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Post-translational modification prediction
via prompt-based fine-tuning of a
GPT-2 model

Palistha Shrestha 1,5, Jeevan Kandel 2,5, Hilal Tayara 3 &
Kil To Chong 1,4

Post-translational modifications (PTMs) are pivotal in modulating protein
functions and influencing cellular processes like signaling, localization, and
degradation. The complexity of these biological interactions necessitates
efficient predictive methodologies. In this work, we introduce PTMGPT2, an
interpretable protein language model that utilizes prompt-based fine-tuning
to improve its accuracy in precisely predicting PTMs. Drawing inspiration from
recent advancements in GPT-based architectures, PTMGPT2 adopts unsu-
pervised learning to identify PTMs. It utilizes a custom prompt to guide the
model through the subtle linguistic patterns encoded in amino acid sequen-
ces, generating tokens indicative of PTM sites. To provide interpretability, we
visualize attention profiles from the model’s final decoder layer to elucidate
sequencemotifs essential for molecular recognition and analyze the effects of
mutations at or near PTM sites to offer deeper insights into protein func-
tionality. Comparative assessments reveal that PTMGPT2outperforms existing
methods across 19 PTM types, underscoring its potential in identifying disease
associations and drug targets.

Proteins, the essential workhorses of the cell, are modulated by post-
translational modifications (PTM), a process vital for their optimal
functioning. With over 400 known types of PTMs1, they enhance the
functional spectrum of the proteome. Despite originating from a
foundational set of approximately 20,000 protein-coding genes2, the
dynamic realmof PTMs is estimated to expand thehumanproteometo
over a million unique protein species. This diversity echoes the com-
plexity inherent in human languages: individual amino acids assemble
into’words’ to form functional’sentences’ or domains. This linguistic
parallel extends to the dense, information-rich structure of both pro-
tein sequences and human languages. The advancing field of Natural
Language Processing (NLP) not only unravels the intricacies of human
communication but is also increasingly applied to decode the complex
language of proteins. Our study leverages the transformative

capabilities of generative pretrained transformers (GPT) based mod-
els, a cornerstone in NLP, to interpret and predict the complex land-
scape of PTMs, highlighting an intersection where computational
linguistics meets molecular biology.

In the quest to predict PTM sites, the scientific community has
predominantly relied on supervised methods, which have evolved
significantly over the years3–5. Thesemethods typically involve training
algorithms on datasets where the modification status of each site is
known, allowing the model to learn and predict modifications on new
sequences. B.Trost and A.Kusalik6 initially focus on methods like
Support VectorMachines and decision trees, which classify amino acid
sequences based on geometric margins or hierarchical decision rules.
Progressing towards more sophisticated approaches, Zhou, F. et al. 7

discuss the utilization of Convolutional Neural Networks and
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Recurrent Neural Networks, adept at recognizing complex patterns
and capturing temporal sequence dynamics. DeepSucc8 proposed a
specific deep learning architecture for identifying succinylation sites,
indicative of the tailored application of deep learning in PTM predic-
tion. Smith, L. M. and Kelleher, N. L9. highlight the challenges in data
representation and quality in proteomics. Building upon these devel-
opments, Smith, D. et al. 10 further advance the field, presenting a deep
learning-based approach that achieves high accuracy in PTM site pre-
diction. Their method involves intricate neural network architectures
optimized for analyzing protein sequences, signifying a refined inte-
gration of deep learning in protein sequence analysis.

On the unsupervised learning front, methods like those devel-
oped by Chung, C. et al.11 have significantly advanced the field. Central
to their algorithm is the clustering of similar features and the recog-
nition of patterns indicative of PTM sites. Lee, Tzong-Yi, et al. 12 utilized
distant sequence features in combination with Radial Basis Function
Networks, an approach that effectively identifies ubiquitin conjugation
sites by integrating non-local sequence information. However, the
complexity of PTM processes, often characterized by subtle and
context-dependent patterns, pose challenges to these methods.
Despite their advancements, they often grapple with issues like data
imbalance, where certain PTMs are underrepresented, and the
dependency on high-quality annotated datasets. These approaches
can be challenged by the intricate and subtle nature of PTM sites,
potentially overlooking crucial biological details. This landscape of
PTM site prediction is ripe for innovation through generative trans-
former models, particularly in the domain of unsupervised learning.
Intrigued by this possibility, we explored the potential of generative
transformers, exemplified by the GPT architecture, for predicting
PTM sites.

Here, we introduce PTMGPT2, a suite of models capable of gen-
erating tokens that signify modified protein sequences, crucial for
identifying PTM sites. At the core of this platform is PROTGPT213, an
autoregressive transformer model. We have adapted PROTGPT2, uti-
lizing it as a pre-trainedmodel, and further fine-tuned it for the specific
task of generating classification labels for a given PTM type. PTMGPT2
utilizes a decoder-only architecture, which eliminates the need for a
task-specific classification head during training. Instead, the final layer
of the decoder functions as a projection back to the vocabulary space,
effectively generating the next possible token based on the learned
patterns among tokens in the input prompt. When provided with a
prompt, themodel is faced with a protein sequence structured in a fill-
in-the-blank format. Impressively, even without any hyperparameter
optimization procedures, our model has demonstrated an average
5.45% improvement in Matthews Correlation Coefficient (MCC) over
all other competing methods. The webserver and models that under-
pin PTMGPT2 are available at https://nsclbio.jbnu.ac.kr/tools/
ptmgpt2. Given the critical role of PTM in elucidating the mechan-
isms of various biological processes, we believe PTMGPT2 represents a
significant stride forward in the efficient prediction and analysis of
protein sequences.

