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A framework for the detection of de novo mutations in
family-based sequencing data

Laurent C Francioli*,1,2,3,43, Mircea Cretu-Stancu1,43, Kiran V Garimella4, Menachem Fromer2,3,5,6,
Wigard P Kloosterman1, Genome of the Netherlands Consortium44, Kaitlin E Samocha2,3, Benjamin M Neale2,3,
Mark J Daly2,3, Eric Banks3, Mark A DePristo3, Paul IW de Bakker1,7

Germline mutation detection from human DNA sequence data is challenging due to the rarity of such events relative to the

intrinsic error rates of sequencing technologies and the uneven coverage across the genome. We developed PhaseByTransmission

(PBT) to identify de novo single nucleotide variants and short insertions and deletions (indels) from sequence data collected in

parent-offspring trios. We compute the joint probability of the data given the genotype likelihoods in the individual family

members, the known familial relationships and a prior probability for the mutation rate. Candidate de novo mutations (DNMs) are

reported along with their posterior probability, providing a systematic way to prioritize them for validation. Our tool is integrated

in the Genome Analysis Toolkit and can be used together with the ReadBackedPhasing module to infer the parental origin of

DNMs based on phase-informative reads. Using simulated data, we show that PBT outperforms existing tools, especially in low

coverage data and on the X chromosome. We further show that PBT displays high validation rates on empirical parent-offspring

sequencing data for whole-exome data from 104 trios and X-chromosome data from 249 parent-offspring families. Finally, we

demonstrate an association between father’s age at conception and the number of DNMs in female offspring’s X chromosome,

consistent with previous literature reports.

European Journal of Human Genetics (2017) 25, 227–233; doi:10.1038/ejhg.2016.147; published online 23 November 2016

INTRODUCTION

De novo mutation (DNM) between generations is a key mechanism in
evolution. In humans, the mutation rate is estimated between 1× 10− 8

and 3× 10− 8 per base per generation from direct observations1–4 and
from species comparisons,5 although mutation rates have been shown
to vary locally,2,6 across families2–4 and to depend on paternal age.3

While most DNMs are thought to be selectively neutral, the
phenotypic consequences can be severe when functional elements in
the genome are mutated,7 and such cases are therefore of critical
interest for medical genetics.8

Next generation sequencing (NGS) technologies applied to whole
genomes in pedigrees enable systematic discovery and analysis of
DNMs. Because the error rates from NGS data are currently much
greater than the underlying DNM rate, detecting DNMs from NGS
data requires accurate, quantitative calibration of the evidence
supporting a novel allele in the offspring and the evidence against
Mendelian transmission of this allele from (one of) the parents.
A miscalled genotype in the parents or the offspring may lead to a false
positive or false negative result. Consequently, variant callers9,10 emit
genotype likelihoods for each possible genotype to incorporate the
uncertainty from the raw data.
We developed an algorithm called PhaseByTransmission (PBT) to

compute the posterior probability for each genotype combination

within a trio at each site given the genotype likelihoods in the
individual family members, the known familial relationships and
(optionally) the allele frequency in the population. PBT considers bi-
allelic single nucleotide variants (SNVs) and short insertions and
deletions (indels) within the autosomes and the X chromosome, and
generates a list of all candidate DNMs ranked by their posterior
probability. A key advantage is the integration of PBT within the
widely used Genome Analysis Toolkit (GATK)9 and its ability to
leverage phase information from the GATK ReadBackedPhasing
module to identify the parental origin of DNMs.

MATERIALS AND METHODS
PhaseByTransmission takes individual genotype likelihoods as input, defined as
the likelihood L of the bases D observed at a site given each bi-allelic genotype
G: L(D|G). These likelihoods can be computed from the sequence data using
different genotype calling algorithms, such as the GATK UnifiedGenotyper
(UG), GATK HaplotypeCaller or Samtools.11

For a given parent–parent–offspring trio, we enumerate all possible genotype
combinations at a unique site in the genome. For bi-allelic autosomal sites,
there are 27 possible genotype combinations within a trio: 15 are consistent
with Mendelian inheritance, 10 correspond to a single DNM and 2 correspond
to a pair of DNMs (involving a mutation from both parents). For bi-allelic sites
on the X chromosome of a female offspring, only 18 genotype combinations
exist because the father is haploid: 8 are consistent with Mendelian inheritance,
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8 correspond to a single DNM and 2 correspond to a pair of DNMs. Because
male offspring are haploid on the X chromosome and inherited their X
chromosome from their mothers, there are only 6 mother-offspring genotype
combinations: 4 are consistent with Mendelian inheritance and 2 correspond to
a single DNM.
Given a mutation rate μ, n genotype combinations consistent with a single

