallow on the higher side, where detection models often

place the exponent (Robson & Graham 1981; Rohaly

et al. 1997; Watson & Solomon 1997; Párraga et al. 2005;

Lovell et al. 2006).
4. DISCUSSION
The visual world is a rich amalgam of information, and the

role of the visual system is to integrate all the pieces of

information together to build coherent percepts from the

component pieces. How are the various spatial and

chromatic cues in natural scenes pooled to give unified

percepts? Previous research, with simple geometric figures

(Shepard 1964, 1987) or sinusoidal gratings (see Graham

1989), has demonstrated the applicability of several

different combination rules, one of which is Minkowski-

weighted summation. The similarity between one compo-

site stimulus and another, or the detection sensitivity

for a composite grating target is given by raising the

contribution of each component to some power, and

then summing the result (see equations (1.1) and (3.1)).

Shepard (1964, 1987) proposed that, in a wide variety

of sensory tasks, the summation power would be either 2

(Euclidian summation) or 1 (‘city-block’ summation). In

fact, many detailed studies of the detectability of

compound sinusoidal gratings have found the summation

power to be higher than this, generally in the range 3–4

(Watson & Nachmias 1980; Robson & Graham 1981;

Watson 1982; Wilson & Gelb 1984; Watson & Solomon

1997; Bonneh & Sagi 1998, 1999; Meese & Williams

2000; Meinhardt & Persike 2003; Watson & Ahumada

2005). Furthermore, the same summation rule with the

same value of exponent has been used in complex models

of the detection of targets in natural visual scenes (Rohaly

et al. 1997) and the detection of spatial or spatiochromatic

changes in morphed images of natural objects (Párraga

et al. 2005; Tolhurst et al. 2005; Lovell et al. 2006). It is

therefore perhaps no coincidence that a power rule of 3–4

should be found in this experiment where suprathreshold

cues are integrated.

Figure 4d shows the results of some of our own experi-

ments on the detectability of composite sinusoidal grating

stimuli (see figure legend for details). The observers

detected Gabor patches of grating presented either singly

or in pairs, one component to each side of the central

fixation spot (cf Meese & Williams 2000). The graph

shows the measured sensitivity to the composite stimulus

(both Gabors presented together) on the x -axis, plotted

against the sensitivity predicted from the sensitivities to

the two component Gabors presented singly. The line

shows the good relation that holds for Minkowski

summation of the component sensitivities, with exponent

of 1.97, on the lower range of values previously reported

for grating summation.

Now, natural scenes comprise many elements that would

seem to be more complex than just the sum of a few simple

features, and many of those components are considerably

above detection threshold (Chirimuuta et al. 2003;
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Figure 2. Predictions of the rating (R3) given to the composite image pair in a combination set from the individual ratings
(R1 and R2) to the two separate component images. The results from experiments 1, 2 and 3 are presented in (a(i–iii)),(b(i–iii)),
(c(i–iii)), respectively. (a(i)–c(i)) The arithmetic sum of R1 and R2 plotted against the measured R3; (a(ii)–c(ii)) the maximum of
R1 and R2 plotted against R3; (a(iii)–c(iii)) the Minkowski sum (equation (3.1)) of R1 and R2 plotted against R3 (Minkowski
exponents: 2.78, 2.79 and 2.95 in (a–c, respectively). Lines of equality are shown; details of the fits are given in table 1.
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Clatworthy et al. 2003). Processing of natural scenes

presumably involves activation of numerous channels

from which pooled information needs to be extracted. It

is therefore important to establish whether the simple

rules that govern the combination of channels when the

stimuli are simple will generalize to these more complex

images, higher contrasts and more natural discrimination

tasks. Our image-difference rating task is a suitable

candidate for study because it is a realistic task for an

observer, but is complex enough to permit the elucidation

of visual combination rules.

Thus, the purpose of the present experiments was

twofold, as follows: (i) to examine whether the Minkowski

summation model can be extended to these more realistic

conditions and tasks, where complex natural images

contain salient differences and people have to judge their

magnitude; (ii) to investigate whether the mechanisms

that underlie suprathreshold summation are similar to

those in detection tasks with simple stimuli. We examined

a number of combination rules that might determine

the magnitude rating that an observer gives to a natural

scene stimulus in which there are two feature changes.