Results
PTMGPT2 implements a prompt-based approach for PTM
prediction
We introduce an end-to-end deep learning framework depicted in
Fig. 1, utilizing a GPT as the foundational model. Central to our
approach is the prompt-based finetuning of the PROTGPT2 model in
an unsupervised manner. This is achieved by utilizing informative
prompts during training, enabling the model to generate accurate
sequence labels. The design of these prompts is a critical aspect of our
architecture, as they provide essential instructional input to the pre-
trained model, guiding its learning process. To enhance the explana-
tory power of these prompts, we have introduced four custom tokens
to the pre-trained tokenizer, expanding its vocabulary size from50,257

to 50,264. This modification is particularly significant due to the
tokenizer’s reliance on the Byte Pair Encoding (BPE) algorithm14. A
notable consequence of this approach is that our model goes beyond
annotating individual amino acid residues. Instead, it focuses on
annotating variable-length protein sequence motifs. This strategy is
pivotal as it ensures the preservation of evolutionary biological func-
tionalities, allowing for a more nuanced and biologically relevant
interpretation of protein sequences.

In the PTMGPT2 framework, we employ a prompt structure that
incorporates four principal tokens. The first, designated as the
‘SEQUENCE:’ token, represents the specific protein subsequence of
interest. The second, known as the ‘LABEL:’ token, indicates whether
the subsequence is modified (‘POSITIVE’) or unmodified (‘NEGA-
TIVE’). This token-driven prompt design forms the foundation for
the fine-tuning process of the PTMGPT2 model, enabling it to
accurately generate labels during inference. A key aspect of this
model lies in its architectural foundation, which is based on GPT-215.
This architecture is characterized by its exclusive use of decoder
layers, with PTMGPT2 utilizing a total of 36 such layers, consistent
with the pretrained model. This maintains architectural consistency
while fine-tuning for our downstream task of PTM site prediction.
Each of these layers is composed of masked self-attention
mechanisms16, which ensure that during the training phase, the
protein sequence and custom tokens can be influenced only by their
preceding tokens in the prompt. This is essential for maintaining the
autoregressive property of the model. Such a method is funda-
mental for our model’s ability to accurately generate labels, as it
helps preserve the chronological integrity of biological sequence
data and its dependencies with custom tokens, ensuring that the
predictions are biologically relevant.

A key distinction in our approach lies in the methodology we
employed for prompt based fine-tuning during the training and
inference phases of PTMGPT2. During the training phase, PTMGPT2 is
engaged in an unsupervised learning process. This approach involves
feeding the model with input prompts and training it to output the
same prompt, thereby facilitating the learning of token relationships
and context within the prompts themselves. This process enables the
model to generate the next tokenbasedon the patterns learnedduring
training between protein subsequences and their corresponding
labels. The approach shifts during the inference phase, where the
prompts are modified by removing the ‘POSITIVE’ and ‘NEGATIVE’
tokens, effectively turning these prompts into a fill-in-the-blank exer-
cise for the model. This strategic masking triggers PTMGPT2 to gen-
erate the labels independently, based on the patterns and associations
it learned during the training phase. An essential aspect of our prompt
structure is the consistent inclusion of the ‘<startoftext > ’ and
‘<endoftext > ’ tokens. These tokens are integral to our prompts, sig-
nifying the beginning and end of the prompt helping the model to
contextualize the input more effectively. This interplay of training
techniques and strategic prompt structuring enables PTMGPT2 to
achieve high prediction accuracy and efficiency. Such anapproach sets
PTMGPT2 apart as an advanced tool for protein sequence analysis,
particularly in predicting PTMs.

Effect of prompt design and fine-tuning on PTMGPT2
performance
We designed five prompts with custom tokens (‘SEQUENCE:’, ‘LABEL:’,
‘POSITIVE’, and ‘NEGATIVE’) to identify the most efficient one for
capturing complexity, allowing PTMGPT2 to learn and process specific
sequence segments for more meaningful representations. Initially, we
crafted a prompt that integrates all custom tokens with a 21-length
protein subsequence. Subsequent explorations were conducted with
51-length subsequence and 21-length subsequence split into groups of
k-mers, with and without the custom tokens. Considering that the pre-
trained model was originally trained solely on protein sequences, we
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fine-tuned it with prompts both with and without the tokens to
ascertain their actual contribution to improving PTM predictions.

Upon fine-tuning PTMGPT2 with training datasets for arginine(R)
methylation and tyrosine(Y) phosphorylation, it became evident that
the prompt containing the 21-length subsequence and the four custom
tokens yielded the best results in generating accurate labels, as shown
in Table 1. Formethylation (R), theMCC, F1 Score, precision, and recall
were reported as 80.51, 81.32, 95.14, and 71.01, respectively. Similarly,
for phosphorylation (Y), the MCC, F1 Score, precision, and recall were

48.83, 46.98, 30.95, and 97.51, respectively. So, for all the experiments,
we used the 21-length sequence with custom tokens. The inclusion of
‘SEQUENCE:’ and ‘LABEL:’ tokens provided clear contextual cues to the
model, allowing it to understand the structure of the input and the
expected output format. This helped the model differentiate between
the sequence data and the classification labels, leading to better
learning and prediction accuracy. The 21-length subsequence was an
ideal size for the model to capture the necessary information without
being too short to miss important context or too long to introduce

Fig. 1 | Schematic representation of the PTMGPT2 framework. A Preparation of
inputs for PTMGPT2, detailing the extraction of protein sequences from Uniprot
and the generation of five distinct prompt designs. B Method-specific data pre-
paration process for benchmark, depicting both modified and unmodified sub-
sequence extraction, followedby the creationof a trainingdataset usingCD-HIT for

30% sequence similarityCArchitectureof the PTMGPT2model and the training and
inference processes. It highlights the integration of custom tokens into the toke-
nizer, the resizing of token embeddings, and the subsequent prompt design uti-
lized during training and inference to generate predictions.

