# SCIENTIFIC DATA

### **OPEN**

#### SUBJECT CATEGORIES

» Palaeoclimate
 » Climate change
 » Palaeoceanography
 » Limnology

Received: 01 April 2014 Accepted: 22 July 2014 Published: 19 August 2014

## An extended Arctic proxy temperature database for the past 2,000 years

Nicholas P. McKay & Darrell S. Kaufman

Robust climate reconstructions of the most recent centuries and millennia are invaluable for placing modern warming in the context of natural variability. Here we present an extended and revised database (version 1.1) of proxy temperature records recently used to reconstruct Arctic temperatures for the past 2,000 years. The datasets are presented in a machine-readable format, and have been extended with the geochronologic data and consistently generated time-uncertain ensembles, which will be useful in future analyses of the influence of geochronologic uncertainty. A standardized description of the seasonality of the temperature response for each record, as reported by the original authors, is also included to motivate a more nuanced approach to integrating records with variable seasonal sensitivities. Despite the predominance of seasonal, rather than annual, temperature responders in the datasets best record annual temperature variability across the Arctic, especially in northeast Canada and Greenland, where the density of records is highest.

| Design Type(s)           | observation design • longitudinal data collection method • data<br>integration                                                                           |  |  |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Measurement Type(s)      | Climate proxy                                                                                                                                            |  |  |  |  |  |  |
| Technology Type(s)       | data collection method                                                                                                                                   |  |  |  |  |  |  |
| Factor Type(s)           | resolution • period                                                                                                                                      |  |  |  |  |  |  |
| Sample Characteristic(s) | Central Russia • Alaska • Canada • Scandinavia • Eastern<br>Russia • Greenland • North Atlantic • Arctic<br>Canada • Forest • Ice • Marine • Lake • Cave |  |  |  |  |  |  |

School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA.

Correspondence and requests for materials should be addressed to N.P.M. (email: Nicholas.McKay@nau.edu)

#### **Background & Summary**

An accurate understanding of the past one to two thousand years of Earth's climate history is critical for placing recent warming in the context natural climate variability. Consequently, extensive efforts have been made to reconstruct regional<sup>1</sup>, hemispheric<sup>2-4</sup>, and global-scale temperature changes<sup>3,5</sup> over the most recent centuries and millennia. Predominantly, the evidence used to inform these reconstructions has been derived from tree-ring records, because they are annually resolved, precisely dated, and geographically widespread, especially in the mid-latitudes of the Northern Hemisphere. Increasingly, efforts have been made to incorporate paleoclimate evidence from other sources, such as lake and marine sediments, and records from glacial ice, and cave speleothems, primarily to expand the geographic and temporal coverage of the reconstructions. This is particularly true for the Arctic, where tree-ring records are more scarce, and where extensive paleoclimate research has taken advantage of the widespread presence of proxy climate records from lake sediment and glacial ice. This has led to a long history of multiproxy climate reconstructions for the late Holocene in the Arctic<sup>1,6,7</sup>. Incorporating these diverse data also brings additional challenges, largely due to how they differ from tree-ring records. Specifically, records derived from sediment, ice, and cave calcite contain varying degrees of chronological uncertainty, are commonly non-annually resolved and unevenly spaced, and each filter climate in different ways. These characteristics typically invalidate the assumptions underlying most statistical climate reconstruction techniques<sup>8</sup>; however, efforts to accommodate these data types<sup>9</sup> and to assess the influence of chronological uncertainty<sup>10</sup> are beginning to emerge.

Here we present an Arctic proxy temperature database for the past 2,000 years. The database is a revised version of the one used to reconstruct temperature in the Arctic for the past 2,000 years, which was recently included as part of the global summary by the Past Global Changes (PAGES) 2k Consortium<sup>1</sup>. In addition, we expanded the database by including consistently determined chronological uncertainty estimates for every record, except tree-ring records. These data are needed to quantify the influence of age uncertainty in climate reconstructions, but are rarely accessible to researchers aiming to develop large-scale climate reconstructions. This database also complements the recent Arctic Holocene Transitions (AHT) database<sup>11</sup>, a well-formatted collection of Arctic paleoclimate records for the Holocene. The overlap between the two datasets is minimal (9% of the sites in the AHT database are also included in this collection) because the AHT database includes records that extend further back at lower resolution; all records go back to at least 6000 years ago, and most extend 9000 years. Additionally, the AHT database only includes the geochronology data for radiometrically dated records, and does not include age ensembles for addressing age uncertainties. To our knowledge, the collection presented in this data descriptor is the first compilation of proxy climate data to include age ensembles, or age uncertainty estimates of any kind for layer-counted records.

#### Methods

#### Data aggregation and formatting

The database presented here is a revised version of the one used for the Arctic region of the PAGES 2k Network<sup>1</sup> (Figure 1). Each revision is described below and in Table 1. The records selected were required to meet several criteria. Specifically all records:

- 1. are from north of 60°N;
- 2. extend back in time to at least 1500 AD;
- 3. have an average sample resolution less than 50 years;
- 4. have at least one age control point every 500 years;
- 5. have been published in a peer-reviewed journal, where evidence is presented documenting that the record is sensitive to temperature. This evidence may be statistical (e.g., correlation with nearby instrumental temperature data), or mechanistic (e.g., description by the authors of mechanisms by which the archive senses temperature change).

In several cases, the fifth criterion above is not met throughout the entire record (e.g., following AD 1720, agriculture nearby Lake Korttajärvi disrupts the temperature sensitivity of the record<sup>12</sup>). In these cases, we excluded the section of the record that violates this criterion.

#### Geochronology

In this study, we substantially expand the PAGES Arctic 2k database by including formatted geochronology data (e.g., radiocarbon ages and associated data) for the radiometrically-dated records, and systematically determined age-ensembles for all of the radiometrically-dated and layer-counted records in the database.

#### Radiometrically-dated records

For each radiometrically-dated record, we developed a new age-depth model using the original geochronology data from each site and the Bayesian ACcumulatiON (BACON) algorithm<sup>13</sup>. BACON is a Bayesian age-modeling routine written for the software package R that takes advantage of prior knowledge about the distribution and autocorrelation structure of sedimentation rates in a sequence. The algorithm employs an adaptive Markov Chain Monte Carlo algorithm that allows for Bayesian learning to update the sedimentation-rate distribution.



Figure 1. Polar projection showing the location and archive type of proxy temperature records in the PAGES Arctic 2k database. Information about each site is listed in Table 1.

The new age models do not replace those of the original study. Indeed, it is likely that the original investigators incorporated expert knowledge into the development of the original age models that we cannot replicate. Although the revised best-estimate age models may, in some cases, be inferior, there are two advantages to our approach. First, by systematically determining ages using a consistent methodology, we eliminate the aspect of age uncertainty and bias when comparing two records due to choices made during age modelling and the nuances of the many approaches originally used. Second, for each site, we extract a subset of age-ensemble members, which will facilitate future efforts to quantify the influence of age uncertainty in Arctic mean and temperature field reconstructions. This is important because nearly all of the original age models did not consider age-uncertain ensembles, and the data are not available for the few that did.

#### Layer-counted records

The PAGES Arctic 2k database includes 26 records from annually banded (varved) lake sediment and glacier ice for which the chronologies are developed by layer counting. The timeline for tree-ring records are also based on layer counting for which cross-dating among many samples makes tree-ring chronologies robust with negligible error<sup>14,15</sup>. Age uncertainty for annually banded sediments and ice cores typically increases with age. Although such records can often reach subannual precision, replication is more difficult and costly than with tree ring records, and consequently, cross-dating is rare, but possible with sufficient replication.

To develop time-uncertain ensembles for the layer-counted records, we used BAM (Banded Age Model), a probabilistic model of age errors in layer-counted chronologies<sup>16</sup>. The model allows a flexible parametric representation of such errors (either as Poisson or Bernoulli processes), and separately considers the possibility of double counting or missing a band. For each layer-counted chronology, we used BAM with published over- and under-counting estimates from the original study of each record

