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Abstract

Background: Most prior studies on selective attention in the setting of total sleep deprivation (SD) have focused on
behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down
biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain
regions.

Methodology/Principal Findings: Twenty-three healthy young adult volunteers underwent fMRI after a normal night of
sleep (RW) and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this
task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers
responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding.
The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target
pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal
activation, attending to houses strongly modulated parahippocampal place area (PPA) activation during RW, but this
attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement
in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior
frontal lobe.

Conclusions/Significance: SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further,
reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention.
Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the
effects of sleep deprivation on cognition.
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Introduction

Although a broad array of cognitive processes are affected when

human beings are deprived of sleep, deficits in sustained or vigilant

attention are particularly robust and are of great importance in

predicting real-world cognitive errors [1]. The decline in the

capacity to maintain focus over extended periods has been well

studied using behavioral and neuroimaging methods [2,3]. In

contrast, less is known about the effects of sleep deprivation (SD)

on selective attention, which refers to the ability to focus cognitive

resources on particular locations, objects, or features to the

exclusion of irrelevant distracters. Existing studies on selective

attention in the setting of sleep deprivation have yielded somewhat

mixed results [4,5,6,7,8,9]. One reason for this variability is that

deficits in selective attention can accrue from a combination of

sources [5,10] which may not be dissociable using behavioral

methods alone. In comparison, studying the neural substrates of

attention using fMRI provides added dimensions along which to

tease apart the contributions of specific deficits in selective

attention from the dominant, non-specific effect of vigilance

declines.

In the well-rested state, selective attention results in the biasing

of sensory processing in favor of the attended stimulus over

competing distracters [11]. This leads to topographically specific

increases in neuronal firing rate [12,13] and MR signal in sensory

cortex [14]. Behavioral studies evaluating the effect of SD on

selective attention suggest that despite an overall decline in

response speed, feature-based visual search [5] and alerting may

be relatively preserved [9].

Deficits in selective attention are likely to arise from a reduction

in the strength of top-down biasing of information-processing in

the sensory cortex. In support of this hypothesis, several functional

neuroimaging experiments have shown that sleep deprivation in

humans often results in reduced activation of the dorsal fronto-

parietal attention network [8,15,16,17,18]. Crucially, however,

these findings do not differentiate the effects of sleep deprivation

on selective attention from other forms of attention as all forms

generally recruit similar cognitive control areas. A useful
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alternative approach to identifying deficits in selective attention is

to examine their downstream effects, for instance the influence of

top-down biasing signals on activity in functionally differentiated

and spatially dissociable sensory regions [19,20].

In a recent experiment, subjects viewed picture quartets

containing alternating faces and scenes with instructions to attend

to faces, scenes, or both. In this paradigm, sleep deprivation

reduced functional connectivity between the intraparietal sulcus

(IPS) and the parahippocampal place area (PPA) [4]. However,

while there was a main effect of state on PPA activation,

modulation of PPA activity by attention was relatively preserved.

Since the stimuli were presented in a regular and predictable order

and timing, subjects could be thought of as being cued to respond

to the target stimuli. Cues have been shown to ameliorate the

effect of sleep deprivation on selective attention [9,10], which may

account for the preserved modulation of PPA in this prior study.

To investigate this hypothesis, we studied the effect of sleep

deprivation on the functional anatomy of selective attention using

a task that did not provide subjects with a prior alerting cue. We

predicted that in addition to decreased activation in fronto-parietal

control areas, we would also uncover reduced biasing of activation

in the PPA to relevant stimuli. We additionally anticipated a

reduction in connectivity between cognitive control regions and

ventral visual cortex in the sleep-deprived as compared to the well-

rested state.

Materials and Methods

Twenty-seven undergraduates from the National University of

Singapore were recruited for this within-subject study through

advertisements on a campus website. From this original pool, two

were removed from analysis due to excessive head-motion in the

scanner, one was excluded based on near-chance performance in

both states, and another was excluded on the basis of image

problems, giving a final sample of N = 23 (12 male; mean

age = 21.3 years, SD = 1.4 years). All subjects were right-handed,

had no history of chronic physical or psychiatric disorders, or long-

term medication use. They had regular sleep schedules and slept

between 6.5–8 hours a night based on self-report, and were not

extreme morning chronotypes as assessed by a modified Horne-

Ostberg Chronotype Questionnaire [21].