Article https://doi.org/10.1038/s41467-024-51071-9

Nature Communications |         (2024) 15:6699 3



noise. By framing the task clearly with the ‘SEQUENCE:’ and ‘LABEL:’
tokens, the model faced less ambiguity in generating predictions,
which can be particularly beneficial for complex tasks such as PTM site
prediction.

Comparative benchmark analysis reveals PTMGPT2’s
dominance
To validate PTMGPT2’s performance, benchmarking against a data-
base that encompasses a broad spectrum of experimentally verified
PTMs and annotates potential PTMs for all UniProt17 entries was
imperative. Accordingly, we chose the DBPTM database18 for its
extensive collection of benchmark datasets, tailored for distinct types
of PTMs. The inclusion of highly imbalanced datasets from DBPTM
proved to be particularly advantageous, as it enabled a precise eva-
luation of PTMGPT2s ability to identify unmodified amino acid resi-
dues. This capability is crucial, considering that the majority of
residues in a protein sequence typically remain unmodified. For a
thorough assessment, we sourced 19 distinct benchmarking datasets
from DBPTM, each containing a minimum of 500 data points corre-
sponding to a specific PTM type.

Our comparative analysis underscores PTMGPT2’s capability in
predicting a variety of PTMs,marking substantial improvements when
benchmarked against establishedmethodologies using theMCCas the
metric as shown in Table 2. For instance, in the case of lysine(K) suc-
cinylation, Succ-PTMGPT2 achieved a notable 7.94% improvement
over LM-SuccSite. In the case of lysine(K) sumoylation, Sumoy-
PTMGPT2 surpassed GPS Sumo by 5.91%. The trend continued with
N-linked glycosylation on asparagine(N), where N-linked-PTMGPT2
outperformed Musite-Web by 5.62%. RMethyl-PTMGPT2, targeting
arginine(R) methylation, surpassed Musite-Web by 12.74%. Even in
scenarios with marginal gains, such as lysine(K) acetylation where
KAcetyl-PTMGPT2 edged out Musite-web by 0.46%, PTMGPT2 main-
tained its lead. PTMGPT2 exhibited robust performance for lysine(K)
ubiquitination, surpassing Musite-Web by 5.01%. It achieved a 9.08%
higher accuracy in predicting O-linked glycosylation on serine(S) and
threonine(T) residues. For cysteine(C) S-nitrosylation, the model out-
performed PresSNO by 4.09%. In lysine(K) malonylation, PTMGPT2’s
accuracy exceeded that of DL-Malosite by 3.25%, and for lysine(K)
methylation, it achieved 2.47% higher accuracy than MethylSite.
Although PhosphoST-PTMGPT2’s performance in serine-threonine (S,
T) phosphorylation prediction was 16.37%, lower than Musite-Web, it
excelled in tyrosine(Y) phosphorylation with an accuracy of 48.83%,
which was notably higher than Musite-Web’s 40.83% and Capsnet’s
43.85%. In the case of cysteine (C) glutathionylation and lysine (K)
glutarylation, GlutathioPTMGPT2 and Glutary-PTMGPT2 exhibited
improvements of 7.51% and 6.48% over DeepGSH and ProtTrans-Glu-
tar, respectively. In the case of valine (V) amidation and cysteine (C) s-
palmitoylation, Ami-PTMGPT2 and Palm-PTMGPT2 surpassed prAS
and CapsNet by 4.78% and 1.56%, respectively. Similarly, in the cases of
proline (P) hydroxylation, lysine (K) hydroxylation, and lysine (K)

formylation, PTMGPT2 achieved superior performance over CapsNet
by 11.02%, 7.58%, and 4.39%, respectively. Collectively, these results
demonstrate the significant progress made by PTMGPT2 in advancing
the precision of PTM site prediction, thereby solidifying its place as a
leading tool in proteomics research.

PTMGPT2 captures sequence-label dependencies through an
attention-driven interpretable framework
To enable PTMGPT2 to identify critical sequence determinants
essential for proteinmodifications, we designed a frameworkdepicted
in Fig. 2A that processes protein sequences to extract attention scores
from the model’s last decoder layer. The attention mechanism is
pivotal as it selectively weighs the importance of different segments of
the input sequence during prediction. Particularly, the extracted
attention scores from the final layer provided a granular view of the
model’s focus across the input sequence. By aggregating the attention
across 20 attention heads (AH) for each position in the sequence,
PTMGPT2 revealed which amino acids or motifs the model deemed
crucial in relation to the ‘POSITIVE’ token. The Position Specific Prob-
ability Matrix (PSPM)19, characterized by rows representing sequence
positions and columns indicating amino acids, was a key output of this
analysis. It sheds light on the proportional representation of each
amino acid in the sequences, as weighted by the attention scores.
PTMGPT2 thus offers a refined view of the probabilistic distribution of
amino acid occurrences, revealing key patterns and preferences in
amino acid positioning.