DNM (from 1 parent) and m genotype combinations consistent with two DNMs
(from both parents), we define the following genotype combination prior:

PC ¼
1� nm�mm2; if the combination follows Mendel0s laws
m; if the combination implies 1 mutation
m2; if the combination implies 2 mutations

8<
: ð1Þ

By using these genotype combination priors, we can compute the posterior
probability of observing the sequencing data D given each of these possible
underlying genotype combinations:

P D GM ;GF ;GCj Þ ¼ PC?P D GMj Þ?P D GFj Þ?P D GCj Þ;ðððð ð2Þ
where GM, GF and GC are the genotypes of the mother, father and child, and PC
the genotype combination prior.
Following the posterior calculation for each of the N possible genotype

combinations in the trio, we assign the most likely one to the trio, at each site,
and compute its normalized posterior probability. All sites and trios assigned a
genotype combination violating Mendel’s laws are reported as putative DNMs
and the posterior probability assigned to each of them reflects the confidence of
the call. In addition to the familial relationships among samples, population
allele frequencies can be incorporated as a prior into our model. Because one of
the most common sources of false positive DNM calls is lack of sequence
coverage in (one of) the parents, informing the model about allele frequencies
in the population can help to reduce false positive rates. When adding allele
frequency priors, Equation(2) becomes:

P D GM ;GF ;GCj Þ ¼ PC?P
GM
AF ?P D GMj Þ?PGF

AF ?P D GFj Þ?P D GCj Þðð�� ð3Þ
where GM, GF and GC are the genotypes of the mother, father and child, PGM

AF

and PGF
AF the allele frequency priors for the mother’s and father’s genotypes, and

PC the genotype combination prior.
The allele frequencies for the sites can be provided either as a separate VCF

file or computed from the genotypes of the samples in the input VCF file when
multiple samples from a single population are studied. In this case, the allele
frequencies are estimated as PG

AF for each genotype G following Hardy-
Weinberg equilibrium expectation:

PG
AF ¼

p2; if the genotype G is homozygous reference
2pq; if the genotype G is heterozygous
q2; if the genotype G is homozygous alternative

;

8<
: ð4Þ

where p and q are the estimated allele dosage for the reference and alternate
alleles, respectively, in the parents (founders).
In addition to calling DNMs, PBT also phases the inherited variants based on

the segregation of alleles within a trio. By considering all possible genotype
combinations and following Mendelian inheritance, we can infer phase
deterministically for all trio individuals in all but two situations: when all trio
individuals are heterozygous for the same two alleles, or when there is a DNM
in the offspring. Except for these two cases, the phasing quality is bounded by
the joint probability of the trio genotype combination.

RESULTS

Simulated data
In order to evaluate the performance of PBT we simulated sequencing
data for 10 parent-offspring trios, 5 with a male offspring and 5 with a
female offspring (Figure 1). We randomly selected 10 families from
the Genome of the Netherlands (GoNL) Project4 and used previously
reconstructed haplotypes for the parents for our simulations. We
created haplotypes for the children by randomly selecting one
haplotype from each of the parents and introduced on average
11 435 DNMs across the autosomes and 1821 on the X chromosome
per offspring (all single base changes). In order to obtain a realistic
genome-wide distribution of DNMs, we applied substitution-specific

local mutation probabilities, which we empirically derived from the
GoNL mutation rate map.12 This mutation map covers 75% of the
human genome and provides mutation rate estimates at the megabase
scale for all substitution types, as well as for C4T transitions in a CpG
context. To simulate the paternal bias observed in previous studies,2–4

we randomly assigned 70% of the DNMs to the paternal haplotype
and 30% of them to the maternal haplotype. Mutations across the X
chromosome were distributed uniformly, as no mutation map was
available. We used SimSeq13 to simulate 100 bp Illumina paired-end
reads with an insert size of 250 bp for all 30 samples, within 10 kb
regions centred on each simulated DNM (5 kb upstream and 5 kb
downstream). We used the SimSeq default Illumina error profile in
our simulation, which inserts errors (and their corresponding phred
quality scores) in the simulated reads, as a function of the position
within the read and the underlying reference base. The reads were
aligned to the UCSC human reference sequence build 37 using BWA14

to produce aligned BAM files. To evaluate the effect of depth of
coverage on DNM detection, we downsampled the generated BAM
files for each sample during the variant calling step, to obtain variant
call sets for average depths of coverage of 60x, 30x and 15x,
respectively. The GATK UG was used on each trio separately to
produce the individual genotype likelihoods used as input for PBT.
Using the UG default settings, an average 96% of the simulated