| Ac.2Iskaka (as)Black (b)Symb(b)Iskaka (b)Symb(b)Symb(b)Symb(b)Ac.2Cental (b)YamaGySymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymbSymb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pages<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Country/Region | Site                | Lat<br>(°N)    | Long<br>(°E)  | Archive type    | Proxy measurement                  | Oldest<br>(AD)  | Youngest<br>(AD) | Resolution<br>(year) | Seasonality    | Ref     |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|----------------|---------------|-----------------|------------------------------------|-----------------|------------------|----------------------|----------------|---------|----|
| Acc.sCertral basisAvam-Jamy12.010.010.010.010.010.010.010.010.010.0Arc.sGenelandLower Lake Muray85.4-65.5Leke sedimentMass accunulation rate-33.620.00-1.0Meth Saan10.0Arc.sGenelandSeveral Peninsuk65.2-65.2Lec coreMass accunulation rate10.001.001.00Meth Saan10.00Arc.sGanadSeveral Peninsuk65.2-46.5Lec coreNigu with80.020.001.0Meth Saan10.00Arc.sGanadCorperente River67.2-46.7Ler eringRigu with10.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.001.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arc_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alaska         | Blue lake           | 68.1           | - 150.5       | Lake sediment   | Varve thickness                    | 730             | 2005             | 1                    | Summer         | 23      |    |
| AC.2.Central boosisVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarialVarial<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arc_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Central Russia | Avam-Taimyr         | 72.0           | 101.0         | Tree ring       | Ring width                         | - 100           | 2003             | 1                    | Jun–Jul        | 30      |    |
| Arc.<br>CanadeConcert and any and any and any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arc_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Central Russia | Yamal               | 67.5           | 70.0          | Tree ring       | Ring width                         | 1               | 1996             | 1                    | May–Jul        | 30      |    |
| Arc.s.GreenlamCamp Centry7.9-0.5.IncoredB301.221.237.01.1Manume1.2Arc.s.AlakaSuff Alaska6.0-1.52TerngRingwith1.282.001.0Manume1.0Arc.s.CanadaYohon6.01.0.5TerngRingwith1.0.72.001.0Manu1.0Arc.s.CanadaYohon6.01.5.6TerngRingwith1.0.82.001.0.Manu1.0Arc.s.CanadaTornträk6.01.9.81.0.9Ringwith1.0.82.001.0.Manu1.0Arc.s.SandinaviTornträk6.01.9.81.0.9Ringwith1.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91.0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arc_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Canada         | Lower Lake Murray   | 81.4           | - 69.5        | Lake sediment   | Mass accumulation rate             | - 3236          | 2004             | 1                    | Melt Season    | 31      |    |
| Acc.JakaSeward PerniousSp.J-se.TerringRignwith128CaloI.a.St.MaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMaraMara <t< td=""><td>Arc_5</td><td>Greenland</td><td>Camp Century</td><td>77.2</td><td>- 61.1</td><td>Ice core</td><td>d180</td><td>1242</td><td>1967</td><td>1</td><td>Annual</td><td>32</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arc_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Greenland      | Camp Century        | 77.2           | - 61.1        | Ice core        | d180                               | 1242            | 1967             | 1                    | Annual         | 32      |    |
| Arc.IsakaGuif of AlaskaFielFielRing with80RoutRing with817SoutRing with817SoutRing with818SoutRing with818SoutRing with818SoutRing with818SoutRing with818SoutRing with818SoutRing with818SoutRing withRing with <td>Arc_6</td> <td>Alaska</td> <td>Seward Peninsula</td> <td>65.2</td> <td>- 162.2</td> <td>Tree ring</td> <td>Ring width</td> <td>1288</td> <td>2002</td> <td>1</td> <td>Mean summer</td> <td>33</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arc_6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alaska         | Seward Peninsula    | 65.2           | - 162.2       | Tree ring       | Ring width                         | 1288            | 2002             | 1                    | Mean summer    | 33      |    |
| Arc.9Canad.Vikon6yayesyesPice ringRing with91090091.0Jun-jut91Arc.3Centa RussiPolarUals68.868.8100Maximu density7.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arc_7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alaska         | Gulf of Alaska      | 61.0           | -146.6        | Tree ring       | Ring width                         | 800             | 2010             | 1                    | Feb–Aug        | 19      |    |
| Arc.gCanadesCappernine BeroForForMaximum denty70819091.0Jun-jul18Arc.aGrenlandGSP.7.1-3.1Ice orediskumu denty7.81.981.001.01Anual17Arc.aScandinavaTometrisku631.95Tere ringMaximum denty1.002.001.01Ap-Sep17Arc.aScandinavaLak Lehmilamo630.55TerringMaximum denty1.002.001.00Ap-Sep17Arc.aScandinavaLak Lehmilamo6.00.00TerringRing width02.001.00Ap-Sep17Arc.aNathaticLatonosonom7.81.40Carce4.801.001.9901.0Lehty summe1.00Arc.aNathaticLatonosonom7.81.40Carce4.801.001.9901.0De-Feb1.00Arc.aScandinavaFolforddlen 26.91.401.701.801.9901.0De-Feb1.00Arc.aNathaticLatonosonom7.91.201.72Letonom1.9001.9901.0De-Feb1.00Arc.aNathaticLatonosonom7.91.72Letonom1.9001.001.00De-Feb1.00Arc.aScandinavaEnforddlen 20.72Letonom1.700Nathatic1.9901.0De-Feb1.00Arc.aArchadaticScan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arc_8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Canada         | Yukon               | 67.9           | - 140.7       | Tree ring       | Ring width                         | 1177            | 2002             | 1                    | Annual         | 34      |    |
| Arc.,a)Central RossiaPolar Urals65.8Free ringMaxium density7.81.9901.1Junciud157Arc.,13GrandinaviaTorretrisk63.31.9.5Tree ringRing With-0.32.0.01.1Apr-Ag.037Arc.,4ScandinaviaJanthan63.5Tree ringRing With1.02.0.01.1Apr-Ag.037Arc.,4ScandinaviaLabe Lehmilami65.62.9.5Labe sedimetVarve thichness1.03.0.01.0Morter17Arc.,5ScandinaviaLabe Lehmilami65.02.9.5Tree ringRing with0.03.0.01.0.0Entymer10Arc.,6ScandinaviaLabe Lehmilami65.01.4.0Tree ringRing with1.001.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arc_9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Canada         | Coppermine River    | 67.1           | - 155.6       | Tree ring       | Ring width                         | 1048            | 2003             | 1                    | Jun–jul        | 24      |    |
| Arc.13      Greenhad      GISP2      72.1      73.1      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      71.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0      78.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arc_10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Central Russia | Polar Urals         | 66.8           | 65.8          | Tree ring       | Maximum density                    | 778             | 1990             | 1                    | Jun–jul        | 35      |    |
| Arc3SandinaviaTorneträsk68.3a.9.6Tree ringMaximu denty1.072.0201Apr-Sgen77Arc4SandinaviaLake Lehmlanni6.92.9.1Tree ringMaximu denty1.01.01.0Apr-Sgen77Arc5StandinaviaLake Lehmlanni6.92.9.0Tree ringRing width, TSD1.00.02.0.01.0Entysummer78Arc6StarkLomonsovforma7.9.01.7.4Feer ringRing width, TSD1.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.01.0.0 <td< td=""><td>Arc_11</td><td>Greenland</td><td>GISP2</td><td>72.1</td><td>- 38.1</td><td>Ice core</td><td>d180</td><td>818</td><td>1987</td><td>1</td><td>Annual</td><td>36</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arc_11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | GISP2               | 72.1           | - 38.1        | Ice core        | d180                               | 818             | 1987             | 1                    | Annual         | 36      |    |
| Arc.38      Scandinavia      Jamtand      635      125      Tree ring      Maximum density      1017      1020      1.1      App-Sep      17        Arc.15      Scandinavia      Lake Lakenilaming      636      120.      Tree ring      Ring width, STD      123      13800      1.1      Summer      18        Arc.16      Eastern Russia      Indigurka      695      147.0      Tree ring      Ring width, STD      1290      1997      1.0      Dec-FebO      7        Arc.14      Nath Atlantic      Austononsovfona      798      17.2      Verth Atlantic      Austona      798      1.0      Lec.PebO      70        Arc.20      Scandinavia      Forfordale 12      63.1      17.2      Leke sediment      Varet thickness      -1398      1302      Jul-Aug      70        Arc.20      Arctic Canada      Leke Sediment      Varet thickness      -1398      1202      Jun-Aug      100        Arc.24      Bastern Russia      Lower Lear Russi      Leke Sediment      Varet thickness      -1392      120      Jun-Aug      100      140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arc_12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Torneträsk          | 68.3           | 19.6          | Tree ring       | Ring Width                         | - 39            | 2010             | 1                    | Apr–Aug        | 18      |    |
| Arc_40SandinaviaLake Lehmianpi63693.Lake sadimentVare thichness1118001.Winter19Arc_15SandinaviaLapond69.12.0Tee ringRing width, STD12.919.941.0Early summer10Arc_17North AtlantitLomonsovfonna78.917.4Ice cored38014.0019.971.0Dec-FeD17Arc_18North AtlantitLomonsovfonna78.917.2Ice cored38014.0019.971.0Dec-FeD17Arc_18NathantitAutona69.17.72Ice cored38014.0019.971.0Dec-FeD17Arc_29SandinaviaIlake scienterVare thickness-9.810.0021.0Summer18Arc_20ArtitatitHvitavat6.6-13.8Lake sedimentVare thickness-9.810.0021.0Summer16Arc_23ArtitatitHvitavat6.6-13.6Lake sedimentVare thickness-9.810.0021.0Summer16Arc_24SaterDarad Lake6.07.012.9TeeringRing with, RST1.021.021.0Numer16Arc_25ArtitatitatitatitatitatitaDarad Lake sedimentVare thickness-9.810.0021.0Numer16Arc_26SaterSaterSater1.0Lake sedimentVare thickness1.01.01.0 <t< td=""><td>Arc_13</td><td>Scandinavia</td><td>Jämtland</td><td>63.5</td><td>15.5</td><td>Tree ring</td><td>Maximum density</td><td>1107</td><td>2007</td><td>1</td><td>Apr–Sep</td><td>37</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arc_13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Jämtland            | 63.5           | 15.5          | Tree ring       | Maximum density                    | 1107            | 2007             | 1                    | Apr–Sep        | 37      |    |
| Arc.16ScandnaviaLapland69.075.0Ter ringRing width, STD10.010.0011.0Extr warmer10Arc.27Noth AtlantiLamonosovfona78.914.7.0Ter ringRing width, STD12.0912.091.0Earler70Arc.18Noth AtlantiLamonosovfona78.91.4.0Ice core4801.4.001.9071.0Dec-Feb1.0Arc.19SandinaviaFolfordalen 261.01.7.2Ice coreA801.4.001.9.071.0Jud-Aug1.0Arc.20Artic CanadaLake C28.1-7.7.2Ice coreArgentichness-9.802.0.01.0Summer1.0Arc.23Nath AtlantiHidrivatn6.6-1.9.8Lake sedimentVarce thickness-9.812.0.01.0Summer1.0Arc.24Nath AtlantiHidrivatn6.6-1.9.8Lake sedimentVarce thickness1.2.01.9.001.0Junencu1.0Arc.25Arctic CanadaDaver LansRive7.01.2.5Ter ringRing width, ARS1.4.01.9.001.0Junencu1.0Arc.24Earler RussiLake Natajavi6.0-1.6.1Lake sedimentVarce thickness1.4.01.9.001.0Junencu1.0Arc.25GreenlandBasLake sedimentNata Hickness1.0.11.0.01.01.01.01.01.01.01.01.01.01.0 <td>Arc_14</td> <td>Scandinavia</td> <td>Lake Lehmilampi</td> <td>63.6</td> <td>29.1</td> <td>Lake sediment</td> <td>Varve thickness</td> <td>1</td> <td>1800</td> <td>1</td> <td>Winter</td> <td>38</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arc_14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Lake Lehmilampi     | 63.6           | 29.1          | Lake sediment   | Varve thickness                    | 1               | 1800             | 1                    | Winter         | 38      |    |
| Arc. 6Indigurka66.57.4.0Ter. ringRing with, STD1.2501.2501.210Endry summer1.210Arc. 18North AtlantiLomonsovform7.81.4.4Ic cored.8001.4001.9001.1Dec-Feb1Arc. 18North AtlantiAusform6.9.31.7.4Ic cored.8001.9001.9001.0Dec-Feb1Arc. 20North AtlantiIckef 21.7.7.2Icare ringRing with, STD1.9.01.9.001.0.1Summer1Arc. 23North AtlantiHvifavarn6.6-1.3.0Icare ringRing with, ARS1.4.01.9.001.0.1Summer1Arc. 24Easter RussiIcore Icare RussiIcore Icare Russi1.9.001.0.1Summer11Arc. 25Arct. CanadoDand Lake6.01.2.5Ter. ringRing with, ARS1.4.01.9.001.0.1Nonule1Arc. 25Arct. GanadoDand Lake1.0.2Ter. ringRing with, ARS1.4.01.9.001.0.1Nonule1Arc. 26ScandinaviaLake Natagini6.81.2.5Ter. ringRing with, ARS1.9.01.9.001.0.1Nonule1Arc. 26ScandinaviaIcare Icare RussiArg. 1.2.5Karc GanadoNonule1.0.1Nonule11Nonule11Nonule11Nonule11Nonule11Nonule1 <td>Arc_15</td> <td>Scandinavia</td> <td>Lapland</td> <td>69.0</td> <td>25.0</td> <td>Tree ring</td> <td>Ring width</td> <td>0</td> <td>2005</td> <td>1</td> <td>Summer</td> <td>39</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arc_15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Lapland             | 69.0           | 25.0          | Tree ring       | Ring width                         | 0               | 2005             | 1                    | Summer         | 39      |    |