Motifs K**A*A and C**K were identified in AH 10, while motifs
K***K****A, *KH*, and K***K were detected in AH 7. In AH 19, motifs K*C
and C*Kmotifs were observed, and the *GK* motif was found in AH 15.
Furthermore, motifs *EK* and KL**ER were identified in AH 5, motifs
H***K, D**K, and *FK* were detected in AH 4. The A**K motif was
observed in AH13, A*K motif in AH2, and *KM* motif in AH 11. To
validate the predictions made by PTMGPT2 for lysine (K) acetylation,
as shown in Fig. 2B, we compared these with motifs identified in prior
research that has undergone experimental validation. Expanding our
analysis to protein kinase domains, we visualizedmotifs for the CMGC
andAGCkinase families, as shown in Fig. 3A, B. Additionally, themotifs
for the CAMK kinase family and general protein kinases are shown in
Fig. 4A, B, respectively. The CMGC kinase family named after its main
members, CDKs (cyclin-dependent kinases), MAPKs (mitogen-acti-
vatedproteinkinases),GSKs (glycogen synthase kinases), andCDK-like
kinases is involved in cell cycle regulation, signal transduction, and
cellular differentiation20. PTMGPT2 identified the common motif
*P*SP* (Proline at positions −2 and +1 from the phosphorylated serine
residue) in this family. The AGC kinase family, comprising key serine/
threonine protein kinases such as PKA (protein kinase A), PKG (protein
kinase G), and PKC (protein kinase C), plays a critical role in regulating
metabolism, growth, proliferation, and survival21. The predicted com-
monmotif in this family was R**SL (Arginine at position −2 and leucine
at position +1 from either a phosphorylated serine or threonine). The

Table 1 | Benchmark results of PTMGPT2 after fine-tuning for optimal prompt selection

PTM Prompt MCC F1Score Precision Recall

Methylation (R) 21-length w/ tokens [Proposed] 80.51 81.32 95.14 71.01

21-length k-mer w/o tokens 77.16 78.53 94.98 65.03

51-length w/o tokens 58.25 63.37 85.02 33.56

51-length w/ tokens 60.85 66.98 89.34 45.77

Phosphorylation (Y) 21-length w/ tokens [Proposed] 48.83 46.98 30.95 97.51

21-length w/o tokens 45.27 44.07 30.04 90.47

51-length w/o tokens 27.48 31.25 20.32 67.56

51-length w/ tokens 31.01 32.76 20.71 78.37

Top values are represented in bold.
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Table 2 | Benchmark dataset results