Upon entering the study, subjects visited the lab for a briefing to

practice the experimental task and to collect an Actiwatch

(Actiwatch, Philips Respironics, USA) that they were instructed

to wear at all times until the conclusion of the experiment. Subjects

were also issued sleep diaries on which they were to record the

onset and offset of all sleep bouts. Sleep history was checked prior

to each of the fMRI scanning sessions, and participants who did

not comply with a regular sleep schedule (.6.5 hours of sleep/

night; sleep time no later than 1:00 AM; wake time no later than

9:00 AM) were excluded.

At least five days after the briefing, subjects returned to the

laboratory for the first of two experimental sessions. In the rested

wakefulness (RW) condition, subjects reported to the lab at

approximately 7:30 AM. After filling in a questionnaire to assess

their subjective level of sleepiness (the Karolinska Sleepiness Scale),

they underwent an fMRI scan during which they performed a task

involving selective attention to two different classes of stimuli: faces

and houses (see fMRI procedures below for detailed description).

Anatomical scans were also acquired during this time. fMRI

scanning in the RW state typically began at about 8:00 AM. In the

sleep deprivation (SD) condition, subjects reported to the lab on

the evening prior to their fMRI scan. Subjects’ actigraphy records

were used to confirm they had awakened at their regular time on

that day, and had not taken any daytime naps. Subjects remained

awake overnight in the laboratory under the constant supervision

of a research assistant. They were permitted to engage in light

recreational activities, but were not allowed to smoke or consume

caffeine. Every hour, participants performed the Psychomotor

Vigilance Test and rated their subjective sleepiness using the

Karolinska Sleepiness Scale. In the SD condition, subjects

underwent an fMRI scan as in the RW condition, but at 6:00

AM. The order of scanning sessions was counterbalanced across

subjects (RW session first; N = 12) to minimize potential order

confounds. Sessions were separated by at least one week, so that

subjects undergoing the SD session first had sufficient time to fully

recover from the effects of sleep loss.

Ethics Statement
Permission to conduct this study was granted by the Singapore

General Hospital IRB, and all subjects provided written informed

consent prior to participation. Subjects were financially compen-

sated for their time. The individual providing the example face in

Figure 1 provided written informed consent for the publication of

this image.

Experimental Paradigm
Subjects were shown blocks consisting of 6 novel targets

(grayscale images of three faces and three houses) and 30

scrambled images that were of approximately equivalent lumi-

nance as the target pictures (Fig. 1). Equal numbers of male and

female faces bearing neutral expressions were presented. Target

stimuli were randomly interleaved with the scrambled images such

that the interval between two targets ranged between 10 s and 14 s

(mean = 12 s). The interstimulus interval for presentation varied

randomly between 0.5 s and 3.5 s (mean = 1.75 s), except after the

appearance of a target, when it was held constant at 2 s. This was

to allow subjects adequate time to respond before the next stimulus

onset.

At the start of each block, an instruction screen lasting 2 s was

presented to the subject, informing them to either attend to faces,

attend to houses, or passively observe the stimuli. This was

followed by a further 2 s delay before the first stimulus appeared.

In each of the ‘attend’ conditions, subjects were instructed to

respond to the target by pressing a button with the right hand. In

the ‘observe’ condition, subjects simply viewed the stimuli without

making any response (Fig. 1). Thus, in the ‘‘attend to face’’ blocks,

attend face (AF) and ignore house (IH) events were generated, and

in ‘‘attend to house’’ blocks, attend house (AH) and ignore face (IF)

events were generated. Observe face and observe house (OF and

OH) events were generated in the blocks where stimuli were

passively observed. fMRI runs consisted of 4 blocks of fixation

(20 s) interleaved with 3 task blocks (77 s). Subjects performed 6

runs in total (all possible permutations of the task blocks) during

each scanning session.

Finally, at the end of the RW session, subjects were scanned

while they viewed blocks of faces and houses; data from these scans

served as functional localizers that allowed us to identify the

fusiform face area (FFA) and parahippocampal place area (PPA)

for each individual subject [22]. Functional localizers consisted of

eight stimulus blocks interleaved with nine fixation blocks, and

lasted 6 minutes and 16 seconds each. Each stimulus block

comprised either 18 faces or 18 houses, presented at the rate of 1

per second.