| Arc., 20North AtlanticLomonosorionan79,871,4Ice cored180140019971,1Dec-Feb7Arc., 30SondinaviaArofiordalen 269,17,2TeoringRing with87,719981,1Jul-Aug7Arc., 30CandinaviaArofiordalen 269,17,2TeoringRing with87,719981,0Jul-Aug7Arc., 20Artic CanadaLake Ca81,1-7,7Lake sedimentVare thickness-7,3019981,0Jun-Aug7Arc., 20Artic CanadaDowr Lena River66-1,30Lake sedimentVare thickness4,4219981,0Jun-Aug7Arc., 23Arc.Arc.CandinaviaLake Natajirin66-6,4Lake sedimentTickness1,01,001,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc_16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eastern Russia | Indigurka           | 69.5           | 147.0         | Tree ring       | Ring width, STD                    | 1259            | 1994             | 1                    | Early summer   | 40      |    |
| Arc. 30North AtlanticNorth AutorNorth Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc_17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | Lomonosovfonna      | 78.9           | 17.4          | Ice core        | d180                               | 1400            | 1997             | 1                    | Dec–Feb        | 17      |    |
| Arc.3      Scandinavia      Forfjorddelna 2      Sol. 3      Tree ring      Ring width      By      1994      1      Jul-Aug      Pis        Arc.20      Arctic Canada      Lake C2      81.      -7.7.2      Lake sediment      Varce thickness      -9.98      2002      1.0      Summer      47        Arc.2.8      Arcthantie      Hivitharut      6.0      -1.43      Lake sediment      Varce thickness      442      1998      1.0      Jun-Aug      43        Arc.2.8      Arct Canada      Donard Lake      6.0      1.429      Pree ring      Ring width, ARS      442      1.99      1.0      Jun-Aug      43        Arc.2.6      Arct Canada      Donard Lake      6.0      1.429      Pree ring      Ring width, ARS      1.0      1.00      1.0      June      45        Arc.2.9      Arctenand      Bac Onard Lake      6.24      1.2 ecore      daSO      1.0      June      470      1.0      1.0      1.0      1.0      1.0      1.0      1.0      1.0      1.0      1.0      1.0      1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arc_18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | Austfonna           | 79.8           | 24.0          | Ice core        | d180                               | 1400            | 1998             | 1                    | Dec–Feb        | 41      |    |
| Arc.20Arctic CanadoLake 28.2-7.72Lake sedimentVarve thickness-7.301.9891.0Summer4*2Arc.23North AtlantitiHickávatn6.68-1.98Lake sedimentVarve thickness4.241.9981.0Jun-Augu4*3Arc.24Eastern RusiaLower Lean River7.012.59Tere ringRing width, ARS1.683.9941.0Jun-Augu4*0Arc.25ScandinaviLake Nautajiro6.87.4Lake sedimentThickness7.01.9231.0Summer4*0Arc.26ScandinaviaLake Nautajiro6.87.3Lake sedimentThickness1.09.01.0Numer4*0Arc.26GreenlandBa67.31.350Lec oredaB01.4781.9921.0Annual4*0Arc.20GreenlandBig Rund Lake6.97.64Lake sedimentVarve thickness9.12.0391.0Annual4*0Arc.33ScandinaviaLake Kortajiroi6.9-7.34Lec oredaB01.01.09.01.0Annual4*0Arc.33ScandinaviaLake Kortajiroi6.9-7.33Lec oredaB001.9721.0Annual4*0Arc.33ScandinaviaLake Kortajiroi7.37.43Lec oredaB001.9721.0Annual4*0Arc.34GreenlandGRP7.5-7.33Ice ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arc_19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Forfjorddalen 2     | 69.1           | 17.2          | Tree ring       | Ring width                         | 877             | 1994             | 1                    | Jul–Aug        | 25      |    |
| Arc.2sNorth AtlanticHvírávento6,6-9,8Lake sedimentVarce thickness-9,820021Summer9/8Arc.2sAlaskaIceberg Lake6,8-14,3Lake sedimentVarve thickness4,4219,941.0Jun-4.07Arc.24Eastern RussiaLower Lena River70,712,59Tree ring mighth, ARS1,0619,941.0June4Arc.25CarciadaDonard Lake6,7-16,1Lake sedimentThickness7,5219,921.0Summer4Arc.26GreenlandBa7,59-7,76Ice coreda801,4719,921.0Annual4Arc.27GreenlandBa7,66-3,64Ice coreda803,9719,931.0Annual4Arc.28GreenlandBig Bund Lake8,0-4,11Ice coreda803,971.0Spring-summer1*Arc.3ScandinaviaLake Korttajiru5,3-7,53Ice coreda8001,931.0Annual4*Arc.3GreenlandMGRPa7,51-4,23Ice coreda8001,931.0Annual4*Arc.3GreenlandGrefe7,13-7,33Ice coreda8011.01.0Annual4*Arc.3GreenlandGrefe7,13-7,33Ice coreda8011.01.0Annual4*Arc.3Greenland<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc_20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  | Lake C2             | 82.1           | - 77.2        | Lake sediment   | Varve thickness                    | - 1309          | 1987             | 1                    | Summer         | 42      |    |
| Arc.23AlaskaIceber Juke60.8-4.3.0Lake sedimentVarve thickness4.4.219981Jun-Aug4/3Arc.24Eastern RussiaLower Lean River70.7125.9Tree ringRing width, ARS1,4019941.0June67Arc.25Arct CanadaDomard Lake667-61.4Lake sedimentThickness75219921.0Summer4Arc.26GreenlandB1673.9-7.3.6Ice coreda8014,7819931.0Annual67Arc.28GreenlandB2180.0-4.1.1Ice coreda8033919931.0Annual67Arc.29GreenlandB2180.0-4.1.1Ice coreda803391.0931.0Annual67Arc.23GreenlandB161.31.5I.4.2Ice coreda803391.0Annual67Arc.3SardinaviaLake Kortajiavi6.33.5I.2.3I.2.4Ice coreda8001.31.0.1Annual67Arc.3GreenlandNGRP7.3I.2.5Lake sedimentYary dersity0.01.301.0Annual67Arc.3GreenlandGRP7.3I.2.5Lake sedimentNato Annual6.01.371.0Annual6.0Arc.3GreenlandGRP7.3I.2.5I.2.5I.2.5I.2.5I.2.5I.2.5I.2.5I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arc_22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | Hvítárvatn          | 64.6           | - 19.8        | Lake sediment   | Varce thickness                    | - 981           | 2002             | 1                    | Summer         | 28      |    |
| Arc.24<br>Arc.25Eastern RusiaLowe Lena River7.077.077.077.07Ring with ARS1.4081.4081.408June7.07Arc.25Arctic CanadaDonard Lake6.617-61.4Lake sedimentOrganic matter01.8001.1Summer4Arc.27GreenlandB167.397.37Lec ored1801.4781.9921.1Annual4Arc.29GreenlandB187.65-7.64Lec ored1808711.9921.1Annual4Arc.29GreenlandB18 Round Lake6.9-4.14Lec ored1803.9371.9391.1Annual4Arc.3Arctic CanadaB18 Round Lake6.9-4.81Lek sedimentVarve thickness9.712.0031.1June.97Arc.3GreenlandNGRIP17.51-4.23Lec ored18001.9721.01Annual6Arc.3GreenlandNGRIP17.51-4.23Lec ored18001.9721.1Annual6Arc.3GreenlandNGRIP17.1-7.33Lec ored18001.9731.01Annual6Arc.3GreenlandCrête7.117.33Lec ored1801.11.9791.1Annual6Arc.3GreenlandDys.2016.5-7.348Lec ored1801.11.9791.1Annual6Arc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arc_23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alaska         | Iceberg Lake        | 60.8           | - 143.0       | Lake sediment   | Varve thickness                    | 442             | 1998             | 1                    | Jun–Aug        | 43      |    |
| Arc.2s<br>Arc.2sArctic CanalDonar Lake667<br>0-1.4<br>1Lake sedimentType7.2s1.9921.0Summer4'Arc.2sGreenlandBa67.3s1.2s/Lake sediment0AlaR04.7sAnual4'Arc.2sGreenlandBa187.6s-3.7sLecoreda808.7s1.9921.0Anual4'Arc.2sGreenlandBa187.6s-3.6sLecoreda803.7s1.9921.0Anual4'Arc.2sGreenlandBig Round Lake6.9s-7.4sLecoreda803.7s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s1.0s <t< td=""><td>Arc_24</td><td>Eastern Russia</td><td>Lower Lena River</td><td>70.7</td><td>125.9</td><td>Tree ring</td><td>Ring width, ARS</td><td>1408</td><td>1994</td><td>1</td><td>June</td><td>26</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arc_24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eastern Russia | Lower Lena River    | 70.7           | 125.9         | Tree ring       | Ring width, ARS                    | 1408            | 1994             | 1                    | June           | 26      |    |
| Arc_26ScandinaviaLake Nautajàrvi61.824.7Lake sedimentOrganic mattero12001.1Summer4'sArc_28GreenlandBa67.6.07.7.0Ice coreda808.7.01.9921.1Annual4'sArc_28GreenlandB218.07.6.1Ice coreda808.7.11.9931.0Annual4'sArc_30GreenlandB1g Round Lake6.94.1.Ice coreda809.712.0031.1Annual4'sArc_31ScandinaviaLake Korttajārvi6.2.7.5.2Lake sedimentVary density01.7.2.01.0Spring-summer1'sArc.32GreenlandNGRIP7.5.12.5.7Lake sedimentXray density01.9.2.01.0Annual4'sArc.33Arctic CanadAgassiz IceCap6.7.3Ice coreda8001.9.3.21.0Annual4'sArc.35GreenlandNGRIP7.5.1Ice coreda8011.9791.0Annual5'sArc.35GreenlandGRP7.5.1Ice coreda8011.9791.0Annual5'sArc.36GreenlandGRP7.5.1Ice coreda8011.9791.0Annual5'sArc.36GreenlandGRP7.67.7.3Ice coreda8011.9791.0Annual5'sArc.37North AtlanticIceland </td <td>Arc_25</td> <td>Arctic Canada</td> <td>Donard Lake</td> <td>66.7</td> <td>- 61.4</td> <td>Lake sediment</td> <td>Thickness</td> <td>752</td> <td>1992</td> <td>1</td> <td>Summer</td> <td>44</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc_25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  | Donard Lake         | 66.7           | - 61.4        | Lake sediment   | Thickness                          | 752             | 1992             | 1                    | Summer         | 44      |    |
| $Arc_27$ GreenlandBa6 $73.9$ $-3.76$ Ice coredx80 $14.78$ $1992$ $1$ Annual $4^6$ $Arc_28$ GreenlandBa1 $76.6$ $-64.1$ Ice coredx80 $87.4$ $1992$ $1$ Annual $4^6$ $Arc_29$ GreenlandBu1 $81.1$ $60.6$ $-44.1$ Ice coredx80 $3397$ $1939$ $1$ $Annual$ $4^6$ $Arc_30$ Arctic CanadaBig Round Lake $69.9$ $-68.8$ Lake sediment $Vare$ thickness $97.4$ $20.03$ $1$ $Spring-summer$ $1^2$ $Arc_31$ GreenlandNGRIP $75.1$ $-42.3$ Ice core $dx80$ $0$ $1972$ $1$ $Annual$ $4^8$ $Arc_33$ Arctic CanadaAgassiz Ice Cap $80.7$ $-73.3$ Ice core $dx80$ $0$ $1972$ $1$ $Annual$ $4^9$ $Arc_34$ GreenlandCrete $71.1$ $-37.3$ Ice core $dx80$ $1$ $1979$ $1$ $Annual$ $4^9$ $Arc_35$ GreenlandGreenlandGrefe $71.1$ $-37.3$ Ice core $dx80$ $1$ $1979$ $1$ $Annual$ $4^9$ $Arc_45$ GreenlandGRIP $7.6$ $-7.6$ $A80$ $A16$ $1$ $1979$ $1$ $Annual$ $4^9$ $Arc_45$ GreenlandGRIP $7.6$ $7.6$ $Arc_46$ $A80$ $1$ $1979$ $1$ $Annual$ $4^9$ $Arc_45$ ArceGReenlandGRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arc_26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Lake Nautajärvi     | 61.8           | 24.7          | Lake sediment   | Organic matter                     | 0               | 1800             | 1                    | Summer         | 45      |    |
| Arc_28GreenlandBa87.66-3.6.4Ice coreda8087119921Annual4''Arc_30GreenlandBig Round Lake6.9-4.1.1Ice coreVaRCore130719931.0Annual4''Arc_30Arctic CanadaBig Round Lake6.9-4.8.1Ice coreVare thickness9710.01.00Jul-Sepu1''Arc_31ScandinaviaLake Kortajärvi6.3-3.7.1Lake sedimentXray denity01.001.00Manual4''Arc_32GreenlandNGRIP7.5.1-7.3.1Ice coreda800.01.9721.01Annual4''Arc_33GreenlandOresAgasziz Ice Cap80.7-7.3.1Ice coreda801.01.9731.0Annual5''Arc_35GreenlandOresOres7.3.1Ice coreda801.01.9731.0Annual5''Arc_36GreenlandORIP7.6-7.3.1Ice coreda801.01.9791.0Annual5''Arc_36GreenlandORIP7.6-7.3.1Ice coreda801.01.9791.0Annual5''Arc_37North AtlanticIceland64.8Ice coreda801.01.9791.0Annual5''Arc_38GreenlandMD95-201167.07.6ArcaneAlexone-1.61.9761.9951.00Alug1.0 </td <td>Arc_27</td> <td>Greenland</td> <td>B16</td> <td>73.9</td> <td>- 37.6</td> <td>Ice core</td> <td>d180</td> <td>1478</td> <td>1992</td> <td>1</td> <td>Annual</td> <td>46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arc_27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | B16                 | 73.9           | - 37.6        | Ice core        | d180                               | 1478            | 1992             | 1                    | Annual         | 46      |    |
| Arc.29GreenlandB21B0.0 $-4.1$ lee cored480139719931Annual $4^6$ Arc.30Arctic CanadaBig Round Lake $6_9$ -68.8Lake sedimentVare thickness $971$ $2003$ 1Jul-Sepu $7^7$ Arc.31ScenelnandNGRIPa $5.1$ $2.57$ Lake sedimentX-ray density $0$ $1995$ $1$ Annual $4^7$ Arc.32GreenlandNGRIPa $7.5$ $-2.3$ lee cored480 $0$ $1992$ $1$ Annual $4^7$ Arc.33GreenlandNGRIPa $7.5$ $-7.3.1$ lee cored480 $0$ $1992$ $1$ Annual $4^7$ Arc.34GreenlandCreenlandGRIP $7.6$ $-7.3.1$ lee cored480 $1$ $1979$ $1$ Annual $4^7$ Arc.35GreenlandGRIP $7.6$ $-7.3.1$ lee cored480 $1$ $1979$ $1$ Annual $4^7$ Arc.36GreenlandGRIP $7.6$ $-7.3.1$ lee cored480 $1$ $1979$ $1$ Annual $4^7$ Arc.35GreenlandGRIP $7.6$ $-7.3.6$ lee cored480 $1$ $1979$ $1$ Annual $4^7$ Arc.36GreenlandGRIP $7.6$ $7.7.6$ lee cored480 $1$ $1979$ $1$ Annual $4^7$ Arc.37North AtlantiIeland $6.9.7$ $7.6$ Mare sedimentlee core $9.6.7.6$ <td>Arc_28</td> <td>Greenland</td> <td>B18</td> <td>76.6</td> <td>- 36.4</td> <td>Ice core</td> <td>d180</td> <td>871</td> <td>1992</td> <td>1</td> <td>Annual</td> <td>46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arc_28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | B18                 | 76.6           | - 36.4        | Ice core        | d180                               | 871             | 1992             | 1                    | Annual         | 46      |    |
