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Abstract
Soybean oil content is one of main quality traits. In this study, we used the multifactor

dimensionality reduction (MDR) method and a soybean high-density genetic map including

5,308 markers to identify stable single nucleotide polymorphism (SNP)—SNP interactions

controlling oil content in soybean across 23 environments. In total, 36,442,756 SNP-SNP

interaction pairs were detected, 1865 of all interaction pairs associated with soybean oil

content were identified under multiple environments by the Bonferroni correction with p

<3.55×10−11. Two and 1863 SNP-SNP interaction pairs detected stable across 12 and 11

environments, respectively, which account around 50% of total environments. Epistasis

values and contribution rates of stable interaction (the SNP interaction pairs were detected

in more than 2 environments) pairs were detected by the two way ANOVA test, the avail-

able interaction pairs were ranged 0.01 to 0.89 and from 0.01 to 0.85, respectively. Some

of one side of the interaction pairs were identified with previously research as a major

QTL without epistasis effects. The results of this study provide insights into the genetic

architecture of soybean oil content and can serve as a basis for marker-assisted selection

breeding.

Introduction

Soybean originates from China which is not only grain crop but also commercial crop. The
content of protein accounts for 40% of soybean seeds, and the content of oil occupy 20%.
Soybean is the largest oil seed crop in the world, which accounts for 57% of world oilseed pro-
duction in 2015 (http://www.soystats.com) [1]. Oil content of soybean seeds is a complex
quantitative trait governed by a number of genes mostly with small effects and was affected by
the environment [2]. Till now, 188 QTL mapping research on soybean oil content were listed
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in the USDA SoybeanGenome Database (http://www.soybase.org). Epistasis interaction is
common and can cause cryptic genetic variation for quantitative traits [3]. Deriving genetic
interaction networks from epistatic interactions between loci will enhance our understanding
of biological systems that give rise to variation in quantitative traits [4]. Many recent studies
have been performed regarding to epistatic interaction analysis, including investigations of
agronomic and nitrogen acquisition traits in rice [5–9], and protein content, seed and pot
traits, grain weight per plant in soybean [10–12], and proteins, oils, starches and fatty acids in
maize [13–14], and grain protein, yield, and plant heights traits in wheat [15–17]. These stud-
ies, however, were based on the interactions of QTLs, which encompass more than a single
marker. However, quantitative variation in phenotypes must result in multiple factor, there-
fore, interaction study designs have concentrated on estimating additive effects of single loci
[18]. Because analyses of single loci can only partially investigate significant loci and may miss
interactions between them, interaction analysis of single nucleotide polymorphisms (SNPs) is a
better approach to elucidate genetic mechanisms [19], Goodman et al. [20] has explored the
association between colon cancer and 94 SNPs, by the method, polymorphism interaction anal-
ysis in 2006. Dinu et al. [21] had discovered the Crohn’s disease genetics’ SNP-SNP interac-
tions by logic regression. Lin et al. [22] studied five SNP-SNP interactions in three gene pairs
associated with aggressive prostate cancer by SNP-SNP interaction network. Farzan et al. [23]
found that RNASEL and MIR146A SNP—SNP interaction is a susceptibility factor for skin
cancer. Li et al. [24] analyzed SNP—SNP interactions affecting abdominal fat weight by a linear
mixed model.

Multifactor Dimensionality Reduction (MDR), inspired by the combinatorial partitioning
method, can effectively reduce genotype predictors from n dimensions to one [25–29]. 2001,
Ritchie et al. invented Multifactor dimensionality reduction which examines all possible SNP
combination from a set of given SNPs and choose the combination that the best predicts risk
by minimizing the classification error of cases and controls [26]. In addition, MDR analysis
incorporates a cross-validation/permutation procedure to minimize the rate of false positive
findings that may otherwise result from tests involving multiple variables or comparisons [25–
27]. Although some recent studies on SNP interactions have exploited the MDR method [25–
31], most of them has been focused on human and animal complex diseases and related traits.
To date, no investigations of SNP interactions involving soybean-related traits have been con-
ducted. This study is on the strength of a high-density genetic map for soybeanwhich is based
on specific length amplified fragment sequencing.We set the experiment in 23 environments
in order to explore the stable locus across the multiple environments. MDR method was
employed to analyze epistatic interactions between SNPs for oil content in soybean, the results
on SNP interactions underlying genetic mechanisms of quantitative traits and may help
improve soybean quality traits.