Image Acquisition
MR imaging was conducted using a 3T Siemens Tim Trio

scanner (Siemens, Erlangen, Germany) fitted with a 12-channel
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head coil. Participants viewed stimuli through a set of MR-

compatible LCD goggles (Resonance Technology, Los Angeles,

USA) and responded using their right index finger via a MR-

compatible button box. Performance was continually monitored

by a research assistant who noted all lapses and eye closures

(through use of an eye tracking device). Subjects were prompted to

attend to the task through an intercom system when they failed to

respond to two consecutive trials, or when epochs of eye closure

exceeded 3 seconds. Functional images were collected using a

gradient echo-planar imaging sequence (TR: 2000 ms; TE: 30 ms;

flip angle: 90u; field-of-view: 1926192 mm; matrix size: 64664).

Twenty-eight 3-mm axial slices aligned to the intercommisural

plane and covering the whole brain were acquired. Directly

following the functional data collection, a high-resolution T1

coplanar image was acquired. Finally, a high-resolution 3D

MPRAGE sequence was obtained so that anatomical images

could be normalized into common stereotactic space.

Image Preprocessing and Analysis
MRI data were analyzed using Brain Voyager QX version

1.10.1 (Brain Innovation) and Matlab R13 (Mathworks). Func-

tional images were aligned across scanning runs to the first image

of the final run. Intrasession image alignment to correct for motion

was performed using the first acquisition of the final functional run

as the reference scan. Interslice timing differences within each

functional acquisition were corrected using cubic spline interpo-

lation. We performed Gaussian filtering in the spatial domain by

applying an 8 mm FWHM smoothing kernel. Linear signal drift,

and signals of lower than 3 cycles/functional run were removed.

Finally, all images were registered to their respective individual 3D

high-resolution T1 anatomical image, and normalized to Talair-

ach space [23].

Functional imaging data were analyzed using a general linear

model with 13 predictors in an event-related analysis. Twelve of

these predictors were created with a 26263 model using all

combinations of state (RW/SD), stimulus type (house/face) and

trial type (attend/observe/ignore). We modeled events by

convolving a stick function with a double-gamma, canonical

hemodynamic response. Only correct ‘attend’ responses were

analyzed. A thirteenth predictor was created to model all lapses

(non-responses within 2 s) in each state; these events were not

subsequently analyzed any further. As we did not want to include

periods of data that included frequent microsleeps, runs in which

there were .50% of undetected targets were not entered into the

model. We excluded 14 out of 288 runs (4.9%) from the analysis

for this reason.

In order to identify cognitive control regions activated above

threshold by selective attention to houses as well as faces, we

computed the conjunction of two contrasts: attend house (AH) vs.

baseline and attend face (AF) vs. baseline in the RW state. To

control for Type I error, voxels were processed using an iterative

cluster size thresholding procedure [24] that considered the spatial

smoothness of functional imaging data when generating activation

maps based on a corrected cluster threshold (p,.05). Subsequent

to this, a voxel-level threshold of at least p,.001 (uncorrected) for t

maps was applied.

To characterize state-related differences in control region

activation during task performance, we compared activation

within a 10610610 mm cube of voxels surrounding the peak

voxels obtained from the conjunction analysis described above in

addition to running an ANOVA-based analysis. The frontal and

parietal regions selected from the conjunction analysis have

previously been identified as important areas involved in selective

attention [4,25]. These ROIs were then interrogated to evaluate

the relative magnitude of activation for attend, ignore and observe

conditions across the two states. All secondary statistical tests were

conducted using SPSS version 17.0 (SPSS Inc., Chicago, IL).