PTM Model MCC F1Score Precision Recall

Succinylation (K) LM-SuccSite34 43.94 62.26 53.05 45.34

Psuc-EDBAM35 43.15 58.23 51.03 47.8

SuccinSite36 15.87 34.47 64.95 23.46

Deep SuccinylSite37 39.77 59.4 70.51 48.32

Deep-KSuccSite38 36.88 55.89 47.41 48.06

Succ-PTMGPT2 51.88 60.74 79.15 49.27

Sumoylation (K) Musite-Web39 42.84 41.73 63.96 27.21

CapsNet40 37.05 33.35 68.75 20.45

ResSumo41 21.07 25.59 15.56 61.97

GPS Sumo42 61.02 65.76 70.38 25.67

Sumoy-PTMGPT2 66.93 69.21 75.87 63.63

N-linked Glycosylation (N) Musite-Web39 65.30 68.56 61.42 87.08

CapsNet40 50.38 56.18 66.04 45.65

LMNglyPred43 39.34 35.17 57.49 14.58

N-linked-PTMGPT2 70.92 74.21 64.35 87.65

Methyl Arginine (R) Musite-Web39 67.77 68.99 85.41 57.86

CapsNet40 65.39 65.12 90.03 51.08

DeepRMethylSite44 34.02 52.49 79.89 39.08

PRmePred45 53.76 54.33 76.45 36.22

CNNArginineMe46 34.55 36.98 97.42 22.82

RMethyl-PTMGPT2 80.51 81.32 95.14 71.01

Lysine Acetylation (K) Musite-Web39 21.63 36.14 94.86 22.32

CapsNet40 21.62 36.54 93.46 22.71

GPS-PAIL47 12.35 16.14 72.63 9.07

KAcetyl-PTMGPT2 22.09 40.51 96.06 25.67

Ubiquitination (K) Musite-Web39 26.24 27.67 75.67 16.93

DL-Ubiq48 10.91 33.37 36.67 23.76

Ubiq-PTMGPT2 31.25 35.74 80.46 22.97

O-linked-Glycosylation (S,T) Musite-Web39 49.89 50.29 61.64 40.38

OGlyThr49 41.6 50.71 52.82 60.78

GlyCopp50 41.05 14.38 50.85 46.67

O-linked-PTMGPT2 58.97 61.80 58.79 65.14

S-Nitrosylation (C) PCysMod51 48.53 66.67 62.50 71.42

DeepNitro52 59.45 62.50 79.55 45.45

PresSNO53 69.52 74.21 84.19 72.72

plMSNOSite54 55.91 17.60 14.74 21.82

SNitro-PTMGPT2 73.61 80.49 84.30 77.01

Malonylation (K) DL-Malosite55 69.78 77.12 72.83 81.94

Maloy-PTMGPT2 73.03 78.14 82.95 73.85

Methyl Lysine (K) Musite-Web39 14.97 10.13 72.44 5.44

MethylSite56 38.60 35.54 39.41 66.66

KMethyl-PTMGPT2 41.07 36.35 88.68 22.86

Phosphorylation (S, T) Musite-Web39 17.73 12.22 6.67 72.74

CapsNet40 16.23 12.28 6.71 71.94

PhosphoST-PTMGPT2 16.37 15.35 9.14 46.97

Phosphorylation (Y) Musite-Web39 40.83 43.03 29.82 77.27

CapsNet40 43.85 46.61 36.58 68.18

PhosphoY-PTMGPT2 48.83 46.98 30.95 97.51

Glutathionylation (C) DeepGSH57 70.77 75.85 74.23 75.28

Glutathio-PTMGPT2 78.28 82.37 90.07 75.89

Glutarylation (K) ProtTrans-Glutar58 62.99 59.45 68.09 79.16

Glutary-PTMGPT2 69.47 73.78 71.02 76.76

Amidation (V) PrAS59 76.00 NR NR 81.2

Ami-PTMGPT2 80.78 76.59 66.67 86.76

S-Palmitoylation (C) Musite-Web39 35.69 47.82 79.78 49.45
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CAMK kinase family, which includes key members like CaMK2 and
CAMKL, is crucial in signaling pathways related to neurological dis-
orders, cardiac diseases, and other conditions associated with calcium
signaling dysregulation22. The common motif identified by PTMGPT2
in CAMK was R**S (Arginine at position −2 from either a

phosphorylated serine or threonine). Further analysis of general pro-
tein kinases revealed distinct patterns: DMPK kinase exhibited the
motif RR*T (Arginine at positions −2 and −3), MAPKAPK kinase fol-
lowed the R*LS motif (Arginine at position −3 and leucine at position
−1), AKT kinase was characterized by the R*RS motif (Arginine at

Table 2 (continued) | Benchmark dataset results

PTM Model MCC F1Score Precision Recall

CapsNet40 39.81 47.67 73.89 43.94

GPS-Palm60 24.05 28.49 16.69 97.19

Palm-PTMGPT2 41.37 48.34 42.73 55.64

Proline Hydroxylation (P) Musite-Web39 78.08 80.58 98.32 67.47

CapsNet40 78.87 85.92 94.66 74.79

ProHydroxy-PTMGPT2 89.89 92.30 96.18 88.73

Lysine Hydroxylation (K) Musite-Web39 57.67 63.76 76.33 72.12

CapsNet40 58.87 65.92 74.66 74.79

LysHydroxy-PTMGPT2 66.45 68.18 88.23 55.56

Formylation (K) CapsNet40 40.19 33.33 24.09 68.34

Musite-Web39 39.55 28.47 23.24 88.88

Formy-PTMGPT2 44.58 39.97 26.92 77.78

Top values for each PTM are represented in bold
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positions −1 and −3), CK1 kinase showed K*K**S/T (Lysine at positions
−3 and −5), and CK2 kinase was defined by the SD*Emotif (Aspartate at
position +1 and glutamate at position +3). These comparisons under-
scored PTMGPT2’s ability to accurately identify motifs associated with
diverse kinase groups and PTM types. PSPM matrices, corresponding
to 20 attention heads across all 19 PTM types, are detailed in Supple-
mentary Data 1. These insights are crucial for deciphering the intricate
mechanisms underlying protein modifications. Consequently, this
analysis, driven by the PTMGPT2 model, forms a core component of
our exploration into the contextual relationships between protein
sequences and their predictive labels.

Recent uniprot entries validate PTMGPT2’s robust general-
ization abilities
To demonstrate PTMGPT2’s robust predictive capabilities on unseen
datasets, we extracted proteins recently released on UniProt, strictly
selecting those added after June 1, 2023, to validate the model’s per-
formance.We ensured these proteinswere not present in the training or
benchmark datasets from DBPTM (version May 2023), which was a
crucial step in the validation process. A total of 31 proteins that met our
criteria were identified, associated with PTMs such as phosphorylation
(S, T, Y), methylation (K), and acetylation (K). The accurate prediction of
PTMs in recently identified proteins not only validates the effectiveness
of our model but also underscores its potential to advance research in
protein biology and PTM site identification. These predictions are
pivotal for pinpointing the precise locations and characteristics of
modifications within the protein sequences, which are crucial for ver-
ifying PTMGPT2’s performance. Thepredictions for all 31 proteins, along
with the ground truth, are detailed in Supplementary Table S1−S5.

PTMGPT2 identifiesmutation hotspots in phosphosites of TP53,
BRAF, and RAF1 genes
Protein PTMs play a vital role in regulating protein function. A key
aspect of PTMs is their interplay with mutations, particularly near

modification sites, where mutations can significantly impact protein
function and potentially lead to disease. Previous studies23–25 indicate a
strong correlation between pathogenic mutations and proximity to
phosphoserine sites, with over 70% of PTM-related mutations occur-
ring in phosphorylation regions. Therefore, our study primarily targets
phosphoserine sites to provide a more in-depth understanding of
PTM-related mutations. This study aims to evaluate PTMGPT2’s ability
to identify mutations within 1−8 residues flanking a phosphoserine
site, without explicit mutation site annotations during training. For
this, we utilized the dbSNP database26, which includes information on
human single nucleotide variations linked to both common and clin-
ical mutations. TP5327 is a critical tumor suppressor gene, with muta-
tions in TP53 being among themost prevalent in humancancers.When
mutated, TP53 may lose its tumor-suppressing function, leading to
uncontrolled cell proliferation. BRAF28 is involved in intracellular sig-
naling critical for cell growth and division. BRAFmutations, especially
the V600E mutation, are associated with various cancers such as
melanoma, thyroid cancer, and colorectal cancer.RAF129 plays a role in
the RAS/MAPK signaling pathway. While RAF1 mutations are less
common in cancers compared to BRAF, abnormalities in RAF1 can
contribute to oncogenesis and genetic disorders like Noonan syn-
drome, characterized by developmental abnormalities.