Simple summation of the ratings to the separate feature
Proc. R. Soc. B (2008)
changes (city-block summation) failed badly. Euclidian

summation (not illustrated) would have fared better, but

our experimental results show that the most predictive

combination rule in several experiments was Minkowski

summation, specifically with exponents, as follows:

2.78 (experiment 1), 2.79 (experiment 2), 2.95 (experi-

ment 3) and 2.84 (all experiments combined). These

values are very similar to those reported in previous

threshold-level experiments (3–4, see above). The present

analysis attempts to predict the magnitude ratings that

observers give to composite image differences, given that

we already know the ratings that they have given to the two

components separately. We have also tried to construct

biologically realistic models of visual cortex processing

that would allow us to explain the ratings that observers

give to any arbitrary image pair from first visual principles:

from knowing how populations of V1 simple cells with

different orientation and spatial-frequency tuning might

respond to the stimuli, and these models too work

best when the contributions of the individual simple cells

are summed with Minkowski exponents close to 3 (Lovell

et al. 2006; To et al. 2007). These findings could imply a

generalized feature integration mechanism that may be



Table 1. Summary statistics for the various models and datasets described in the text. (Pearson’s correlation coefficients are
shown. The rightmost column shows the sum of squared deviations between measured and predicted R3, divided by the number
of points in the particular dataset.)

experiment summation rule number of sets correlation coefficient sum of squares

1 arithmetic sum 136 0.903 141.50
1 mean 136 0.903 54.03
1 maximum 136 0.902 15.67
1 Minkowski 2.78 136 0.929 7.60
2 arithmetic sum 136 0.832 74.15
2 mean 136 0.832 42.69
2 maximum 136 0.895 9.35
2 Minkowski 2.79 136 0.908 5.71
3 arithmetic sum 432 0.929 45.77
3 mean 432 0.929 33.30
3 maximum 432 0.954 5.96
3 Minkowski 2.95 432 0.963 4.19
1, 2, 3 maximum 704 0.947 8.49
1, 2, 3 Minkowski 2.84 704 0.960 5.14
subset maximum 208 0.964 13.72
subset Minkowski 2.98 208 0.967 4.94
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14.608 28.606 27.829
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Figure 3. (a–d ) In experiment 1, ratings of pairs with single changes (R1 and R2) were combined using a Minkowski exponent of
2.78, and this combination was then compared with the ratings of their respective composite pairs (R3). The figure shows four
examples of combination sets and the average rating given to each of the image pairs by the 11 observers. Columns 1 and 2 show
image pairs and ratings in which there was only one change in the image. Column 3 shows the composite image pair and
associated rating (R3) where there were two image pairs. The final column (R3 estimated) shows the rating predicted for the
composite pair by Minkowski summation of the ratings to the two component image pairs.
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underlying a whole variety of stimuli, from supra threshold

elements in naturalistic images to detection in threshold

grating experiments.

Early studies of grating detection thresholds supposed

that the Minkowski summation rule reflected a particular

mechanism, i.e. probability summation (Graham 1977;

Graham et al. 1978; Quick et al. 1978; Robson & Graham

1981). If the detectability of each component was

independently probabilistic, then the composite stimulus

would be detected more frequently than any component

because, in effect, the extra components increase the

chance that at least one of them will be detected (see

equation (2.1)). The Minkowski exponent of 3–4 in those

early experiments was then interpreted as a measure of

the slope of the psychometric function (often fitted as a

Weibull function whose parameter had the same value as
Proc. R. Soc. B (2008)
the Minkowski exponent), which relates probability of

detection to the logarithm of contrast (Quick 1974).

