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ABSTRACT: We present an efficient implementation of the equation of motion
oscillator strengths for the closed-shell multilevel coupled cluster singles and
doubles with perturbative triples method (MLCC3) in the electronic structure
program eT. The orbital space is split into an active part treated with CC3 and an
inactive part computed at the coupled cluster singles and doubles (CCSD) level of
theory. Asymptotically, the CC3 contribution scales as n n n( )V v

3
o
3 floating-point

operations, where nV is the total number of virtual orbitals while nv and no are the
number of active virtual and occupied orbitals, respectively. The CC3
contribution, thus, only scales linearly with the full system size and can become
negligible compared to the cost of CCSD. We demonstrate the capabilities of our
implementation by calculating the ultraviolet−visible spectrum of azobenzene and a core excited state of betaine 30 with more than
1000 molecular orbitals.

■ INTRODUCTION
Coupled cluster theory is one of the most accurate models
when spectroscopic properties of small and medium sized
molecules are investigated.1−3 Equation of motion (EOM)
coupled cluster singles and doubles (CCSD) is well suited for
the description of valence excited states, but larger errors occur
when considering core excited states or double excitation
dominated states.4−9 Including triple excitations in the
parametrization of the wave function improves the description
of such states. However, the computational cost and the
memory requirement increase to n n( )V

5
O
3 and n n( )V

3
O
3 ,

respectively for EOM-CCSDT.10,11 Approximating triples
amplitudes with perturbation theory can reduce the computa-
tional cost to n n( )V

4
O
3 and the required memory to n n( )V

2
O
2 .

Triples corrections to excitation energies can be classified as
iterative and noniterative models. In noniterative models,
corrections to the CCSD excitation energy are obtained by
expanding the excitation energy using many-body perturbation
theory (MBPT). The advantage of a noniterative approach is
that the triples correction is only computed once. The choice
of a corresponding triples corrected ground state can, however,
be difficult and properties like transition moments cannot be
easily defined.9,12 The noniterative models include CCSDR-
(1a), CCSDR(1b), and CCSDR(3), which are derived from
the iterative methods CCSDT-1a, CCSDT-1b, and CC3,
respectively.9,13−21 Other noteworthy examples are CREOM-
CCSD(T), EOMIP-CCSD*, developed specifically for ionized
states, and EOM-CCSD(T)(a)*, which introduces corrections
to both the CCSD ground and the excited states.12,22−24

The best-known methods for including triples excitations
iteratively are CC3 and CCSDT-n.13,14,16,19 Both CCSDT-1

and CC3 scale asymptotically as n n( )V
4

O
3 , but CC3 includes

single excitations to infinite order leading to an improved
description of ground and excited states.19 The advantage of
iterative models is that they are more robust because singles
and doubles amplitudes can relax upon inclusion of the triples
amplitudes.12,25 Additionally, iterative methods provide a
consistent definition of other properties than the energy.26

However, these benefits come at the cost of iteratively
converging equations scaling as n n( )V

4
O
3 . Nevertheless, with

current implementations systems of around 400 basis functions
can be routinely treated at the CC3 level.21

Because of the success of coupled cluster theory, schemes
have been developed to reduce the scaling while keeping the
accuracy. Pulay and Sæbø advocated the use of localized
molecular orbitals (LMOs), for a compact description of
electronic correlation in Møller−Plesset (MP) perturbation
theory and configuration interaction singles and doubles
(CISD).27−31 They used Boys localization for the occupied
molecular orbitals and projected atomic orbitals (PAOs) for
the virtual space, and reduced the scaling by neglecting the
correlation between distant pairs of localized orbitals.28 Werner
and Schütz then extended this model to coupled cluster theory
with and without a noniterative triples correction.32−34
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Reducing the size of the active space based on a distance
criterion is certainly successful for ground state properties. For
the description of excitation energies and other excited state
properties, however, distance measures do not work as well as
more diffuse orbitals become more important.35−43 Therefore,
larger active spaces have to be employed in these calculations,
and different orbital spaces are used for the ground and excited
states.37,38