PTMGPT2’s analysis of the TP53 gene revealed a complex pattern
of phosphosite mutations depicted in Fig. 5A, including G374, K370,
and H368, across multiple cancer types25. This is validated by dbSNP
data, indicating that 21 of the top 28 mutations with the highest
number of adjacent modifications occur in the tumor suppressor
protein TP53. The RAF1 gene, a serine/threonine kinase, exhibits
numerous mutations, many of which are associated with disrupted
MAPK activity due to altered recognition and regulation of PTMs. In
our analysis of RAF1 S259 phosphorylation, PTMGPT2 precisely iden-
tified mutations directly on S259 and in adjacent hotspots at residues
S257, T258, and P261 depicted in Fig. 5B. These findings are consistent
with genetic studies29,30 linking RAF1 mutations near S259 to Noonan
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and LEOPARD Syndrome. Furthermore, in BRAF, another serine/
threonine kinase, PTMGPT2’s analysis of the S602phosphorylation site
revealedmutations in flanking residues (1–7 positions) such as D594N,
L597Q, V600E, V600G, and K601E23 shown in Fig. 5C. Thesemutations,
particularly those activating BRAF functions, are found in over 60% of
melanomas28. Heatmap plots and line plots for remaining genes in
dbSNP, and a bar chart depicting the selected genes for analysis, are
provided in Supplementary Figs. S1−S19. These results demonstrate
PTMGPT2’s proficiency not only in predicting PTM sites but also in
identifying potential mutation hotspots around these sites.

Discussion
GPT models have significantly advanced the state of NLP by demon-
strating the power of the transformer architecture, the efficacy of pre-
training on a large corpus of data, and the versatility of language
models across a range of tasks through transfer learning. In this paper,
we proposed PTMGPT2 for protein PTM site prediction in a way that
reformulates protein classification tasks as protein label generation.
We discovered that PTMGPT2, when subjected to prompt-based fine-
tuning on large-scale datasets and tested on external benchmarks,
demonstrates notable improvement in prediction accuracy, with an
average improvement of 5.45% in MCC, underscoring the efficacy of
protein language as a robust yet powerful descriptor for PTM site
prediction. The crucial role of structuring an informative prompt,

which accurately captured the dependencies between protein
sequence and its corresponding label, played a significant role in
building an accurate generative model. Along with generating correct
sequence labels for each PTM type, PTMGPT2 was able to precisely
interpret attention scores as motifs and analyze the significance of
having a pathogenic mutation directly on the site of modification or
within a possible recognition area of the site of modification. This
ability aids in exploring internal data distribution related to bio-
chemical significance.

We employed PTMGPT2 for 19 different PTM types, including
phosphorylation, N-linked glycosylation, N6-acetyllysine, methyl-
arginine, succinylation, sumoylation, lysine acetylation, ubiquitina-
tion, O-linked glycosylation, S-nitrosylation, malonylation, methyl-
lysine, glutathionylation, glutarylation, amidation, S-palmitoylation,
hydroxylation, and formylation. The comparative results demon-
strate that PTMGPT2 outperforms existing deep-learning methods
and tools in most cases, offering promising prospects for practical
applications. PTMGPT2s performance, categorized by species and
evaluated using MCC, F1 Score, Precision, and Recall for all 19 PTMs,
is listed in Supplementary Tables S6−S23. One limitation of our
approach is the constrained exploration of prompt designs for
certain PTM types, particularly in instances where PTMGPT2 did not
surpass the performance of competing methods. We plan to inves-
tigate additional prompts and model tuning specifically designed
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for PTMs such as phosphorylation (S,T) in future versions of our
work. Another limitation associatedwith PTM sites is the presence of
false negatives in the training data. To mitigate the impact of false
negatives, we plan in our future work to incorporatemethods similar
to outlier detection and anomaly detection, which focus on mod-
eling the distribution of positive data, instances where PTMs are
known to occur. By not relying on negative data, which can be
sparsely labeled or misclassified in biological datasets, it is possible
to avoid the common pitfalls of trainingmodels with false negatives.
The reason behind implementing task-specific tuning for each PTM
type, rather than utilizing shared weights among these PTMs, was
that a single model using shared weights would require specially
designed prompts to accurately handle multiple concurrent PTM
types on the same residue. Moreover, in our motif identification
analysis, utilizing a shared-weight model could complicate the
interpretation of which residues influenced specific types of mod-
ifications. PTMGPT2 marks a major leap in protein PTM site pre-
diction, laying the groundwork for future studies on protein
sequence and function through the analysis of complex GPT-based
attention mechanisms and their real-world applications. The auto-
regressive nature of PTMGPT2, which predicts the next token based
on all previously observed tokens in a prompt, is particularly suited
for tasks involving sequential data like protein sequences. Regarding
the potential application of other large language models, it is plau-
sible that similar enhancements could be achieved if these models
are properly trained and fine-tuned for specific tasks in bioinfor-
matics. Future efforts will focus on exploring and restructuring
prompts, a strategy aimed at improving the accuracy of PTM site
predictions within the protein domain.