Analysis of object-selective attention within the ventral visual

cortex was ROI-based. The PPA and FFA were defined by a

separately conducted localizer scan performed for each individual

as described previously. PPA ROIs comprised a 10610610 mm

cube of voxels that surrounded the one voxel showing maximum

difference in activation between house and face blocks. We

focused our analysis on the PPA as it has been shown to yield more

discriminating and spatially more consistent, selectivity data

[4,19,20]. Furthermore, because there was no hemispheric

Figure 1. Schematic of the object-selective attention task. Three faces and three houses were presented during every task block. Inter-
stimulus intervals varied randomly after each scrambled image, and were held constant at 2000 ms following each target. Subjects performed 6 task
runs during each scanning session. AF = attend and respond to faces; AH = attend and respond to houses; OBS = passive observation of houses
and faces.
doi:10.1371/journal.pone.0009087.g001
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asymmetry of PPA activation, activation magnitude data for all

conditions—AH (attend house), IH (ignore house) and OH

(observe house)—were obtained from both the left and right

PPA and averaged. Activation magnitude across trial type and

state was evaluated using paired t-tests. We opted not to use

analysis of variance (ANOVA) as we had specific a priori

hypotheses, and because some of the comparisons in the

2-way ANOVA would not have been meaningful (e.g. AHRW vs

OHSD).

Psychophysiological interaction (PPI) analysis [26] was per-

formed by extracting the time series of activation from a 10 mm

cubic region around the peak voxels identified by the conjunction

of AH vs. baseline and AF vs. baseline contrasts within the left

intraparietal sulcus (IPS; Talairach co-ordinates: 227, 258, 37) as

well as the left inferior frontal gyrus/insula (Talairach co-

ordinates: 236, 11, 4). We selected these regions due to their

known involvement in biasing object-based attention, and for

consistency with a companion study [4].

To carry out PPI analysis, we used a linear model with three

predictors: the time course of activity in the seed ROI, a task

predictor coding for activity within task blocks (AH vs. IH or AH

vs. OH) and a PPI term. To construct the PPI term, the

deconvolved time-course of the relevant seed region was

multiplied with a vector containing the psychological variables

of interest. This product was then re-convolved with a canonical

hemodynamic response function [27]. The coefficient of this

third, interaction term, is the one of interest in PPI analyses.

Statistical maps of functional connectivity for each state were

computed by conducting two-tailed, one sample t-tests on

parameter estimates of the PPI (RW and SD) thresholded at

p,.05.

To evaluate the robustness of the findings, we compared PPI in

the AH vs. IH as well as AH vs. OH contexts as both comparisons

evaluate object-selective attention.

Results

Behavioral Data
In the RW state, subjects were able to perform the task

accurately with high hit rates (mean = 91.0%, SD = 11.0%) and

low rates of false alarms (mean = 4.1%, SD = 4.6%). After sleep

deprivation, there was a significant decline in the percentage of

hits (t22 = 5.30, p,.001); however, there was no significant change

in the percentage of false alarms, and reaction times were not

significantly different across state (Table 1). There were no

significant differences in performance accuracy observed between

face and house detection blocks in either state.

Brain Activation Associated with Selective Attention
Brain regions activated as a result of attending to houses as well

as faces included the intraparietal sulcus (IPS) and inferior parietal

lobes bilaterally (BA 40), left inferior frontal gyrus, right middle

frontal gyrus, anterior cingulate cortex (Table 2), the thalamus,

anterior areas of the frontal lobe (Fig. 2) as well as the ventral

visual cortex.

Attending to houses elicited greater activation than ignoring

houses in the left IPS (t22 = 2.72, p,.05), left inferior frontal

regions (t22 = 6.83, p,.001), anterior cingulate cortex and the

thalamus (ACC: t22 = 7.61, p,.001; thalamus: t22 = 6.47, p,.001;

Fig. 3). Similar modulation of attention in the three cognitive

control regions as well as the thalamus was observed when

attending to faces as opposed to ignoring or observing them (Fig.

S1). In subsequent analyses, we focused on the effect of attending

to houses because of the clearer effects of attention on PPA

activation as described in previous studies [4,19,20].

After a normal night of sleep (RW), attending to houses resulted

in greater activation in the PPA in both contrasts of interest AH vs.

IH (t22 = 2.36, p,.05) and AH vs. OH (t22 = 3.14, p,.01). After

correcting for the two comparisons, the former contrast dropped

just below the level of statistical significance (p = .056). Neverthe-

less, effect sizes for these comparisons were in the moderate to

large range (d = 0.57 and 0.68 respectively). To verify that this

effect was not spurious, we repeated the analysis using the PPA

peak in the group map for reference instead of an individually

selected PPA ROI. This resulted in finding significant AH vs. IH

(t = 2.99, p = .006) and AH vs. OH (t = 3.25, p = .004) contrasts in

RW, which would have survived Bonferroni correction. AH vs. IH

and AH vs. OH comparisons in SD around this voxel failed to

reach statistical significance (t = 0.25, p = .81 and t = 1.36, p = .19

respectively).