Materials and Method

Plant Materials

An F2:10–F2:20 population of 147 RILs was advanced by single-seeddescent from crosses
between two soybean cultivars: ‘Charleston’ (♀), (American cultivator) [32], and ‘Dong-
nong594’ (♂), (Northeast Agricultural University, Harbin, Heilongjiang, China). The 147 RILs
were planted in three locations: Harbin (HRB; longitude 126°380E, latitude 45°450N) from 2002
to 2012; Hongxinglong (HXL; longitude 129°550–134°350E, latitude 45°350–47°170N) from
2007 to 2012; and Jiamusi (JMS; longitude 130°210E, latitude 46°490N) from 2007 to 2012.

The plants were arranged in a randomized complete block experimental design involving
single-row plots (1-m length and 0.5-m width), with two and three replicates in 2002–2007
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and 2008–2012, respectively. The timing and frequency of cultural management procedures
used for the trials were in accordance with normal production practices for the respective
environments.

Measurement of Soybean Oil Content

Oil was analyzed from seeds obtained from five randomly harvested plants of each line per
plot. The seed oil phenotypic data was analyzed using the FOSS Infratec TM1241 Grain Ana-
lyzer (FOSS Tecator AB, Hoeganaes, Sweden). The oil content of each RIL line was averaged
from the data of two or three plot replicates. Two hundreds grams seeds of each replicate were
used to analysis at a 13% moisture basis.

Genotyping and Genetic Map Construction

SNP genotype data for the RIL population was detected based on the specific-locusamplified
fragment sequencing (SLAF-seq) method following Qi et al. [33] and used to construct a high-
density genetic map of 5,308 markers assigned to 20 linkage groups. The map spanned
2294.433 cM, with an average inter-marker distance of 0.43 cM. The percentage of gaps in
which the distance between adjacent markers and markers is smaller than 5 cM (gap� 5) is
99.84%.

Interaction Analysis

To identify SNP × SNP effects in this study, we used the MDR method [25–31], The Pearson
chi-squared module was used to assess significance (p< 0.001), with the selected optimization
model based on the maximum Pearson chi-squared statistic combined with cross-validation
[30].

The chi-square statistic measures the association between genotype (high-risk and low-risk
group) and affection status (case and control group) in a two-way table. It is calculated as sum
of the square of the difference between the observed and expected frequency in each combina-
tion, divided by the expected value, across all the combinations:

x2 ¼

X
ðobserved � expectedÞ2

expected

The calculation was based on the value of chi-square. Average Pearson chi-square of 10
time 10-fold cross-validation were used to select optimization model [30]. The p value was cal-
culated referred the Bonferroni correction [34–35]. The epistatic interaction values and their
contribution to genetic values and variance were calculated following the method proposed by
Cheverud et al. [36]. Using contribution rate represent the phenotypic variation of the SNP—
SNP interaction pair.

Result

Phenotypic Variation in the RIL Population under Multiple Environments

Oil content datas of the RIL population in 23 environments are shown in Table 1. The differ-
ences between the two parents were significant in parts of the 23 environments and the oil con-
tent of Charleston and Dongnong 594 ranged from 19.03 to 21.89% and from 18.96 to 21.83%,
respectively. Oil content displayed a wide range of variation across the 23 environments, but
the range of variation was narrow between different locations in the same year. The mean val-
ues of the RIL population ranged from 19.07 to 20.99%. The coefficient of variation ranged
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from 0.01 to 0.06, with a standard deviation of 0.36 to 1.39. Overall, the oil content of the RIL
population was continuously distributed and consistent in all environments (Table 1).

Pairwise Interaction Analysis

Analyze the oil content and genotype of 23 environments by the method of MDR. The selec-
tion criteria of SNP interaction pairs was the p<3.55×10−11 which was calculated based on the
Bonferroni correction (Table 2). In total, the available interaction pairs have been detected in
12 of all environments, 36,442,756 interaction pairs were detected in all of the 12 environ-
ments. There were 5,612,873 pairs detected in 2006HRB, which were the most SNP interaction
pairs. And the minimum number 24,689 pairs have been found in 2007HXL. 2005HRB,
2006HRB, 2007HRB, 2007JMS, 2008HRB, 2008HXL, 2009HXL, 2011JMS and 2012HXL were
identifiedmore than 1,000,000 SNP interaction pairs, 2004HRB, 2007HXL and 2008JMS were
identified fewer than 100,000, and there were no available interaction pairs detected in the
other 11 environments (Table 2).