DNMs were called as putative variant sites (the remaining 4% were
not detected). The VCF file for each trio comprised, on average,
175 458 inherited SNVs and 11 427 Mendelian violations per trio. We
ran PBT on the input VCF files using a mutation prior of 1.5 × 10− 8

based on estimated per-base human mutation rate estimate.1–3 We
also explored more permissive mutation priors (10− 7, 10− 6, 10− 5 and
10− 4) and assessed sensitivity and specificity of the downstream results
as a function of the depth of coverage and mutation prior. In addition,
we ran PBT with and without allele frequency priors based on 1000
Genomes Phase 3 CEU data.15 We ran PBT on each set of parameters,
and computed the following: the number of simulated DNMs
reported as DNMs by PBT (true positives); the number of inherited
variants and sequencing errors reported as DNMs by PBT
(false positives); the number of inherited variants not reported as
DNMs by PBT (true negatives); the number of simulated DNMs
not reported as DNMs by PBT (false negatives). From these, we
computed the sensitivity as #DNMs called as DNM

#DNMs in input file and the specificity as
#inherited SNVs called as inherited

#inherited SNVs in input file .
Figure 2 shows the influence of the mutation rate prior and the

allele frequency prior on the receiving operator characteristic (ROC)
curves for both autosomes and the X chromosome at different depths
of coverage. The mutation prior affects the sensitivity and specificity of
the resulting DNM calls. As expected, a higher mutation prior
increases the sensitivity at the cost of more false positive calls. As a
result, the mutation prior value needs to be set depending on the
desired output and the sequencing coverage (Figure 2). We note that
as coverage increases the optimal value for real data should converge
towards the actual human mutation rate (as can be seen for the 60x
coverage data). Incorporating allele frequency priors into DNM
detection greatly improved the sensitivity at low and medium coverage
for both autosomes and the X chromosome. This reflects the higher
uncertainty of the parents’ genotypes at lower coverage, resulting in
poor discrimination between homozygous and heterozygous geno-
types. Incorporating the allele frequencies in the model thus leads to a
better discrimination between (a) a site that is variant in the
population and thus likely to be inherited from one of the parents
even though there is little (or no) evidence for the variant allele in (one
of) the parents, and (b) a site that is not variant in the population and
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is likely to be de novo if there is no evidence for the variant allele in
either parents.
To compare the performance of PBT against other state-of-the-art

DNM callers, we used the same input VCFs to detect DNMs with
TrioDeNovo16 and DeNovoGear.17 We selected these DNM callers, for
their good reported performance as well as similar integration points
within analysis pipelines (ie, after individual variant calling is
performed). We used the best performing DNM rate prior (out of
five predefined priors: 1.5× 10− 8, 10− 7, 10− 6, 10− 5 and 10− 4) to
obtain DNM call sets, for each method and coverage. For PBT, we used
the allele frequency prior as well. The optimal (in terms of sensitivity
versus specificity) mutation rate prior’s values were derived from
Figure 2 for PBT and from a similar analysis (ie, influence of the
mutation rate prior on specificity and sensitivity), on the same
simulated dataset, for TrioDeNovo and DeNovoGear (Supplementary
Figures SF1 and SF2). The mutation rate parameter value for each
method is consistent with documentation or recommendations for
each of the tools, where available. Figure 3 shows the ROC curves for
the autosomes and the X chromosome at different depths of coverage
using the posterior probability reported by each tool as parameter.