Effects of Sleep Deprivation on Activation
SD reduced activation in the left inferior frontal ROI (t22 = 2.50,

p,.05) and left IPS (t22 = 2.41, p,.05; Figs. 3 and 4) in the attend

conditions but did not affect activation in the anterior cingulate

(t22 = 0.41, n.s.) or the thalamus (t22 = 0.23, n.s.). These regions also

appeared when probing for a main effect of state using an

ANOVA approach (Fig. 4). The biasing effect of attention on PPA

Table 1. Behavioral data from the selective attention task
(N = 23).

Behavioral variable RW SD t value

Hits (%) 91.05 (10.98) 75.48 (17.13) 5.30*

False alarms (%) 4.11 (4.57) 4.95 (5.09) 20.63

Mean reaction time (ms) 574.08 (82.97) 593.48 (83.99) 21.24

Subjective sleepiness 4.65 (1.78) 8.40 (0.71) 210.1*

Data were collapsed across Attend House (AH) and Attend Face (AF) blocks.
Subjective sleepiness was measured using the Karolinska Sleepiness Scale.
*p,.001.
doi:10.1371/journal.pone.0009087.t001

Table 2. Talairach coordinates of activation peaks in regions
potentially mediating cognitive control identified by the
conjunction of Attend House (AH) vs. baseline and Attend
Face vs. baseline trials (p,.001 uncorrected).

Region BA
Talairach
coordinates t value

x y z RW SD

L intraparietal sulcus 7/40 227 258 37 4.48** 1.06

R intraparietal sulcus 7/40 33 258 43 4.69*** 2.69*

L superior frontal gyrus 10 224 47 5 3.10** 1.21

R superior frontal gyrus 10 30 50 22 4.65*** 3.73**

R middle frontal gyrus 46 24 44 25 3.74*** 2.61*

L inferior frontal gyrus 13 236 11 4 4.97*** 4.01**

Anterior cingulate cortex 32 29 11 43 5.37*** 4.57***

BA = Brodmann’s area.
*p,.05.
**p,.01.
***p,.001.
doi:10.1371/journal.pone.0009087.t002
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activation evident during RW was significantly attenuated

following SD (Fig. 5). Paired t-tests between AH vs. IH and AH

vs. OH in the SD condition were not significant at the p,.05 level

(effect sizes: d = 0.18 and 20.01 respectively). Moreover, there was

a significant effect of state when comparing activation in the AH

condition relative to baseline (t22 = 3.93, p,.001).

Psychophysiological Interaction (PPI) Analysis
Whole-brain PPI analysis revealed significant connectivity

between the seed voxels in the left IPS and the PPA bilaterally

during RW (AH vs. IH: t22 = 4.77, p,.001; AH vs OH: t22 = 3.34,

p,.01) but not following SD (AH vs. IH: t22 = 1.52, n.s.; AH vs OH:

t22 = 1.31, n.s.; Table 3, Fig. 6, Fig. S2). Using a paired t-test, the

direct comparison of PPI values across state for the PPA was

significant only for AH vs. IH (AH vs. IH: t22 = 1.88, p,.05, 1-

tailed; AH vs. OH: t22 = 0.73, n.s.). A separate PPI analysis

evaluating connectivity between the left inferior frontal gyrus/

insula and other brain areas found significant interaction between

the left frontal seed and the PPA following a night of normal sleep

(AH vs. IH: t22 = 2.67, p,.05; AH vs OH: t22 = 3.31, p,.01) but not

following SD (AH vs. IH: t22 = 1.05, n.s.; AH vs OH: t22 = 0.48, n.s.;

Table 3, Fig. 6, Fig. S2). Comparing the PPI across state for the

PPA, we found a significant difference in the AH vs. IH comparison

(AH vs. IH: t22 = 2.69, p,.05; AH vs. OH: t22 = 1.27, n.s.).