There were two and 1863 SNP interaction pairs were identified under 12 and 11 environ-
ments which have been detected the available interaction pairs (Fig 1). Among the 20 linkage
groups, most of stable interaction pairs were from Gm01 to others, including Gm01, Gm05,
Gm06, Gm07, Gm08, Gm09, Gm10, Gm13, Gm18 and Gm20. Two SNP interaction pairs
detected across 12 environments showed the interaction effect betweenGm01 (Mark673223)
and Gm05 (Mark310931, Mark312588), furthermore, 1863 SNP interaction pairs detected
across 11 environments showed the strong interaction region at Gm01, Gm05, Gm06, Gm07,

Table 1. Oil content of the population and parents in 23 environments across 11 year.

Year and Environment Charleston (%) DongNong594 (%) RIL lines

Mean (%) Min (%) Max (%) SD Kurtosis Skewness

2002HRB 19.63 21.83 21.48 16.68 24.33 1.39 0.25 -0.36

2003HRB 19.27 19.68 20.46 17.90 22.61 0.91 -0.02 -0.08

2004HRB 19.03 19.26 19.28 17.87 20.92 0.60 -0.20 0.17

2005HRB 19.11 19.44 19.33 16.99 22.17 1.08 -0.30 0.37

2006HRB 20.30 21.20 20.86 19.05 21.90 0.50 0.46 -0.52

2007HRB 20.97 21.26 21.46 19.49 23.35 0.81 -0.10 0.07

2007HXL 21.09 21.63 22.40 18.99 25.88 1.36 -0.12 -0.01

2007JMS 20.65 20.98 20.99 18.64 22.76 0.77 0.44 -0.45

2008HRB 21.89 20.31 21.67 18.64 23.57 0.89 0.28 -0.43

2008HXL 21.80 19.89 21.02 18.64 23.59 0.82 0.83 0.58

2008JMS 21.77 20.73 22.19 19.38 24.13 0.90 0.67 -0.59

2009HRB 21.36 20.26 20.68 18.32 21.79 0.61 1.96 -1.15

2009HXL 21.24 18.96 20.42 17.85 22.28 0.67 1.37 -0.92

2009JMS 20.93 20.07 20.92 19.01 21.98 0.50 1.57 -0.59

2010HRB 21.21 21.42 21.37 19.73 22.03 0.41 2.63 1.27

2010HXL 21.73 21.42 21.56 20.14 22.36 0.39 1.27 0.69

2010JMS 21.51 21.49 21.49 19.09 23.20 0.48 4.64 0.80

2011HRB 20.56 21.14 21.33 20.01 22.51 0.40 0.55 -0.26

2011HXL 19.98 21.40 21.21 20.17 22.34 0.43 -0.22 -0.26

2011JMS 19.78 20.99 21.41 20.57 22.55 0.36 1.12 0.63

2012HRB 21.29 21.49 20.56 18.02 22.74 0.86 2.09 -0.42

2012HXL 20.73 21.16 19.07 15.51 20.86 0.43 1.85 -0.86

2012JMS 19.58 19.70 21.02 18.58 22.45 0.36 2.51 -0.66

doi:10.1371/journal.pone.0163692.t001
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Gm09, Gm10, Gm13 and Gm18 (Fig 1). These 1865 SNP interaction pairs were detected stable
across environments which almost 50% of all, so we saw them as the stable interaction pairs
and used for next step calculation.

Epistatic Value and Contribution Rate Analysis

The epistatic interaction values and their contribution to genetic values and variance were
screened by the two way ANOVA test for each environment at significant level of p<0.01. In
total, there were 560 of 1865 interaction pairs were screened, 4, 23, 99 and 344 SNP interaction
pairs were detected as stable and effective interaction pairs across 5, 4, 3 and 2 environments
respectively (Fig 2), which similar as the environment-universal QTLs, defined as QTLs associ-
ated with traits of interest in at least one macro-environment (i.e., year-location combination)
[37, 38], here, it could be the environment-universal SNP interaction pairs, and there were no
significance for the other SNP interaction pairs. Epistatic value and contribution rate data of
stable interaction pairs across all environments are shown in S1 Table. Epistasis value was ran-
ged from 0.01 to 0.89 at the p<0.01 level. Contribution rates of epistatic pairs were ranged
from 0.01 to 0.85 at the p<0.01 level (S1 Table).