| Arc. 30    Arctic Canada    Big Round Lake    690    -6.8.    Lake sediment    Varve thickness    971    2003    1    Jul-Sep $4^7$ Arc. 31    Scandinavia    Lake Korttajärvi    62.3    2.5.7    Lake sediment    X-ray density    0    1720    1.0    Spring-summer $1^2$ Arc. 32    Greenland    MoRPI    75.1    -42.3    Ice core    d180    0    1992    1.0    Annual $4^8$ Arc. 34    Greenland    Crête    71.1    -73.3    Ice core    d180    1    1979    1.0    Annual $9^9$ Arc. 35    Greenland    Dye-3    65.2    -43.8    Ice core    d180    1    1979    1.0    Annual $9^9$ Arc. 36    Greenland    GRIP    7.6    Ica core    d180    1    1979    1.0    Annual $9^9$ Arc. 39    North Atlantic    IdopS-2011    67.0    7.6    Marine sediment    Diatoms    -4076    1995    1.0    Aug    30    Durterere $1^{3}$ Arc. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arc_29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | B21                 | 80.0           | - 41.1        | Ice core        | d180                               | 1397            | 1993             | 1                    | Annual         | 46      |    |
| Arc_31ScandinaviaLake Korttajärvi $62.3$ $25.7$ Lake sedimentX-ray density $0$ $1720$ $1$ Spring-summer $1^{22}$ Arc_32GreenlandNGRIP1 $75.1$ $-4.3.3$ Ice core $d180$ $0$ $1995$ $1$ Annual $4^{21}$ Arc_33Arctic CanadaAgasiz Ice Cap $80.7$ $7.1.1$ Ice core $d180$ $0$ $1972$ $1$ Annual $9^{21}$ Arc_33GreenlandDye-3 $52.5$ $12.7.3$ Ice core $d180$ $1$ $1979$ $1$ Annual $9^{21}$ Arc_36GreenlandGRIP $7.6$ $7.7.6$ Ice core $d180$ $1$ $1979$ $1$ Annual $9^{21}$ Arc_36GreenlandGRIP $7.6$ $7.7.6$ Ice core $d180$ $1$ $1979$ $1$ Annual $9^{21}$ Arc_37North AtlanticIceland $64.8$ $-18.4$ HistoricIce cover $945$ $1935$ $300$ Winter $3^{21}$ Arc_38North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentMikenone $-6540$ $1440$ $288$ Summer $3^{21}$ Arc_40AlaskaMoose lake $61.3$ $-14.5.7$ Iake sedimentMikenone $-6540$ $1440$ $288$ Summer $3^{21}$ Arc_43AleskaMoose lake $61.3$ $-14.5.7$ Iake sedimentMikenone $-4058$ $1970$ $38.6$ Jul< <td><math>3^{21}</math>Arc_44Alaska&lt;</td> <td>Arc_30</td> <td>Arctic Canada</td> <td>Big Round Lake</td> <td>69.9</td> <td>- 68.8</td> <td>Lake sediment</td> <td>Varve thickness</td> <td>971</td> <td>2003</td> <td>1</td> <td>Jul–Sep</td> <td>47</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3^{21}$ Arc_44Alaska<                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arc_30         | Arctic Canada       | Big Round Lake | 69.9          | - 68.8          | Lake sediment                      | Varve thickness | 971              | 2003                 | 1              | Jul–Sep | 47 |
| Arc_32GreenlandNGRIP1 $75.1$ $-42.3$ lce coredt8Oo19951Annual $4^{8}$ Arc_33Arctic CanadaAgassiz lee Cap $80.7$ $-73.1$ lce coredt8Oo19721Annual $4^{9}$ Arc_34GreenlandCrète $71.1$ $-73.3$ lce coredt8O $553$ 19731Annual $5^{9}$ Arc_36GreenlandDye-3 $65.2$ $-43.8$ lce coredt8O119791Annual $5^{9}$ Arc_36GreenlandGRIP $72.6$ $-73.6$ lce coredt8O119791Annual $5^{9}$ Arc_37North AtlanticIceland $64.8$ $-18.4$ HistoricIce cover9451935300Winter $5^{10}$ Arc_38North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentDiatoms $-40.6$ 14402.8Summer $5^{10}$ Arc_40AlaskaMoose lake $61.9$ $-14.5$ Iake sedimentMidge assemblages $-40.5$ 19703.8Jul <tt><math>5^{10}</math>Arc_41AlaskaMoose lake<math>61.9</math><math>-14.5</math>Iake sedimentMidge assemblages<math>-76.6</math>19933.0Jul<tt><math>5^{10}</math>Arc_42AlaskaScreaming Lym Lake<math>61.9</math><math>-14.5.7</math>Iake sedimentMidge assemblages<math>-76.6</math>19933.0Jul<tt><math>5^{10}</math>Arc_43GreenlandLake Braya So<math>67.0</math><math>-14.5.4</math>&lt;</tt></tt></tt>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arc_31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Lake Korttajärvi    | 62.3           | 25.7          | Lake sediment   | X-ray density                      | 0               | 1720             | 1                    | Spring-summer  | 12      |    |
| ArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcArcA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arc_32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | NGRIP1              | 75.1           | - 42.3        | Ice core        | d180                               | 0               | 1995             | 1                    | Annual         | 48      |    |
| Arc_34GreenlandCrête7.1. $-37.3$ Ice coredt8055319731Annual $5^{9}$ Arc_35GreenlandDye-3 $65.2$ $-43.8$ Ice coredt80119791Annual $5^{9}$ Arc_36GreenlandGRIP72.6 $-37.6$ Ice coredt80119791Annual $5^{9}$ Arc_37North AtlanticIceland $64.8$ $-37.6$ Ice coredt80119751.0Annual $5^{10}$ Arc_38North AtlanticMD95-2011 $67.0$ $7.6$ Marine sedimentDiatoms $-4076$ 19951.0Aug $5^{21}$ Arc_39North AtlanticMD95-2011 $67.0$ $7.6$ Marine sedimentAlkenone $-4076$ 14402.8Summer $5^{12}$ Arc_40AlaskaMoose lake $61.3$ $-145.7$ Lake sedimentMidge assemblages $-76x0$ 19765.0Jul<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arc_33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  | Agassiz Ice Cap     | 80.7           | - 73.1        | Ice core        | d180                               | 0               | 1972             | 1                    | Annual         | 49      |    |
| Arc_35GreenlandDye365.2 $-43.8$ Ice coredt8O119791Annual $5^{90}$ Arc_36GreenlandGRIP72.6 $-37.6$ Ice coredt8O119791Annual $5^{90}$ Arc_37North AtlanticIceland64.8 $-18.4$ HistoricIce cover94.51935300Winter $5^{21}$ Arc_38North AtlanticMD95-201167.07.6Marine sedimentDiatoms $-4076$ 1995100Aug $5^{21}$ Arc_39North AtlanticMD95-201167.07.6Marine sedimentAlkenone $-6540$ 14402.8Summer $5^{21}$ Arc_40AlaskaMoose lake61.3 $-14.57$ Lake sedimentMidge assemblages $-7640$ 1976500Jul<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc_34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | Crête               | 71.1           | - 37.3        | Ice core        | d180                               | 553             | 1973             | 1                    | Annual         | 50      |    |
| Arc_36GreenlandGRIP7.6 $-3.7.6$ $ce$ cored180119791Annual $5^9$ Arc_37North AtlanticIceland $64.8$ $-18.4$ HistoricIce cover $945$ $1935$ $30$ Winter $5^2$ Arc_38North AtlanticMD95-2011 $67.0$ $7.6$ Marine sedimentDiatoms $-4076$ $1995$ $10.0$ Aug $5^2$ Arc_39North AtlanticMD95-2011 $67.0$ $7.6$ Marine sedimentAlkenone $-6540$ $11400$ $28.0$ Summer $3^3$ Arc_40AlaskaMoose lake $61.3$ $-14.5$ Lake sedimentMidge assemblages $-7640$ $1970$ $38.0$ Jul $5^4$ Arc_41AlaskaHudson Lake $61.9$ $-14.5$ Lake sedimentMidge assemblages $-7640$ $1995$ $20.05$ Jul $5^5$ Arc_42AlaskaScreaming Lynx Lake $61.9$ $-14.5$ Lake sedimentMidge assemblages $-8661$ $1993$ $36.0$ Jul< <td><math>5^5</math>Arc_43GreenlandLake Bray So<math>67.0</math><math>-50.7</math>Lake sedimentUk37<math>-4169</math><math>2005</math><math>29.0</math>Summer<math>5^5</math>Arc_44Arctic CanadaDevon Ice Cap<math>75.3</math><math>-82.5</math>Ice coreproxy<math>-72.7</math><math>1973</math><math>5.6</math>Annual<math>5^7</math>Arc_45Arctic CanadaDevon Ice Cap<math>57.3</math><math>-68.5</math>Ice cored180<math>-9733</math><math>194.9</math><math>20.0</math>Summer<math>5^8</math>&lt;</td> <td>Arc_35</td> <td>Greenland</td> <td>Dye-3</td> <td>65.2</td> <td>- 43.8</td> <td>Ice core</td> <td>d180</td> <td>1</td> <td>1979</td> <td>1</td> <td>Annual</td> <td>50</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5^5$ Arc_43GreenlandLake Bray So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $29.0$ Summer $5^5$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-72.7$ $1973$ $5.6$ Annual $5^7$ Arc_45Arctic CanadaDevon Ice Cap $57.3$ $-68.5$ Ice cored180 $-9733$ $194.9$ $20.0$ Summer $5^8$ <                                                                                                                                                                                            | Arc_35         | Greenland           | Dye-3          | 65.2          | - 43.8          | Ice core                           | d180            | 1                | 1979                 | 1              | Annual  | 50 |
| Arc_37North AtlanticIceland $64.8$ $-18.4$ HistoricIce cover $945$ $1935$ $30$ Winter $5^4$ Arc_38North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentDiatoms $-4076$ $1995$ $10.0$ Aug $5^2$ Arc_39North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentAlkenone $-6540$ $1440$ $28.0$ Summer $3^3$ Arc_40AlaskaMoose lake $61.3$ $-143.6$ Lake sedimentMidge assemblages $-4058$ $1970$ $38.0$ Jul $5^4$ Arc_41AlaskaHudson Lake $61.9$ $-145.7$ Lake sedimentMidge assemblages $-7640$ $1970$ $38.0$ Jul $5^5$ Arc_42AlaskaScreaming Lynx Lake $66.1$ $-145.4$ Lake sedimentMidge assemblages $-8661$ $1993$ $36.0$ Jul $5^5$ Arc_43GreenlandLake Bray So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $29.0$ Summer $5^6$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-72.7$ $1973$ $5.6$ Annual $5^7$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-68.8$ Ice core $4180$ $-9733$ $1942$ $20.5$ Annual $5^8$ Arc_46AlaskaLone Spruce Pond $60.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $20.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arc_36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | GRIP                | 72.6           | - 37.6        | Ice core        | d180                               | 1               | 1979             | 1                    | Annual         | 50      |    |
| Arc_38North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentDiatoms $-4076$ $1995$ $10$ Aug $5^2$ Arc_39North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentAlkenone $-6540$ $11440$ $28$ Summer $33$ Arc_40AlaskaMoose lake $61.3$ $-143.6$ Lake sedimentMidge assemblages $-4058$ $1970$ $38$ Jul $5^4$ Arc_41AlaskaHudson Lake $61.9$ $-145.7$ Lake sedimentMidge assemblages $-7640$ $1976$ $50.0$ Jul $5^5$ Arc_42AlaskaScreaming Lynx Lake $61.9$ $-145.7$ Lake sedimentMidge assemblages $-8661$ $1993$ $36.0$ Jul< <td><math>5^5</math>Arc_43GreenlandLake Braya So<math>67.0</math><math>-50.7</math>Lake sedimentUk37<math>-4169</math><math>2005</math><math>209</math>Summer<math>5^6</math>Arc_44Arctic CanadaDevon Ice Cap<math>75.3</math><math>-82.5</math>Ice coreproxy<math>-72.7</math><math>1973</math><math>5.5</math>Annual<math>5^7</math>Arc_45Arctic CanadaPenny Ice Cap<math>67.3</math><math>-66.8</math>Ice cored180<math>-9733</math><math>1942</math><math>20.5</math>Annual<math>5^8</math>Arc_48AlaskaLone Spruce Pond<math>60.6</math><math>-17.4</math>Marine sedimentDiatoms<math>-36</math><math>1949</math><math>20.5</math>Summer<math>5^8</math>Arc_49North AtlanticMDg9-2275<math>66.6</math><math>-17.4</math>Marine sedimentDiatoms<math>-36</math><math>1949</math><math>20.5</math>&lt;</td> <td>Arc_37</td> <td>North Atlantic</td> <td>Iceland</td> <td>64.8</td> <td>- 18.4</td> <td>Historic</td> <td>Ice cover</td> <td>945</td> <td>1935</td> <td>30</td> <td>Winter</td> <td>51</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5^5$ Arc_43GreenlandLake Braya So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $209$ Summer $5^6$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-72.7$ $1973$ $5.5$ Annual $5^7$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-66.8$ Ice cored180 $-9733$ $1942$ $20.5$ Annual $5^8$ Arc_48AlaskaLone Spruce Pond $60.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $20.5$ Summer $5^8$ Arc_49North AtlanticMDg9-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $20.5$ < | Arc_37         | North Atlantic      | Iceland        | 64.8          | - 18.4          | Historic                           | Ice cover       | 945              | 1935                 | 30             | Winter  | 51 |
| Arc_39North AtlanticMDg5-2011 $67.0$ $7.6$ Marine sedimentAlkenone $-6540$ $1440$ $28$ Summer $53$ Arc_40AlaskaMoose lake $61.3$ $-143.6$ Lake sedimentMidge assemblages $-4058$ $1970$ $38$ Jul $54$ Arc_41AlaskaHudson Lake $61.9$ $-145.7$ Lake sedimentMidge assemblages $-7640$ $1976$ $500$ Jul $55$ Arc_42AlaskaScreaming Lynx Lake $66.1$ $-145.4$ Lake sedimentMidge assemblages $-8661$ $1993$ $360$ Jul $55$ Arc_43GreenlandLake Braya So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $290$ Summer $5^{7}$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-727$ $1973$ $55$ Annual $57$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-66.8$ Ice core $d180$ $-9733$ $1992$ $25.6$ Annual $57$ Arc_47North AtlanticMDg9-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $2005$ Summer $59$ Arc_48AlaskaLone Spruce Pond $60.7$ $-159.1$ Lake sedimentBiatoms $-36$ $1949$ $2005$ Summer $59$ Arc_49ScandinaviaLoke Hampträsk $60.7$ $-159.1$ Lake sedimentDiatoms $-36$ $1949$ $205$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arc_38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | MD95-2011           | 67.0           | 7.6           | Marine sediment | Diatoms                            | - 4076          | 1995             | 10                   | Aug            | 52      |    |