Methods
Prompt design
In designing the prompt, our aim was to enable PTMGPT2 to distin-
guishbetweenmodified andunmodifiedprotein sequences anddesign
a flexible approach that can generalize to new classification tasks
without the need for task-specific classification heads. The key was
selecting tokens that accurately represented the protein subsequence
and capture its contextual dependency with generated tokens. We
incorporated two special tokens: <startoftext> and <endoftext > ,
marking the beginning and end of the prompt, respectively. Addi-
tionally, we integrated four custom tokens: ‘SEQUENCE:’ for the pro-
tein subsequence, ‘LABEL:’ for the PTM ground truth, ‘POSITIVE’ for
modified sequences, and ‘NEGATIVE’ for unmodified sequences.
Prompt 1 comprised four custom tokens flanking a 21-length protein
subsequence. Prompt 2 arranged the 21-length subsequence into two
10-mers, delineating either a modified or unmodified central residue.
In contrast, Prompt 3 employed only special tokens, omitting the
custom tokens, yet itmaintained the same21-amino acid subsequence.
Prompt 4 incorporated only special tokens but extended the sequence
to 51 amino acids. Lastly, Prompt 5 combined both special and custom
tokens with a 51length protein sequence. All the prompts used for
finetuning PTMGPT2 are displayed in Fig. 1A. Inference prompts are
displayed in Supplementary Fig. S20.

Dataset preparation
Our dataset was compiled from DBPTM, a resource offering both
experimentally verified training and non-homologous benchmark
datasets.We extracted information regarding theUniProt ID,modified
residue, and modification type for 19 PTM types from DBPTM, which
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were then used to retrieve full-length protein sequences fromUniprot,
available at https://www.uniprot.org/id-mapping. This step was
necessary, as DBPTM does not provide full-length sequences. The
training and benchmark datasets were compiled based on the cate-
gorizations pre-established by DBPTM. These specific PTMs were
selected due to their high data volume, aligning with the requirement
of GPT-based models for substantial data to develop an effective
predictive model. Positive samples were prepared by extracting 21-
length subsequences centeredonmodified residues. Negative samples
were prepared by extracting 21-length subsequences fromunmodified
residues (amino acid positions not annotated as modified) for each
distinct PTM type, using an approach identical to that used for positive
samples. After combining bothpositive andnegative subsequences for
each PTM, we compiled them into a fasta file. To reduce sequence
redundancy, sequences with over 30% similarity were removed using
CD-hit31 for each PTM as shown in Fig. 1B. This process resulted in
highly imbalanced yet refined training datasets for 19 PTMGPT2
models. Performance results for PTMGPT2 with CD-hit similarity cut-
offs of 40%and50%havebeen included in SupplementaryTableS24 to
provide a detailed analysis of how different thresholds affect the
model’s performance. To benchmark against models that require
specific input formats, our data preparation had to align with their
unique requirements, whether they needed variable-length sequences
or symbol-based inputs. UniProt identifiers were mapped to acquire
full-length sequences, fromwhichmethod-specific subsequenceswere
generated. Subsequently, we excluded any protein subsequences in
the benchmark dataset that overlapped with our training dataset.
Detailed data statistics for each PTM type are provided in Supple-
mentary Tables S25 and S26. Data preparation pipelines for both
training and benchmark datasets are shown in Supplementary
Figs. S21 and S22.

Vocabulary encoding
We utilized the pre-trained tokenizer, fine-tuned on the BPE sub-word
tokenization algorithm, to encode protein sequences. Unlike tradi-
tional methods that assign a unique identifier to each residue, this
approach recognizes entire motifs as unique identifiers during toke-
nization. This not only retains evolutionary information but also
highlights conserved motifs within sequences. As a result, this tech-
nique offers advantages over one-hot tokenization and alleviates out-
of-vocabulary issues. On average, a token is represented by a motif of
four amino acids. We expanded the pre-trained tokenizer’s vocabulary
to incorporate four custom tokens for prompt fine-tuning: ‘POSITIVE’,
‘NEGATIVE’, ‘SEQUENCE:’, and ‘LABEL:’, in addition to two special
tokens: ‘<startoftext > ’ and ‘<endoftext > ’. These tokens play a crucial
role in constructing the prompts for output generation, where ‘POSI-
TIVE’ and ‘NEGATIVE’ are the tokens generated by PTMGPT2, repre-
sented by token IDs 50262 and 50263, respectively. Furthermore,
‘SEQUENCE:’ and’LABEL:’ are instrumental in the finetuning process,
represented by token IDs 50260 and 50261, respectively. This process
resulted in a comprehensive vocabulary for PTMGPT2, with a total of
50,264 tokens.

Model training and inference
We began by instantiating the PROTGPT2 model and tokenizer,
sourced fromHuggingFace32.We initialized themodelwith pre-trained
weights and fine-tuned it for our label generation task using an unsu-
pervised approach, retaining tokens during training to learn sequence-
label dependency. During inference, the ‘POSITIVE’, ‘NEGATIVE’, and
‘<endoftext > ’ tokens were excluded, allowing the model to generate
labels that identify whether a protein sequence is modified or unmo-
dified as shown in Fig. 1C. We utilized HuggingFace’s trainer object to
establish the training loop. Training each PTM model lasted 200
epochs, using a batch size of 128 per device, a weight decay of 0.01 for
the Adam optimizer, and a learning rate of 1e-03, consistent with the

original pre-trained model. Negative log-likelihood was utilized as the
loss function for fine-tuning and checkpoints were saved every 500
steps. The primary objective during inference was to remove the’PO-
SITIVE’ and’NEGATIVE’ tokens and utilize greedy sampling to generate
the most probable token associated to a modification, which was then
compared with the ground truth. To evaluate the performance of
PTMGPT2, we selected the best performing checkpoint on the basis of
MCC, F1Score, precision, and recall on external benchmark dataset for
each PTM type. All PTMGPT2 models were trained and bench-marked
using NVIDIA A100 80GB and NVIDIA RTX A6000 48GB GPUs.