A compairson of the environmentally stable SNP interaction pairs uncovered in this study
with those detected in previous research revealed none that matched completely. In a few
cases, however, a member of an interaction pair matched a main effect QTL not previously

Table 2. Interaction pairs numbers selected by MDR method in all environment (P<3.55×10−11).

Environment The number of interaction pairs

2002HRB NAa

2003HRB NAa

2004HRB 87027

2005HRB 1098849

2006HRB 5612873

2007HRB 3391676

2007HXL 24689

2007JMS 4059216

2008HRB 2133998

2008HXL 2731592

2008JMS 60238

2009HRB NAa

2009HXL 7432164

2009JMS NAa

2010HRB NAa

2010HXL NAa

2010JMS NAa

2011HRB NAa

2011HXL NAa

2011JMS 4113031

2012HRB NAa

2012HXL 5697403

2012JMS NAa

Total 36442756

aNA means no available interaction pairs in that environment.

doi:10.1371/journal.pone.0163692.t002
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known to participate in an interaction. Some regions on Gm01 15.0Mb-15.3Mb, 28.8Mb-
38.0Mb have been mapped as major QTL fragments by Hyten et al. [39], from 40.7Mb to
41.0Mb has been detected by Specht et al. [40], 42.0Mb-43.3Mb has also been found by Eskan-
dari et al. [41]. On Gm02 (34.6–34.8Mb) has been mapped as major QTL fragments by Qi et al.
[42]. Some regions on Gm05, 1.3–1.6Mb, 27.6–27.8Mb, 31.2–32.0Mb, 33.2–34.8Mb and 37.6–
39.5Mb all have been detected by Wang et al. [43], Mansur et al. [44], Lark et al. [45], Brummer
et al. [46] and Liang et al. [47] respectively. Some regions on Gm06 from 1.2Mb to 1.5Mb,
14.4Mb, 21.2–29.0Mb, 24.7Mb, 37.8Mb and 46.7Mb have been mapped as major QTL frag-
ments by Wang et al. [43], Hyten et al. [39], Chen et al. [48], Reinprecht et al. [49], Kim et al.
[50], Qi et al. [42] respectively. On Gm09, 1.0Mb, 3.9Mb and 5.7Mb have been detected by
Mansur et al. [44]. Wang et al. [43] have found from 8.2 to 9.1Mb and 41.1–42.8Mb as major
QTL fragments. From 31.0Mb to 33.4Mb has been detected by Eskandari et al. [41]. Some
regions on Gm10 from 10.2Mb to 13.7Mb and 46.2Mb have been detected by Panthee et al.

Fig 1. The circle represented the whole soybean genome. Blue lines represented epistatic interactions between

two markers across eleven environment, the black lines represented epistatic interactions between two markers

across twelve environment.

doi:10.1371/journal.pone.0163692.g001
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[51] and Li et al. [52] respectively. The region on Gm12 10.8–14.0Mb and 35.0Mb have been
found by Shibata et al. [53] and Eskandari et al. [41] respectively. On Gm13, 6.1–6.7Mb has
been mapped as major QTL fragments by Qi et al. [42]; 27.1–28.3Mb has been detected by
Specht et al. [40], 29.0–30.7Mb and 32.2–33.6Mb have been found by Eskandari et al. [41] and

Fig 2. The circle represented the whole soybean genome. Blue lines indicate epistatic interactions across 2 environments, red lines indicate epistatic

interactions across 3 environments, black lines indicate epistatic interactions across 4 environments, green lines indicate epistatic interactions across 5

environments.

doi:10.1371/journal.pone.0163692.g002
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31.3–31.5Mb has been found by Rossi et al. [54]. On Gm14 Eskandari et al. [41] and Liang
et al. [47] have detected 32.2Mb and 35.9Mb. Some regions on Gm18, 16.7–18.3Mb, 41.66Mb,
46.2–57.6Mb, 50.0–52.7Mb and have been mapped as major QTL fragments by Reinprecht
et al. [49], Wang et al. [43], Lee et al. [55] and Brummer et al. [46]. On Gm20, 24.6Mb and
36.5Mb have been detected by Shibata et al. [53] and Reinprecht et al. [49] respectively.