| Arc_40AlaskaMoose lake $61.3$ $-143.6$ Lake sedimentMidge assemblages $-40.58$ $1970$ $38$ Jul $5^4$ Arc_41AlaskaHudson Lake $61.9$ $-145.7$ Lake sedimentMidge assemblages $-7640$ $1976$ $500$ Jul $55$ Arc_42AlaskaScreaming Lynx Lake $61.1$ $-145.4$ Lake sedimentMidge assemblages $-8661$ $1993$ $360$ Jul $5^5$ Arc_43GreenlandLake Braya So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $290$ Summer $5^6$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-727$ $1973$ $55$ Annual $5^7$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-66.8$ Ice core $d180$ $-9733$ $1992$ $250$ Annual $5^7$ Arc_48AlaskaLone Spruce Pond $60.0$ $-159.1$ Lake sedimentDiatoms $-36$ $1949$ $200$ Summer $5^8$ Arc_49ScandinaviaLoke Spruce Pond $60.0$ $-159.1$ Lake sedimentBisi $###$ $2005$ $100$ Growing Seaso $3^9$ Arc_49ScandinaviaLake Hampträsk $60.3$ $25.4$ Lake sedimentChironomids $1330$ $2000$ $150$ July $6^9$ Arc_50ScandinaviaLake Branchau $6.2$ $2.94$ Lake sedimentChironomids $1330$ $2000$ </td <td>Arc_39</td> <td>North Atlantic</td> <td>MD95-2011</td> <td>67.0</td> <td>7.6</td> <td>Marine sediment</td> <td>Alkenone</td> <td>- 6540</td> <td>1440</td> <td>28</td> <td>Summer</td> <td>53</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arc_39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | MD95-2011           | 67.0           | 7.6           | Marine sediment | Alkenone                           | - 6540          | 1440             | 28                   | Summer         | 53      |    |
| Arc_41AlaskaHudson Lake $61.9$ $-145.7$ Lake sedimentMidge assemblages $-7640$ $1976$ $50$ Jul $55$ Arc_42AlaskaScreaming Lynx Lake $61.1$ $-145.4$ Lake sedimentMidge assemblages $-8661$ $1993$ $36$ Jul $55$ Arc_43GreenlandLake Braya So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $290$ Summer $5^{61}$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-727$ $1973$ $55$ Annual $5^{77}$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-66.8$ Ice core $d180$ $-9733$ $1992$ $250$ Annual $5^{70}$ Arc_47North AtlanticMDg9-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $200$ Summer $5^{80}$ Arc_48AlaskaLone Spruce Pond $60.0$ $-159.1$ Lake sedimentBSi### $2005$ $100$ Growing Seaso $2^{90}$ Arc_49ScandinaviaOkshola cave $67.0$ $15.0$ Spelethem $d180$ $-555$ $1997$ $32$ Annual $5^{90}$ Arc_50ScandinaviaLake Hampträsk $60.3$ $25.4$ Lake sedimentChironomids $1330$ $2000$ $15.0$ July $60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arc_40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alaska         | Moose lake          | 61.3           | - 143.6       | Lake sediment   | Midge assemblages                  | - 4058          | 1970             | 38                   | Jul            | 54      |    |
| Arc_42AlaskaScreaming Lynx Lake $66.1$ $-145.4$ Lake sedimentMidge assemblages $-8661$ $1993$ $36$ Jul $^{55}$ Arc_43GreenlandLake Braya So $67.0$ $-50.7$ Lake sedimentUk37 $-4169$ $2005$ $29$ Summer $^{56}$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-727$ $1973$ $55$ Annual $^{57}$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-66.8$ Ice cored180 $-9733$ $1992$ $25$ Annual $^{57}$ Arc_47North AtlanticMDg9-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $200$ Summer $^{58}$ Arc_48AlaskaLone Spruce Pond $60.0$ $-159.1$ Lake sedimentBSi### $2005$ $100$ Growing Season $^{29}$ Arc_49ScandinaviaOkshola cave $67.0$ $15.0$ Spelethemd180 $-5565$ $1997$ $32$ Annual $^{59}$ Arc_50ScandinaviaLake Hampträsk $60.3$ $25.4$ Lake sedimentChironomids $1330$ $2000$ $15.0$ July $^{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc_41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alaska         | Hudson Lake         | 61.9           | - 145.7       | Lake sediment   | Midge assemblages                  | - 7640          | 1976             | 50                   | Jul            | 55      |    |
| Arc_43GreenlandLake Braya So $67.0$ $-50.7$ Lake sediment $0k37$ $-4169$ $2005$ $29$ Summer $9^{50}$ Arc_44Arctic CanadaDevon Ice Cap $75.3$ $-82.5$ Ice coreproxy $-727$ $1973$ $5$ Annual $5^{7}$ Arc_45Arctic CanadaPenny Ice Cap $67.3$ $-66.8$ Ice cored180 $-9733$ $1992$ $25$ Annual $5^{7}$ Arc_47North AtlanticMD99-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $200$ Summer $5^{8}$ Arc_48AlaskaLone Spruce Pond $60.0$ $-159.1$ Lake sedimentBSi### $2005$ $100$ Growing Season $2^{9}$ Arc_49ScandinaviaOkshola cave $67.0$ $15.0$ Speleothernd180 $-5565$ $1997$ $32$ Annual $5^{9}$ Arc_50ScandinaviaLake Hampträsk $60.3$ $25.4$ Lake sedimentChironomids $1330$ $2000$ $15$ July $6^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arc_42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alaska         | Screaming Lynx Lake | 66.1           | - 145.4       | Lake sediment   | Midge assemblages                  | - 8661          | 1993             | 36                   | Jul            | 55      |    |
| Arc_44Arctic CanadaDevon lee Cap $75.3$ $-82.5$ lee coreprox $-727$ $1973$ $5$ Annual $97$ Arc_45Arctic CanadaPenny lee Cap $67.3$ $-66.8$ lee cored180 $-9733$ $1992$ $25$ Annual $57$ Arc_47North AtlanticMD99-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $20$ Summer $5^8$ Arc_48AlaskaLone Spruce Pond $60.0$ $-159.1$ Lake sedimentBSi### $2005$ $100$ Growing Season $2^9$ Arc_49ScandinaviaOkshola cave $67.0$ $15.0$ Speleothermd180 $-5565$ $1997$ $32$ Annual $59$ Arc_50ScandinaviaLake Hampträsk $60.3$ $25.4$ Lake sedimentChironomids $1330$ $2000$ $15$ July $60$ Arc_14ScandinaviaLake Pieni-Kauro $67.2$ $25.4$ Lake sedimentChironomids $1300$ $2000$ $15$ July $60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arc_43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | Lake Braya So       | 67.0           | - 50.7        | Lake sediment   | Uk37                               | - 4169          | 2005             | 29                   | Summer         | 50      |    |
| Arc_45Arctic CanadaPenny ice Cap $67.3$ $-66.8$ ice core $d180$ $-9733$ $1992$ $25$ Annual $97$ Arc_47North AtlanticMDg9-2275 $66.6$ $-17.4$ Marine sedimentDiatoms $-36$ $1949$ $20$ Summer $58$ Arc_48AlaskaLone Spruce Pond $60.0$ $-159.1$ Lake sedimentBSi### $2005$ $100$ Growing Season $29$ Arc_49ScandinaviaOkshola cave $67.0$ $15.0$ Speleothern $d180$ $-5565$ $1997$ $32$ Annual $59$ Arc_50ScandinaviaLake Hampträsk $60.3$ $25.4$ Lake sedimentChironomids $1330$ $2000$ $15$ July $60$ Arc_71ScandinaviaLake Pienie Kauro $64.2$ $20.1$ Lake sedimentChironomids $1370$ $1000$ $100$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arc_44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  | Devon Ice Cap       | 75.3           | - 82.5        | Ice core        | proxy                              | - 727           | 1973             | 5                    | Annual         | 57      |    |
| Arc_47    North Atlantic    MD99-2275    66.6    -17.4    Marine sediment    Diatoms    -36    1949    20    Summer    2 <sup>3</sup> Arc_48    Alaska    Lone Spruce Pond    60.0    -159.1    Lake sediment    BSi    ###    2005    10    Growing Season    2 <sup>9</sup> Arc_49    Scandinavia    Okshola cave    67.0    15.0    Speleothem    d180    -5565    1997    32    Annual <sup>59</sup> Arc_50    Scandinavia    Lake Hampträsk    60.3    25.4    Lake sediment    Chironomids    1330    2000    15    July <sup>60</sup> Arc_11    Scandinavia    Lake Pioni-Kauro    64.2    20.4    Lake sediment    Chironomids    1330    2000    15    July <sup>61</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arc_45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  | Penny Ice Cap       | 67.3           | - 66.8        | Ice core        | d180                               | - 9733          | 1992             | 25                   | Annual         | 57      |    |
| Arc_48    Alaska    Lone Spruce Pond    60.0    -159.1    Lake sediment    BSI    ###    2005    10    Growing Season    9      Arc_49    Scandinavia    Okshola cave    67.0    15.0    Speleothem    d180    -5565    1997    32    Annual <sup>59</sup> Arc_50    Scandinavia    Lake Hampträsk    60.3    25.4    Lake sediment    Chironomids    1330    2000    15    July <sup>60</sup> Arc_71    Scandinavia    Lake Pieni-Kauro    67.2    20.1    Lake sediment    Chironomids    1700    12000    120    http://doi.000    61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arc_47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | MD99-2275           | 66.6           | - 17.4        | Marine sediment | Diatoms                            | - 36            | 1949             | 20                   | Summer         | 29      |    |
| Arc_49  Scandinavia  Okshola cave  67.0  15.0  Speleothern  d180  -5505  1997  32  Annual  33    Arc_50  Scandinavia  Lake Hampträsk  60.3  25.4  Lake sediment  Chironomids  1330  2000  15  July  60    Arc_51  Scandinavia  Lake Pieni-Kauro  64.2  20.0  Lake sediment  Chironomids  1300  1000  1000  1000  1000  1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arc_48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alaska         | Lone Spruce Pond    | 60.0           | - 159.1       | Lake sediment   | BSI                                | ###             | 2005             | 10                   | Growing Season | 59      |    |
| Arc_50 Scandinavia Lake Hamptrask 60.3 25.4 Lake sediment Chironomids 1330 2000 15 July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arc_49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Oksnola cave        | 67.0           | 15.0          | Speleotnem      | d18U                               | - 5565          | 1997             | 32                   | Annual         | 60      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arc_50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    | Lake Hamptrask      | 60.3           | 25.4          |                 | Chironomias                        | 1330            | 2000             | 15                   | JUIY           | 61      |    |
| $r_{1} = 3$ solution the label of the label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arc_51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scandinavia    |                     | 64.3           | 30.1          | Lake sediment   | Chironomias<br>Pollon accumulation | 470             | 1990             | 43                   | JUIY           | 27      |    |
| Arc_52 INDITI Audituc Lake Igaliku b1.0 - 45.4 Lake sediment Pollen accumulation -7577 2001 58 Summer -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arc_52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  |                     | 61.0           | - 45.4        |                 |                                    | - 7577          | 2001             | 58                   | Summer         | ,<br>62 |    |
| Arc_53 Arcuic cariada Penny ice cap 07.3 - b0.8   ice core   ice melt - 966 1984 25 Summer 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arc_53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arctic Canada  | Penny Ice Cap       | 67.3           | - 06.8        |                 | Ice meit                           | - 966           | 1984             | 25                   | Summer         | 63      |    |
| Arc. 54 Carlaud Lake 4 05.1 - 83.8 Lake sediment Chironomid 814 1997 44 August                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arc_54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | LdKe 4              | 65.1           | - 83.8        |                 |                                    | 814             | 1997             | 44                   | August         | 64      |    |
| Arc rz      North Atlantic      MDec page      65.6      17.4      Marine sediment      Marine adiment      Marine sediment      Marine sediment<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arc_55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | North Atlantic | F 1003              | 03.0           | 5.3           | Marine sediment |                                    | - 5931          | 1998             | ŏ                    | AIIIUdi        | 65      |    |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ | Arc = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | North Atlantic | MSMr/r=712          | 78 0           | - 1/.4<br>2 0 | Marine sediment | Planktic forominifore              | - 2549          | 2001             | 4                    | Jul Sep        | 66      |    |
| Arc to Greenland Repland $71.2$ $-26.7$ [re-core d180 $-94$ 200/ 41 JUE-Sep 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arc co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Greenland      | Renland             | 70.9           | - 26 7        |                 | d180                               | 94              | 1080             | 4±<br>-              | Annual         | 49      |    |