Although the arithmetic of probability summation has

worked well in many circumstances, it has not often been

formally demonstrated that the component elements

within the stimulus are indeed detected probabilistically

and independently (but see Tolhurst 1975 in the time

domain). Some have argued that the incomplete sum-

mation results from lateral interactions between similarly

tuned channels (Bonneh & Sagi 1998, 1999; Meinhardt &

Persike 2003; Meinhardt et al. 2004, 2006). We do not

think that cue summation in our present suprathreshold

rating task is easily interpreted in probabilistic terms,

suggesting that the Minkowski summation rule, while

covering both threshold and suprathreshold levels, is not

necessarily fixed to the probability summation idea.
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Figure 4. (a) For all 704 combination sets in the 3 experiments, the Minkowski sum (exponentZ2.84) of the average ratings
(R1 and R2) to the two component image pairs is plotted against the average measured rating (R3) for the respective composite
image pair. The line of equality is shown. (b) The same as (a), but only for those 208 image pairs where the ratings (R1 and R2)
to the component image pairs were within a factor of 1.4 of each other. The best Minkowski exponent is now 2.98. (c) The graph
shows how the sum of squares deviation between the predicted and measured R3 depends on the Minkowski exponent used to
make the prediction for the 208 selected combination sets. (d ) Minkowski summation (exponent 1.97) of the contrast
sensitivities for detecting 16 sinusoidal grating stimuli, which consisted of two spatially separate Gabor patches (see §4).
Contrast sensitivity (reciprocal of Michelson contrast) was measured for small patches of grating using a two-interval forced-
choice paradigm and staircase control of contrast. The observer viewed a central spot while Gabor patches (spread of 0.388)
could appear either 1.148 to the left of the spot or 1.148 to the right, or together. When presented together, the contrasts of the
two patches were fixed in a ratio that prior experiment had suggested would make them approximately equally detectable. The
graph shows the measured sensitivity to the paired presentation compared with a value predicted by calculation from the
sensitivities to the two component stimuli presented singly. The left and right Gabor patches might have had the same or
different spatial frequency and orientation. In some experiments, the patches were presented against a uniform grey background,
but in others there was a masking pattern of static noise filtered to have a 1/f amplitude spectrum. Results for 16 combinations of
left and right Gabor patches are shown.
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We should point out that while the best predictions

were obtained with a Minkowski exponent of approxi-

mately 3, we did find that the maximum rule also yielded

very good predictions. These results are consistent with

Li’s (2002) V1 model and the saliency experiments

described earlier (Koene & Zhaoping 2007; Zhaoping &

May 2007). The maximum rule has no free parameters

(the implicit Minkowski exponent is fixed at infinity),

and perhaps the superior performance of our Minkowski

rule is partly because the fitting parameter is free to

change. However, removing one degree of freedom from

the analyses with hundreds of data must make little

difference to its advantage.

Over 20 years ago, Shepard (1987) suggested a

universal law for psychological processing, which he

hoped would be as applicable as the laws of Newton or
Proc. R. Soc. B (2008)
Einstein. According to Shepard, this law of generalization

for psychological science involved Minkowski summation

of cues from individual components in a stimulus and

would hold true ‘across perceptual dimensions, modal-

ities, individuals, and species.’ His paper discussed, among

other things, how simple visual stimuli were processed

according to size, lightness, saturation, spectral hues,

shapes and position, and combinations of these. Our

experiments might be seen as a justification of this ‘law’ in

the context of viewing natural visual scenes. Furthermore,

Shepard proposed that the ‘universal law’ would be

applicable to other sensory modalities such as audition.

We have investigated whether similar cue summation can

indeed be obtained in audition by extending our present

paradigm: subjects were asked to rate the difference

between two musical sequences (approx. 2 s long) instead
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of two visual images. These sequences could differ along

one or two of the following dimensions: loudness, scale,

the appearance or disappearance of single notes and

instrumental timbre. Remarkably, preliminary results have

demonstrated that integration of auditory cues follows a

combination rule similar to the visual case: Minkowski

summation with exponent 2.95 generated the best

predictions for combined changes (rZ0.864; nZ96; To

et al. in preparation).

Given the possibility of a universal ‘Minkowski

summation Law’, we should ask what it is about the

sensory stimuli in the natural world or the coding mech-

anisms in the nervous system that makes such a rule

appropriate and, particularly, why exponents in the

range 2–4 are so often found. One answer might lie in

the degree to which the responses of different sensory

neurons are correlated when stimulated by natural scenes

(Field 1987; Schwartz & Simoncelli 2001; Lewis &

Zhaoping 2005); one strategy in the design of sensory

systems might be the reduction of coding redundancy,

i.e. reduction in correlations between neuronal responses

(Srinivasan et al. 1982; Atick & Redlich 1992). If the

responses provided by two neurons about cues are utterly

uncorrelated, it might be appropriate to sum those

cues because each neuron conveys a uniquely important

signal (Minkowski exponent of one); but if the neurons’

responses are highly correlated, we need to consider the

information given by only one of them (the maximum

rule, or Minkowski summation with exponent of infinity).

Given that recordings and computational models of paired

visual neurons show that their responses to natural scenes

have some small correlation one with another (e.g. Vinje &

Gallant 2000; Schwartz & Simoncelli 2001; Schneidman

et al. 2006), it may indeed be appropriate that the

‘universal’ value of the Minkowski summation exponent

is a little greater than unity but a lot lower than infinity.
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