Discussion

Soybean oil content is an important quantitative trait under complex genetic control. Under-
standing the oil content locus interaction mechanisms could help us effectively increase the oil
content in soybean. In this study, MDR method was employed to identify the stable loci con-
trolling oil content in soybean that is based on a high-density geneticmap, which has been con-
structed by specific-locusamplified fragment sequencing (SLAF-seq) with 5308 markers on 20
linkage groups and the map was 2294.43 cM in length, with an average distance of 0.43 cM
between adjacent markers [33].

Epistasis is a biochemically plausible feature of the genetic architecture of quantitative traits.
So, epistasis causes hidden quantitative genetic variation in natural populations and could be
responsible for the small additive effects [4]. In quantitative genetics, epistasis refers to any sta-
tistical interaction between genotypes at two or more loci [56–57]. The role of epistasis in the
genetic architecture of quantitative traits has been controversial since early formulations of
quantitative genetic theory [58–59]. Numerous methods to detect epistatic interactions
between SNPs have been published, such as exhaustive algorithms [60] and MDR [25–33],
regression [61–63], heuristic [64–65] and mutual information [66], among others [60, 67–70].

Currently, many studies are based on multifactor dimensionality reduction (MDR) focus on
the complex human diseases and animal-related traits. Guia et al. [71] reveals interaction of
important gene variants involved in allergy by MDR. Su et al. [72] applied the multifactor
dimension reduction method to analyze gene-gene and gene-environmental interactions of
childhood asthma. Gui et al. [73] detected gene-gene interactions with application to the
genetic analysis of bladder cancer susceptibility with multifactor dimensionality reduction
method. Cho et al. [74] using MDR method find out that a two-locus interaction genes among
23 loci in the candidate genes of Type 2 diabetes. Julia et al. [75] suggest that 13 genes is associ-
ated with synovial fibroblast response to rheumatoid arthritis proinflammatory stimulus by
MDR. Many studies using the MDR method have focused on complex human and animal dis-
ease-related traits to identify the epistatic interactions [25–31, 71–75], to our knowledge, no
study have applied MDR to analyze soybean quantitative traits. In this study, we identified
1865 stable SNP interactions pairs associations with soybean oil content under multi-environ-
ments, successfully applied MDR to the plant research. Among 1865 SNP interactions pairs, 2
pairs were detected stable across 12 environments, 1863 pairs were detected stable across 11
environments. MDR method can improve the analysis efficiency as an analysis method based
on haplotype, which is a good choice for genome-wide interaction analysis. Nevertheless, this
method also has some restrictions. First, it does not have a way to adjust for covariate effects
such as age, gender and smoking status, an often necessary step to obtain an unconfounded
SNP interaction outcome association [76]. Second, if there are too many covariates, this
approach may over fit the data and sometimes fail due to limited sample size [77].

The present study has opened the door for further research on soybean quantitative trait
integration analysis. On the one hand, the SNP-SNP interaction of hot region which were iden-
tical with some published major QTLs, however, those major QTLs were not shown the inter-
action each other previously. On the other hand, the candidate major region could be found as
only one site of the pair was alignedwith the published QTL. Based on this research, the
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markers of those hot region could be developed, and used for breeding selection process, fur-
thermore, the candidate genes of hot region could be identified and to analysis the interaction
of genes in next step. Future efforts based on the uncovered epistatic interaction values and
their contribution to genetic values can be applied for the identification of key loci with higher
phenotypic contributions, the prediction of phenotype and genotype design modules with epi-
static values, and to provide direction for high-quality soybean breeding.

Supporting Information

S1 Table. Epistatic value and contribution rate data of stable interaction pairs across 11
environments.NS means no signification value in that environments, epistatic value indicates
the epistatic effects value of the SNP—SNP pairs, contribution rates indicates the phenotypic
variation of the SNP—SNP interaction pairs.
(XLSX)
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