Table 1. Summary of sites and proxy records in the PAGES Arctic 2k v1.1 database. Note: Updates to PAGES 2k Consortium<sup>1</sup> Arctictemperature reconstruction. Arc\_1: Restricted to temperature sensitive section after 730 AD. Arc\_7: Updated to Wiles *et al.*<sup>19</sup> Arc\_9:Corrected coordinates and restricted to temperature-sensitive section. Arc\_12: Updated to Melvin *et al.*<sup>18</sup> Arc\_17: Updated to Divine *et al.*<sup>17</sup>Arc\_19: Restricted to temperature sensitive section. Arc\_12: Updated to Melvin *et al.*<sup>18</sup> Arc\_17: Updated to Divine *et al.*<sup>17</sup>Arc\_19: Restricted to temperature sensitive section. Arc\_21: Omitted (not temperature sensitive). Arc\_22: Corrected temperature relation.Arc\_24: Restricted to temperature sensitive section. Arc\_46: Omitted (not temperature sensitive). Arc\_48: Corrected 50-year age offset.Arc\_52: removed two most recent values due to anthropogenic fertilizer influence. Arc\_56: Omitted (not temperature sensitive).

(Table 1). When such estimates were not available, we applied conservative estimates of 1% for both over- and under-counting.

#### Arctic-wide temperature reconstruction

Changes from PAGES 2k Consortium (2013). Here we present an Arctic regional temperature reconstruction that revises the one published recently by the PAGES 2k Consortium<sup>1</sup>. The revisions include updating records using more recent published studies from three sites<sup>17-19</sup>, and correcting several errors discovered following publication of the PAGES 2k Consortium article. Specifically:

- Three records were removed because of insufficient evidence that they are sensitive to temperature<sup>20-22</sup>.
  Sections of five records<sup>23-27</sup> that were interpreted by the authors to violate criterion 5 were removed.
  The interpreted temperature relation of the series from Hvítárvatn<sup>28</sup> was corrected from positive to negative.
- 4. A 50-year offset in the ages of the record from Lone Spruce Pond<sup>29</sup> was corrected.
- 5. The coordinates of the Copper River tree-ring reconstruction<sup>24</sup> were corrected.