All three tools surveyed in this analysis performed very well in terms
of the sensitivity at high coverage, while PBT and TrioDeNovo exhibit
slightly better specificity. At lower coverage, the differences in
sensitivity and specificity become more pronounced. The performance
gain achieved by PBT at lower coverage comes from the incorporation
of the allele frequencies in the model, which allows for a better
discrimination between poorly covered variant sites in the parents and
true DNMs. PBT showed good performance in detecting DNMs on
the X chromosome even at lower coverage (15x), which was
particularly challenging for the other two methods, especially in the
male offspring trios. PBT had a sensitivity of 99% in female offspring
trios and 98% in male offspring trios. In contrast, TrioDeNovo detects
only 77% and 58% of female and male offspring DNMs on the X
chromosome respectively, and DeNovoGear sensitivity drops down to
24% for the female offspring DNMs and 3% for the male offspring
DNMs, respectively. The better performance of PBT on the X
chromosome comes from explicitly modelling the unique mode of
inheritance for this chromosome, whereas other tools do not
differentiate between autosomes and the X chromosome.
We further evaluated our ability to assign parental origin to the

DNMs identified. Assuming sequence reads are of sufficient length,
heterozygous variants located close to the DNM can be informative about
its parental origin and phase. To this end, we combined trio-based
phasing information from PBT and read-based phasing information from
ReadBackedPhasing in order to reconstruct the two haplotypes trans-
mitted to the offspring. We only assigned parental origin to sites where all
read data spanning adjacent offspring heterozygous positions unambigu-
ously supported the same parental haplotype. We were able to determine
parental origin for 14.1% of the simulated DNMs and 81.4% of these
were assigned correctly. We note that other tools do not provide
automated annotation of the parental origin.

Empirical whole-genome data
In previous work, we have demonstrated the performance of PBT to
detect de novo SNVs and indels in 13x coverage autosomal sequencing
data of 250 parent-offspring families and on three parent-offspring
families with both whole-exome and whole-genome data from the
CLARITY challenge.18

Here, we present the application of PBT on the X chromosome
sequencing data of 249 parent-offspring families from the GoNL
project (230 trios, 11 parent-offspring families with a pair of mono-
zygotic twins and eight parent-offspring families with a pair of dizygotic
twins). We used only one randomly chosen offspring from each family
with monozygotic twins and used both offspring from families with
dizygotic twins. This resulted in a total of 257 offspring (111 males, 146
females) for DNM calling. All GoNL samples were selected without
phenotypic ascertainment so as to be representative of the general
Dutch population. The DNA samples were extracted from whole
blood, and sequenced on Illumina HiSeq2000 using 90 bp paired-end
reads with an insert size of 500 bp. The reads were aligned to the UCSC
human reference sequence build 37 using BWA and processed using
GATK best practices (https://www.broadinstitute.org/gatk/guide/best-
practices). SNVs were called using GATK UG and subsequently filtered
using GATK VariantQualityScoreRecalibration (VQSR). We excluded
the pseudo-autosomal regions from this analysis since the homology
between the X and Y chromosomes in these regions causes ambiguous
read mapping and unreliable subsequent genotype calls with current
analysis pipelines. The resulting set comprised 701 910 SNVs on the X
chromosome and a total of 872 214 Mendelian violations.
We applied PBT to these data using a mutation prior of 10− 5,

which should provide optimal sensitivity based on our simulations

Figure 1 Outline of the pipeline used to generate our simulation data. The
‘mutation rate map’ is the autosome-wide GoNL derived mutation rate map,
as published before.12
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(Figure 2). We also used an allele frequency prior based on the
observed allele frequency in all unrelated samples in our study. We
applied a posterior cutoff of Q5 for female offspring and kept all DNM
calls in male offspring regardless of their posterior, since male offspring
calls had lower posteriors in general, due to their overall lower genotype
quality. Using these permissive parameters and thresholds, PBT reported
a total of 10 380 DNMs. Due to the low depth of sequencing in our data,
many of the lower quality calls are likely to be false positives and we thus
filtered this set by removing any DNM candidates with any read
evidence for the non-reference allele in either of the parents (which in

our sequencing context most likely indicates insufficient sequencing of
the alternative allele). This resulted in a final set of putative DNMs of 126
male offspring DNMs and 547 female offspring DNMs.
We selected six putative DNMs in male offspring and 54 in female

offspring for validation. These candidates were selected randomly from
the 66 families where DNA was available for validation using MiSeq
deep sequencing (~1200x coverage). The six male offspring DNMs
originate from six different families, whereas the 54 female offspring
DNMs originate from 15 families with a median of 3 DNMs per child
and a maximum of 7. From the six candidates in male offspring, four

Autosome, 60x coverage Autosome, 30x coverage Autosome, 15x coverage

X chromosome (females), 60x coverage X chromosome (females), 30x coverage X chromosome (females), 15x coverage