Discussion

Three key findings were of interest in the present study. First, we

found that sleep deprivation attenuated connectivity between the

IPS and the PPA when selective attention for houses was engaged,

replicating our previous report [4]. Secondly, SD eliminated the

biasing effect of attention on PPA activation. Finally, the reduction

in fronto-parietal and PPA activation in the sleep deprived state

supports the notion that performance decline in the selective

attention task may be caused by both specific deficits in selective

attention as well as non-specific changes in sustained attention as

reported in previous imaging studies [4,28]

Although inter-individual differences in vulnerability to sleep

deprivation [29,30] can partially explain the differences in

behavioral performance reported in various studies, another factor

to consider is the extent to which the cognitive function of interest

is actually affected by SD. Speed and accuracy of performance are

almost always modulated by several subcomponents within a given

cognitive task [31]. For example, when evaluating visual search in

the setting of sleep deprivation, it was found that search speed did

not decrease with increasing search set size [5]. Instead, SD-

related response slowing was uniform across search set size

suggesting that a non-search-related factor was responsible for

performance decline. Along similar lines, an experiment intended

to study visual short term memory revealed imaging changes that

implied a deficit in attention and/or visual processing rather than

in memory capacity [15]. Finally, a meta-analysis of behavioral

changes induced by sleep deprivation indicated that the effect sizes

associated with decrements in non-specific processes such as

vigilance or sustained attention are relatively large [32] when

compared to other more complex tasks.

Although imaging studies can shed light on functional

neuroanatomy, studies that focus their analysis on top-down

Figure 2. Effect of selective attention task on brain activation. Brain regions showing significant activation in the conjunction of Attend
House (AH) vs. baseline and Attend Face (AF) vs. baseline conditions (p,.001, uncorrected). The top panel depicts activation during rested
wakefulness (RW), and the bottom panel depicts activation after approximately 24 h of total sleep deprivation (SD).
doi:10.1371/journal.pone.0009087.g002
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control regions, which include prefrontal and parietal areas,

typically do not decompose total activation into the relative

contributions of component cognitive processes [33]. However, by

assaying activation in spatially differentiated regions in the ventral

visual pathway that are the targets of object-selective attention

[19,20,34], we were able to determine how object-selective

attention was affected by sleep deprivation.

Sleep Deprivation Reduces Connectivity between the
Parietal/Frontal and Ventral Visual Areas

In a related study [4], it was suggested that functional

connectivity might be a useful technique to detect deficits in

object-selective attention. The current results use an event-

related design to provide converging evidence for this

claim.

Figure 4. Effect of sleep deprivation on activation associated with selective attention for houses. Brain regions that showed a significant
effect of state on activation in the Attend House (AH) vs. baseline contrast (p,.001 uncorrected; in orange). This finding was similar to the main effect
of state obtained using an ANOVA analysis. For comparison, the regions showing the effect of task are overlaid in green and the overlap between
regions showing task and state effects are in an intermediate color. IPS = intraparietal sulcus; IFG = inferior frontal gyrus.
doi:10.1371/journal.pone.0009087.g004

Figure 3. Parameter estimates of activation for the house conditions in areas associated with arousal and attention. Parameter
estimates for each condition and state associated with the left inferior frontal gyrus (IFG), left intraparietal sulcus (IPS), anterior cingulate cortex (ACC),
and left thalamus. Significant state-related differences were observed in the left IFG and IPS, but not in ACC or the thalamus.
doi:10.1371/journal.pone.0009087.g003

Sleep Deprivation Attention
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In order to reveal a state-related change in PPI, MR signal in

the ‘target’ area has to show consistent trial-by-trial differences in

co-variation of signal with that of the seed region involving both

task and non-task related aspects of the signal. This represents a

different aspect of how attention might modulate BOLD signal (as

opposed to the more intuitive demonstration of selectivity in PPA

activation as a function of attention).

Sleep Deprivation Affects Attention-Biased Changes in
PPA Activation in the Absence of a Stimulus Cue

In contrast to the related study [4], subjects in the current

experiment were unable to predict whether they would encounter

a house or a face picture. We posit that this may explain why SD

interacted with attention to modulate PPA activation in the

present work.

The presence of a valid cue significantly reduces response time

in experiments evaluating spatial attention [35]. In sleep-deprived

persons, availability of a neutral or valid cue has been shown to

afford preserved performance whereas invalid cues result in

delayed responses. It has been postulated that the alerting

(warning) effect of a cue, as opposed to re-orienting, is relatively

preserved in sleep-deprived persons [9].