For this study, we did not add any new records to the database, or those that satisfy other criteria. We refer to this revised database as version 1.1. Additional records, including those sensitive to other aspects of the climate system (e.g., precipitation), will be included during the ongoing phase 2 of the PAGES 2k project. We suggest the next version of the database that includes additional records be designated as version 2'.

**Temperature reconstruction**. The PAGES 2k Consortium<sup>1</sup> used the Pairwise Comparison method (PaiCo<sup>2</sup>) to reconstruct the average Arctic mean-annual temperature for the past 2,000 years. PaiCo is a type of composite-plus-scale method<sup>8</sup> that is unique because it does not require annually sampled data, nor the assumption that the proxy-temperature relation is linear (only monotonic). These features made it ideal for the Arctic 2k reconstruction. Here we use PaiCo to replicate the Arctic temperature reconstruction<sup>1</sup>, including the changes to the proxy database described above, to evaluate how the revisions influence the reconstruction.

Overall, the database revisions have a fairly minor impact on the relative variability in the reconstruction, but they do affect the long-term trend (Figure 2). The primary change is a relative increase in reconstructed temperatures for most of the record, especially between AD 1-1300. This results in an amplified long-term cooling trend that preceded 20th century warming; 0.47 °C/kyr in the revised reconstruction compared to 0.29 °C/kyr in the original. Decadal-scale variability in the revised reconstruction is quite similar to that determined by Kaufman et al.'; however, the variability is about twice as great in the revised PAGES Arctic 2k reconstruction (Figure 2d). This is likely due the averaging and scaling procedures used in the earlier study'.

#### Data Records

The PAGES Arctic 2k database presented here (v 1.1) is archived at the National Oceanic and Atmospheric Administration's World Data Center for Paleoclimatology (WDC-Paleo) http://ncdc. noaa.gov/paleo/study/16973, and the data are formatted according to WDC-Paleo's most recent standards http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/contributing. The database is also archived on figshare [Data Citation 1]. For each record, there are self-describing and machinereadable ascii-files that include extensive metadata (e.g., source, title, investigators, publications, site and chronology metadata, variable descriptions) as well as the time-series and chronology data (when appropriate). Additionally, each site (except tree-ring records) has a corresponding netCDF file that archives the age-model ensembles. These files include up to four large matrices, depending on archive type and resolution:

AgeYoungEns: An ensemble of age estimates corresponding to the upper extent of each sampled interval. Each column is a different ensemble member.

AgeOldEns: Same as AgeYoungEns, but for the lower extent of each sample.

BaconAgeEnsemble: Ensemble of age models determined by BACON<sup>13</sup>. Each column is a different ensemble member (radiometrically dated only).

BaconAgeEnsDepths: Depths corresponding to ages in BaconAgeEnsemble (radiometrically dated only).

AgeEns: An ensemble of age estimates for the annually-resolved, laver-counted records as determined by BAM<sup>16</sup>. Each column is a different ensemble member (layer counted only).

DataEns: An ensemble of time-series perturbed by the simulated age uncertainty in AgeEns. Each column is a different ensemble member (layer counted only).

The PAGES Arctic 2k temperature database includes records that infer past temperature variability from five types of natural archives. Each of these archives respond to temperature changes in different ways, and that signal is recorded in each archive's chemical, physical, or biological properties. An overview of the records comprising the database is presented in Table 1. A novel aspect of this collection is the specification of the seasonal correlation of each record as described in the original publication. As shown in Table 1, the seasonal response of the proxies is quite variable, yet most synthesis and reconstruction efforts, including both the original and revised reconstructions described above, disregard



**Figure 2.** Effect of revising the PAGES Arctic 2k database on the Arctic annual temperature reconstruction published recently by the PAGES 2k Consortium<sup>1</sup>. (a) Reconstruction calculated using the original (black) and updated database presented here (red). (b) Scatter plot illustrating the influence of the revisions; 1:1 line shown in red. (c) Time-series of the differences in reconstructed temperature (revised—original); no change shown as red line. (d) Comparison between Kaufman *et al.*<sup>7</sup> Arctic—wide temperature reconstruction and the revised PAGES 2k Arctic reconstruction (averaged to decadal values). Note the factor-of-two difference in the temperature scales.

the potential for seasonal differences among records that bias inferred climate changes in the past. The first step towards a more realistic treatment of seasonality is a uniform handling of these metadata, and we hope that future compilations will make this a priority. Although the records are well-summarized in Table 1 and in each records file in the database, the full details behind the collection, analysis and interpretation of each of the 56 records in the database is beyond the scope of this compilation, and we refer readers to the original publications for that information<sup>12,17–19,23–66</sup>.

#### **Technical Validation**

Evidence that the records in the database reflect past temperature variability can be found in the original publications associated with each record. Here, we examine the extent to which the database as a whole captures observed temperature variability in the region. To do this, we calculated field correlations and their significance between each record in the database and the Natiaonal Aeronautics and Space Administration's (NASA) Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP)







product with 1,200-km smoothing<sup>67</sup> during the period of overlap (AD 1880–2000). In this analysis, the time series for each site, as well as the Arctic-wide reconstruction, were correlated against the temperature record for every grid cell north of  $60^{\circ}$  N. Significance at each grid cell was determined using a Student's *T*-test following correction for autocorrelation<sup>68</sup>. All calculations were performed at the temporal resolution of the proxy values; annual-mean temperatures were used for the annually-sampled records, and averages of multiple years corresponding to the sampling of the low-resolution records were calculated to correlate with the lower-resolution records.

This analysis shows that the revised PAGES Arctic 2k temperature reconstruction does an excellent job of capturing observed temperature variability in the Arctic, with significant (P < 0.05) correlations over most the Arctic (Figure 3a,b). This is consistent with patterns observed from the summary of individual record field correlations (Figure 3c,d), although several of the sites demonstrate insignificant correlations over much or even all of the Arctic (Supplementary Figure S1). These records are typically those with low resolution and time uncertainty, which confounds this analyis. The interpretation of temperature sensitivity at these sites is derived from expert understanding of the system, rather than statistical comparison with instrumental data. In both the PAGES Arctic 2k temperature reconstruction, and as a whole from the individual sites, the highest correlations were calculated over northeast Canada and Greenland, where data density is highest. Interestingly, despite strong data coverage, and several sites with strong local correlations (Supplementary Figure S1), the temperature variability in Fennoscandia is not particularly well represented in the database. This may be due to out-of-phase decadal-scale

temperature variability between Fennoscandia and the western part of the North Atlantic. Indeed, instrumental temperatures from near Greenland and northeastern Canada are poorly correlated with temperatures from Fennoscandia (Supplementary Figure S2). Some of this feature is due to the choice to compare the reconstruction to annual temperatures, thereby integrating some of the strong out-of-phase relationship that characterizes the region during the winter. However, a weaker, but similar pattern is present when analyzing summer (IJA) data only (Supplementary Figure S3). We also examine how the reconstruction correlates with instrumental summer (IJA) temperatures (Supplementary Figures S4). As expected, the reconstruction correlates better with summer than annual temperatures over Fennoscandia, however, the results are mixed elsewhere. Correlations with winter half-year (ONDJFM) temperatures strongly resemble annual correlations, but with fewer significant correlations across the Arctic. This resemblance is likely due to the dominance of winter temperature variability in the Arctic<sup>69</sup>. Overall, the reconstruction and records as a whole appear more representative of annual than either winter or summer temperatures. This is not because the records are sensing annual temperatures, rather, it is likely an artifact of including both summer and winter sensitive records in the compilation. Indeed, the spatial heterogeneity of the response highlights the biases introduced due to the variable seasonal response of proxy types and individual sites, and the shortcomings of index reconstructions, and highlights the need for a more nuanced consideration of spatial and seasonal variability in paleoclimate syntheses.

Finally, it should be noted that whereas these analyses are useful for quantifying some aspects of temperature sensitivity, they are poorly suited to determine the extent to which the records reflect long-term (centuries to millennia) changes in past temperature, or the stability of the modern relation back through time.