Benchmark comparison
For CapsNet, developed in 2018, we retrainedmodels for sumoylation,
N-linked glycosylation,methylation, acetylation, phosphorylation, and
S-palmitoylation. Similarly, for MusiteDeep, introduced in 2020, the
models were retrained for sumoylation, N-linked glycosylation,
methylation, acetylation, phosphorylation, S-palmitoylation, ubiquiti-
nation, and O-linked glycosylation. The rationale for retraining these
models included the availability of their training code and their doc-
umentation of multiple PTMs, which facilitated the comparison of
varied PTMs. Additionally, the presence of overlapping protein
sequences between our benchmark data and their training data
necessitated the removal of overlapping data points and the retraining
of their models from scratch using unique training sequences. This
approach ensured a clearer demonstration of each method’s intrinsic
advantages without the influence of data overlap. To address the
potential implications of outdated data, although the original pub-
lications for CapsNet and MusiteDeep did not include models for
hydroxylation and formylation, we trained models from scratch using
updated training data from DBPTM for these PTMs. This allowed for
comparison with PTMGPT2 and was also required by the absence of
other functional existing methods for these modifications. Methods
introduced from 2021 onwards were not retrained, as they utilized
more recent protein sequence data; therefore, they were compared
using our common benchmark data. For other methods published
before 2021, whose training code was not publicly available, we
resorted to using their online webservers for comparison. Bar charts
for benchmark comparison are provided in Supplementary
Figs. S23−S41.

PSPM and attention head visualization
We proceeded by preparing the input sequence, prefixed and suffixed
with custom tokens that delineated the sequence and label within the
prompt. This formatted text was tokenized into a tensor of token IDs,
which the model processed to produce attention scores. Since tokens
represent motifs and the self-attention scores in GPT2 decoders
operate between tokens, we calculate the attention scores for indivi-
dual amino acids. To achieve this, we disaggregate the attention
assigned to each token back down to the constituent amino acids. This
disaggregation is performed such that each amino acid within a token
is assigned the same attention score as the token’s attention score. The
process of transforming attention scores into attention profiles began
with the initialization of a matrix to collate attention scores across the
20 standard amino acids for 21 sequence positions. The attention
scores, derived from the previous step, were iteratively accumulated
for each amino acid at each position in the sequence, skipping any
instances of the amino acid’X’, typically indicative of an unknown
amino acid. This resulted in a matrix reflecting the weighted sig-
nificance of each amino acid at every position. Normalization of this
matrix against the sum of attention scores per position yielded a
relative attention profile. Next step was to transform sequences and
their corresponding attention profiles into a PSPMMatrix. Initially, this
involved accumulating attention profiles for each amino acid at their
specific positions in the sequences. Thiswas achieved by iterating over
the sequences, ensuring that the length of each sequence matches its
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associated attention profiles to maintain data integrity. The Logo-
maker Python package33 was used to generate protein sequence logos.
PSPM was provided as input to the Logomaker object. The algorithm
for generating a PSPM is detailed in Supplementary Fig. S42.

Mutation analysis
Data formutation analysis was compiled fromdbSNP, which annotates
pathogenic mutations occurring directly at or near modification sites.
Uniprot identifiers for each gene were mapped using https://www.
uniprot.org/id-mapping to extract the full-length protein sequences
used in our analysis. Subsequently, wild-type and mutant protein
subsequences were prepared. For each wild-type subsequence (with
the modified amino acid residue at the center), 399mutant sequences
were generated. This was achieved by substituting each amino acid
residue in the wild-type sequence with one of the 20 standard amino
acids, excluding the original residue. Given the 21-length of the wild-
type subsequences, the total possible combinations to generate point-
mutated subsequences amounted to 21 × 19. Ourmethod produced all
possible single amino acid substitutions for eachwild-type sequence at
every position. Inference prompts for both wild and mutant sub-
sequences were then processed through the model to generate
probability scores. These scores indicate whether any point mutations
in the wildtype subsequence affected the model’s output by altering
PTM regulation. Initially, the probability score for the wild-type sub-
sequence was obtained (the probability of the model generating a
‘POSITIVE’ token signifying modification). Subsequently, we analyzed
the probability scores for all mutant subsequences to determine
whether specific point mutations caused a significant change in PTM
regulation (probability of the model generating a’NEGATIVE’ token,
signifying PTMdownregulation).Heatmaps and lineplotswere utilized
to analyze the average effect of mutations by position, based on the
output probabilities generated by PTMGPT2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Training and benchmark datasets for all 19 PTMs are publicly available
at Zenodo: https://doi.org/10.5281/zenodo.11377398. Trained
PTMGPT2 models are available at https://zenodo.org/records/
11362322 and https://doi.org/10.5281/zenodo.11371883. Source data
are provided with this paper.

Code availability
The source code for PTMGPT2 is publicly accessible at https://github.
com/pallucs/ PTMGPT2, and the repository includes files essential for
conducting training and inference procedures. Model: This folder
hosts a sample model designed to predict PTM sites from given pro-
tein sequences, illustrating PTMGPT2’s application. Tokenizer: This
folder contains a sample tokenizer responsible for tokenizing protein
sequences, including handcrafted tokens for specific amino acids or
motifs. Inference.ipynb: This file provides executable code for
applying PTMGPT2 model and tokenizer to predict PTM sites, serving
as a practical guide for users to apply the model to their datasets.
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