Orienting recruits the parietal lobe [36] and patients with

parietal lobe lesions show deficits in performance during invalid

and uncued trials [37]. Coincidentally, reduced task-related

activation of the dorsal parietal region is a frequent finding in

sleep-deprived persons [8,15,17,18,38]. In contrast, alerting

recruits the thalamus [36] whose activation is often relatively

preserved in multiple experiments evaluating attention following

SD [4,8,28].

The availability of a valid cue may benefit behavior [9,10].

When a cue is not available, as in the case of the present

experiment, selective attention may deteriorate during SD,

accompanied by a corresponding failure in the modulation of

PPA activation. We acknowledge that the framework we have

appealed to was originally used to explain behavior in the context

of spatial attention [35]. However, the parsimony of the present

and prior findings indicates that the framework may also apply to

object-based attention.

Changes Across State in Task-Related Activation
In addition to the changes in PPI and in PPA activity

modulation, sleep deprivation also resulted in significant reduc-

tions in activation across conditions in inferior frontal regions, IPS

and ventral visual cortex. These state-related changes in activation

are consistent with prior studies from our laboratory on visual

short-term memory [15,38], working memory [17] and lapses of

attention [18]. These changes in activation are thought to relate to

a loss of sustained attention or a general visual processing resource

that cuts across multiple tasks.

We posit that in experiments where sustained attention is a

major contributor to the behavioral effect, state-related changes in

activation will correlate with the corresponding change in

behavior [17,38]. On the other hand, activation-behavior

correlations may not be found for tasks in which both sustained

and selective attention contribute variance to the final outcome, as

in the case of our two selective attention studies [4].

Conclusion
Using a novel imaging paradigm and an analysis strategy that

focused on the ventral visual cortex, we were able to dissociate the

brain activation changes that reflect how sleep deprivation influences

selective attention from task-independent changes in brain activation

that involve cognitive control and higher visual areas. For selective

attention tasks, reductions in connectivity between cognitive control

Figure 5. Effects of sleep deprivation and attention on
parahippocampal place area (PPA) activation. In the rested
(RW) state, attention to houses (AH) resulted in significantly greater PPA
activation compared to ignoring (IH) or observing (OH) houses.
However, this attention biasing was lost during SD.
doi:10.1371/journal.pone.0009087.g005

Table 3. Parietal and frontal seed regions showing psychophysiological interaction with the PPA (Talairach co-ordinates shown)
under different task conditions.

Seed region Contrast
Talairach coordinates of PPA region
showing PPI t value

x y z RW SD

L parietal (227,258,37) AH . IH 233 244 28 4.77*** 1.52

AH . OH 235 241 24 3.34*** 1.31

L inferior frontal gyrus (236,11,4) AH . IH 227 248 28 2.67* 1.05

AH . OH 224 246 26 3.31** 0.48

Seeds for this analysis were in left parietal and left inferior frontal regions. t values denote the significance of the PPI term determined separately for each state.
*p,.05.
**p,.01.
***p,.001.
doi:10.1371/journal.pone.0009087.t003
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regions and relevant visual areas appear to be a consistent feature of

neural activity following SD. Finally, the absence of a cue in the

present paradigm could explain the loss of the biasing effect of

attention on PPA activation in sleep-deprived persons.

Supporting Information

Figure S1 Parameter estimates of activation for faces in areas

associated with arousal and attention. Parameter estimates for

each condition and state in the left inferior frontal gyrus (IFG), left

intraparietal sulcus (IPS), left thalamus and anterior cingulate

cortex (ACC) for the three conditions attend to face, ignore face,

and observe face. Significant state-related differences were

observed in the left IFG and IPS, but not in ACC or the

thalamus, mirroring the results for the house conditions in Fig. 4

Found at: doi:10.1371/journal.pone.0009087.s001 (0.18 MB TIF)

Figure S2 Psychophysiological interaction related to the specific

PPI contrasts and state. Connectivity analysis was performed using

seeds in the left IPS (top panel; Talairach co-ordinates: 227, 258,

37) and left inferior frontal regions (bottom panel: Talairach co-

ordinates: 236, 11, 4). Each map represents regions showing

significant PPI in the AH vs. IH and AH vs. OH conditions

(threshold p,.05) and in each state (RW, SD).

Found at: doi:10.1371/journal.pone.0009087.s002 (0.42 MB TIF)
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