#### References

- 1. PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. *Nat. Geosci.* **6**, 339–346 (2013). 2. Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlén, W. Highly variable Northern Hemisphere temperatures
- reconstructed from low-and high-resolution proxy data. Nature 433, 613-617 (2005).
- Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. 105, 13252–13257 (2008).
- 4. Christiansen, B. & Ljungqvist, F. C. The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. *Clim. Past.* 8, 765–786 (2012).
- 5. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. *Science* **339**, 1198–1201 (2013).
- 6. Overpeck, J. et al. Arctic environmental change of the last four centuries. Science 278, 1251-1255 (1997).
- 7. Kaufman, D. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239 (2009).
- 8. Tingley, M. P. et al. Piecing together the past: statistical insights into paleoclimatic reconstructions. Quat. Sci. Rev. 35, 1–22 (2012).
- 9. Hanhijärvi, S., Tingley, M. P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic region over the last 2,000 years. *Clim. Dyn.* **41**, 2039–2060 (2013).
- Anchukaitis, K. J. & Tierney, J. E. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. *Clim. Dyn.* 41, 1291–1306 (2012).
- Sundqvist, H. S. et al. Arctic holocene proxy climate database—new approaches to assessing geochronological accuracy and encoding climate variables. Clim. Past Discuss 10, 1–63 (2014).
- Tiljander, M., Saarnisto, M., Ojala, A. E. K. & Saarinen, T. A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajarvi, central Finland. *Boreas* 32, 566–577 (2003).
- Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).
- 14. Douglass, A. E. Crossdating in dendrochronology. J. Forest. 39, 825-831 (1941).
- 15. Stokes, M. A. & Smiley, T. L. in An Introduction to Tree-Ring Dating, 73 (The University of Chicago Press, 1996).
- Comboul, M. et al. A probabilistic model of chronological errors in layer-counted climate proxies: applications to annuallybanded coral archives. Clim. Past Discuss. 9, 6077–6123 (2013).
- 17. Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Res. **30**, 7379 (2011).
- Melvin, T. M., Grudd, H. & Briffa, K. R. Potential bias in updating tree-ring chronologies using regional curve standardisation: Re-processing 1500 years of Torneträsk density and ring-width data. *Holocene* 23, 364–373 (2013).
- 19. Wiles, G. C. *et al.* Surface air temperature variability reconstructed with tree rings for the Gulf of Alaska over the past 1200 years. *Holocene* 24, 198–208 (2014).
- 20. Gonyo, A. W., Yu, Z. & Bebout, G. E. Late holocene change in climate and atmospheric circulation inferred from geochemical records at Kepler Lake, south-central Alaska. J. Paleolim. 48, 55–67 (2012).
- Sha, L., Jiang, H. & Knudsen, K. L. Diatom evidence of climatic change in Holsteinsborg Dyb, west of Greenland, during the last 1200 years. *The Holocene* 22, 347–358 (2012).
- Lapointe, F., Francus, P., Lamoureux, S. F., Saïd, M. & Cuven, S. 1750 years of large rainfall events inferred from particle size at East Lake, Cape Bounty, Melville Island, Canada. J. Paleolim. 48, 159–173 (2012).
- 23. Bird, B., Abbott, M., Finney, B. & Kutchko, B. A 2000 year varve-based climate record from the central Brooks Range, Alaska. J. Paleolim. 41, 25–41 (2009).
- 24. D'Arrigo, R. *et al.* Tree growth and inferred temperature variability at the North American Arctic treeline. *Global Planet. Change* **65**, 71–82 (2009).
- 25. Kirchhefer, A. Reconstruction of summer temperatures from tree-rings of Scots pine (*Pinus sylvestris L.*) in coastal northern Norway. *Holocene* 11, 41–52 (2001).
- 26. MacDonald, G. M., Case, R. A. & Szeicz, J. M. A 538-year record of climate and treeline dynamics from the lower Lena River region of Northern Siberia, Russia. Arctic Alpine Res. 30, 334 (1998).
- 27. Massa, C. et al. A multiproxy evaluation of Holocene environmental change from Lake Igaliku, South Greenland. J. Paleolim. 48, 241–258 (2012).
- Larsen, D. J., Miller, G. H., Geirsdóttir, Á. & Thordarson, T. A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland. Quat. Sci. Rev. 30, 2715–2731 (2011).

- Kaufman, D. S. et al. A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska. J. Paleolim. 48, 9–26 (2012).
- 30. Briffa, K. R. *et al.* Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. *Philos. T. R. Soc. B* 363, 2269–2282 (2008).

 Cook, T. L., Bradley, R. S., Stoner, J. S. & Francus, P. Five thousand years of sediment transfer in a high arctic watershed recorded in annually laminated sediments from lower Murray Lake, Ellesmere Island, Nunavut, Canada. J. Paleolim. 41, 77–94 (2009).

32. Dansgaard, W., Johnsen, S. J., Møller, J. & Langway, C. C. One thousand centuries of climatic record from Camp Century on the Greenland Ice Sheet. Science 166, 377–380 (1969).

- D'Arrigo, R., Mashig, E., Frank, D., Wilson, R. & Jacoby, G. Temperature variability over the past millennium inferred from Northwestern Alaska tree rings. *Clim. Dyn.* 24, 227–236 (2005).
- 34. D'Arrigo, R., Wilson, R. & Jacoby, G. On the long-term context for late twentieth century warming. *J. Geophy. Res.* **111** (2006). 35. Esper, J. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. *Science* **295**,
  - 2250-2253 (2002).
- 36. Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in greenland snow and ice with 10<sup>-3</sup>- to 10<sup>5</sup>-year time resolution. J. Geophy. Res. **102**, 26455-26470 (1997).
- 37. Gunnarson, B. E., Linderholm, H. W. & Moberg, A. Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. *Clim. Dyn.* **36**, 97–108 (2011).
- Haltia-Hovi, E., Saarinen, T. & Kukkonen, M. A 2000-year record of solar forcing on varved lake sediment in eastern Finland. Quat. Sci. Rev. 26, 678–689 (2007).
- 39. Helama, S., Fauria, M. M., Mielikainen, K., Timonen, M. & Eronen, M. Sub-Milankovitch solar forcing of past climates: Mid and late Holocene perspectives. *Geol. Soc. Am. Bull* **122**, 1981–1988 (2010).
- 40. Hughes, M., Touchan, R., Funkhouser, G., Vaganov, E. & Shiyatov, S. Twentieth-century summer warmth in northern Yakutia in a 600-year context. *Holocene* 9, 629–634 (1999).
- 41. Isaksson, E. *et al.* Climate oscillations as recorded in Svalbard ice core  $\delta^{18}$ O records between AD 1200 and 1997. *Geog. Ann. A* 87, 203–214 (2005).
- 42. Lamoureux, S. & Bradley, R. A late Holocene varved sediment record of environmental change from northern Ellesmere Island, Canada. J. Paleolim. 16, 239–255 (1996).
- 43. Loso, M. G., Anderson, R. S., Anderson, S. P. & Reimer, P. J. A 1500-year record of temperature and glacial response inferred from varved Iceberg lake, southcentral Alaska. Quat. Res. 66, 12–24 (2006).
- Moore, J., Hughen, K., Miller, G. & Overpeck, J. Little Ice Age recorded in summer temperature reconstruction from vared sediments of Donard Lake, Baffin Island, Canada. J. Paleolim. 25, 503–517 (2001).
- Ojala, A. E. & Alenius, T. 10000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic organic varves. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 219, 285–302 (2005).
- Schwager, M. Ice core analysis on the spatial and temporal variability of temperature and precipitation during the late Holocene in North Greenland. *Rep. Polar Res.* 362, 1–136 (2000).
- 47. Thomas, E. K. & Briner, J. P. Climate of the past millennium inferred from varved proglacial lake sediments on northeast Baffin Island, Arctic Canada. J. Paleolim. 41, 209-224 (2009).
- Vinther, B. M. et al. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res. 111, doi:10.1029/2005JD006921 (2006).
- 49. Vinther, B. M. *et al.* Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology. *J. Geophys. Res.* **113**, doi:10.1029/2007JD009143 (2008).
- 50. Vinther, B. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522-538 (2010).
- 51. Bergthorsson, P. An estimate of ice drift and temperature in 1000 years. Jökull 19, 94-101 (1969).
- 52. Berner, K. S., Koç, N., Godtliebsen, F. & Divine, D. Holocene climate variability of the Norwegian Atlantic Current during high and low solar insolation forcing. *Paleoceanography* 26, 245–255 (2011).
- Calvo, E., Grimalt, J. & Jansen, E. High resolution U<sup>K</sup><sub>37</sub> sea surface temperature reconstruction in the norwegian sea during the holocene. *Quat. Sci. Rev.* 21, 1385–1394 (2002).
- 54. Clegg, B. F. et al. Six millennia of summer temperature variation based on midge analysis of lake sediments from Alaska. Quat. Sci. Rev. 29, 3308–3316 (2010).
- 55. Clegg, B. F., Kelly, R., Clarke, G. H., Walker, I. R. & Hu, F. S. Nonlinear response of summer temperature to holocene insolation forcing in Alaska. Proc. Natl Acad. Sci. 108, 19299–19304 (2011).
- 56. D'Andrea, W. J., Huang, Y., Fritz, S. C. & Anderson, N. J. Abrupt holocene climate change as an important factor for human migration in west Greenland. *Proc. Natl Acad. Sci.* 108, 9765–9769 (2011).
- 57. Fisher, D. A. et al. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature 301, 205-209 (1983).
- Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K.-L. & Seidenkrantz, M.-S. Evidence for solar forcing of sea-surface temperature on the North Icelandic shelf during the late Holocene. *Geology* 33, 73–77 (2005).
- 59. Linge, H. et al. Stable isotope records for the last 10000 years from Okshola cave (Fauske, northern Norway) and regional comparisons. Clim. Past 5, 667–682 (2009).
- Luoto, T. P., Sarmaja-Korjonen, K., Nevalainen, L. & Kauppila, T. A 700 year record of temperature and nutrient changes in a small eutrophied lake in southern Finland. *Holocene* 19, 1063–1072 (2009).
- Luoto, T. P. & Helama, S. Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quat. Sci. Rev. 29, 2411–2423 (2010).
- 62. Okuyama, J. Physical properties of the P96 ice core from Penny Ice Cap, Baffin Island, Canada, and derived climatic records. J. Geophys. Res. 108, doi:10.1029/2001JB001707 (2003).
- 63. Rolland, N., Larocque, I., Francus, P., Pienitz, R. & Laperriére, L. Evidence for a warmer period during the 12th and 13th centuries AD from chironomid assemblages in Southampton Island, Nunavut, Canada. Quat. Res. 72, 27–37 (2009).
- 64. Sejrup, H., Haflidason, H. & Andrews, J. A Holocene North Atlantic SST record and regional climate variability. *Quat. Sci. Rev.* **30**, 3181–3195 (2011).
- 65. Sicre, M.-A. *et al.* Sea surface temperature variability in the subpolar Atlantic over the last two millennia. *Paleoceanography* 26, doi:10.1029/2011PA002169 (2011).
- 66. Spielhagen, R. F. et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331, 450-453 (2011).
- 67. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).
- 68. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field. *J. Clim.* **12**, 1990–2009 (1999).
- Jones, P. D., Harpham, C. & Vinther, B. M. Winter responding proxy temperature reconstructions and the North Atlantic Oscillation. J. Geophys. Res. 119, doi:10.1002/2014JD021561 (2014).

#### **Data Citation**

1. McKay, N. & Kaufman, D. Figshare http://dx.doi.org/10.6084/m9.figshare.1054736 (2014).

#### Acknowledgements

We thank those who discovered and shared errors and updates to the original PAGES Arctic 2k database. Code and support for BACON and BAM was kindly provided by Maarten Blaauw and Maud Comboul, respectively. Kevin Anchukaitis and participants of the PAGES 2k Climate Reconstruction Methods Workshop contributed to this study. WDC-NOAA Paleoclimatology helped format and guided the design the data files. Support for PAGES activities is provided by the US and Swiss National Science Foundations, US National Oceanographic and Atmospheric Administration and by the International Geosphere-Biosphere Programme. N.P.M. was supported by NSF award ARC-1107869. We thank Sami Hanhijärvi and Atte Korhola for compiling the original version of the PAGES Arctic 2k database, and the many colleagues who kindly made digital versions of their data available for this product. The comments and suggestions of two anonymous reviewers improved this data descriptor and data collection.

#### **Author Contributions**

N.P.M. and D.S.K. designed the study and prepared the manuscript. N.P.M. updated the chronologies, generated age ensembles, and formatted the data.

#### **Additional information**

Supplementary information accompanies this paper at http://www.nature.com/sdata

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: McKay, N. P. and Kaufman, D. S. An extended Arctic proxy temperature database for the past 2,000 years. *Sci. Data* 1:140026 doi: 10.1038/sdata.2014.26 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released under the CC0 waiver to maximize reuse.