X chromosome (males), 60x coverage X chromosome (males), 30x coverage X chromosome (males), 15x coverage
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Figure 2 ROC plot showing the performance of PBT, where the mutation rate prior is used as the hidden parameter. Two scenarios are considered in order to
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could be successfully assayed and all were validated as a true DNM in
the offspring. From 54 candidates in female offspring, 43 could be
successfully assayed of which 42 (97.7%) were validated as a true
DNM. For 10 of the 13 unsuccessfully assayed DNMs, the capture
and/or amplification of the locus surrounding the DNM failed for at
least one of the individuals in the trio. In the remaining three cases,
the coverage produced by the sequencing run was low in all trio
individuals (2–20x). In these three cases, the low coverage data was
compatible with a DNM (alternate allele present in child only), but we

did not consider the evidence to be sufficient to unambiguously
validate the mutation as de novo.
We found that male offspring carried on average 1.14 DNMs on the

X chromosome, while female offspring carried 1.85 per copy of the X
chromosome. Given that male offspring always inherit their X
chromosome from their mothers, the much lower average number of
DNMs found on the X chromosome of male offspring (1.14), when
compared to female offspring (1.85 per copy), is compatible with the
paternal germline being highly enriched for DNMs.1 Despite the limited

Figure 3 ROC plot illustrating the performance of three DNM calling methods (PhaseByTransmission, TrioDeNovo and DeNovoGear), with respect to each
method’s DNM output confidence score. The analysis is stratified by coverage (columns) and genomic region (rows). The posterior cutoffs used for plotting
each curve were uniformly distributed across the range of each tool’s output DNM confidence scores. Some outlier values where the specificity decreased
considerably without any sensitivity gain were removed from the plot and the x-scale for the 60x and 30x coverages is restricted, for visibility purpose.
Supplementary Figure SF3 shows the curves with all points. The mutation rate prior values for each scenario, for each tool are selected based on
Supplementary Figure SF1.
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number of observations in the study, we found a statistically significant
increase of DNMs on chromosome X with paternal age in female
offspring by fitting a linear regression model (P= 0.00725), consistent
with previous reports2–4 (Figure 4). As expected, this effect was absent
in the male offspring (P= 0.24). The linear estimate of 0.08 additional
DNMs per year of paternal age on the X chromosome in female
offspring data is consistent with previously obtained estimates based on
autosomal DNMs (accounting for chromosome sequence length).

Empirical whole-exome data
We evaluated our software on whole exome data in a cohort of 104
trios (single proband and parents). DNA was extracted from whole-
blood and exons captured using the Agilent 38 Mb SureSelect v2 and
sequenced at 60x average depth on the Illumina HiSeq2000 platform
for an independent autism study.19 The sequence data were aligned to
the human reference hg19 using BWA,14 duplicate reads removed, re-
alignment performed around insertions/deletions, and base quality
scores recalibrated. Variant discovery and genotyping was performed
using the GATK UG across all samples jointly, and calls were
subsequently filtered using GATK VQSR.10

We ran PBT with a mutation prior of 10− 7, on the basis of our
simulations (Figure 2), and an allele frequency prior based on the
observed data (208 parents). In total, we called 148 putative DNMs, all
of which were subjected to experimental validation using Sequenom,
and 115 (77.8%) could be assayed successfully. From these, 107 (93%)
candidates were validated as true DNMs in the offspring. Looking at
false positive calls, five (4.7%) were monomorphic in all samples and
three (2.8%) were inherited variants.

DISCUSSION

PhaseByTransmission is an efficient and automated DNM caller using a
Bayesian model to estimate the probability of de novo SNVs and/or indel
at each site in one or more trios. The model should in principle work

with structural variants if genotype likelihoods can be provided. Because
PBT works with VCF files as input, it can be integrated into existing
NGS analysis pipelines and its results can be annotated using most
impact-prediction tools. The PBT algorithm scales linearly with the
number of sites and trios. Results on real sequencing data show
excellent specificity and sensitivity at both lower and higher coverage in
whole-exome and whole-genome data sets. Because PBT explicitly
models the inheritance pattern for the X chromosome, it can also be
used to derive accurate calls on the X chromosome of both male and
female offspring. In addition, due to its integration with the GATK
ReadBackedPhasing module, it can provide parent-of-origin informa-
tion. Finally, PBT can also be used to infer the haplotype phase for most
inherited variants in a trio based on the allele segregation within the trio.

Availability of data and materials
PhaseByTransmission and ReadBackedPhasing are available as part of
the GATK as a precompiled Java package as well as source code at
http://www.broadinstitute.org/gatk/download. The GoNL data can be
accessed at http://www.nlgenome.nl.
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