Neese and co-workers introduced an efficient approach to
use pair-natural orbitals (PNOs) in local correlation
methods.44,45 Excited states within the PNO coupled cluster
framework are accessible by using orbital-specific virtuals
(OSVs) or back-transformed PNOs, which has been
demonstrated for CC2,41 CCSD,42,46,47 and recently CC3.48

By combining the PNO approach with local domains
constructed from PAOs, the domain based local pair-natural
orbital (DLPNO) coupled cluster methods are obtained.49,50

Ionization potentials and electron attachment energy are
available in the EOM framework for CCSD and excited states
using similarity transformed EOM-CCSD.51−53

Multilevel and embedding methods treat different regions of
a system with different levels of theory. The idea of obtaining
an accurate description of a large molecular system by coupling
the contributions of its subsystems is exploited in QM/MM
approaches,54−59 frozen density embedding,60,61 subsystem
DFT,62,63 and the ONIOM, IMOMO, and LMOMO
methods.64−66 Another method related to multilevel coupled
cluster (MLCC) was developed by Oliphant and Adamowicz
using CCSD for multireference systems by including selected
triple and quadruple substitutions.67−69 This scheme was
adapted by Köhn and Olsen to include higher order excitations
at a reduced cost.70,71

In MLCC, one CC wave function is used for the full system,
but different parts of the system are described with different
levels of truncation.72,73 Considerable savings are achieved by
applying the higher order excitation operators in a smaller
(active) subset of the orbitals.74 The active orbital space can be
selected using localized orbitals, such as Cholesky orbitals75

and projected atomic orbitals (PAOs),28 or state-selective
approaches, such as the correlated natural transition orbitals
(CNTOs).76−78 As MLCC is designed for intensive properties,
excitation energies or oscillator strengths are accurately
reproduced if an appropriate active space is chosen.74,78−80

While state-specific approaches are preferred to keep the active
space as compact as possible, they are less suited for transition
properties especially between excited states, as a consistent
active space is needed for all excited states.48 Localized orbitals
are only suitable in the cases where the target property is
localized in a smaller region of the molecule.
In this paper, we report the extension of the closed-shell

multilevel coupled cluster singles and doubles with perturba-
tive triples method (MLCC3) method to compute equation of
motion oscillator strengths with CC3 quality but at
significantly reduced cost. Employing core−valence separation
(CVS), oscillator strengths are also available for core excited
states.81−83 This allows us to tackle excited states and oscillator
strengths of systems with more than 1000 basis functions.

■ THEORY
In this section, we will introduce the closed shell MLCC3
model within the EOM formalism.84−86 For a more detailed
derivation, see refs 19 and 21. Consider the general cluster
operator

T X=
(1)

where Xμ is an excitation operator that converts the reference
determinant, |ϕ0⟩, into the excited determinant, |μ⟩, and τμ is
the corresponding amplitude. In MLCC3 with two levels,
namely CCSD and CC3, the cluster operator assumes the form

T T T T a
1 2 3= + + (2)

with

T E

T E E

T E E E

1
2

1
6

AI
I
A

AI

AIBJ
IJ
AB

AI BJ

a

abc
ijk

ijk
abc

ai bj ck

1

2

3

=

=

=

(3)

where EAI and Eai are singlet excitation operators. While the
operators T1 and T2 excite on the full orbital space indicated by
capitalized indices, the triples cluster operator T3a only excites
in the active orbital space denoted by lower case indices. We
use the standard notation where the indices i, j, k... refer to
occupied, a, b, c... to virtual, and p, q, r... to general active
orbitals. The CC wave function is defined as

TCC exp( ) 0| = | (4)

and we introduce the similarity transformed Hamiltonian

H T H Texp( ) exp( )= (5)

where

H h E pq rs E E E h
1
2

( )( )
pq

pq pq
pqrs

pq rs ps qr nuc= + | +

(6)

is the electronic Hamiltonian. To obtain the cluster
amplitudes, a set of biorthogonal determinants is defined,

a
1 2 3{ |} = { |} { |} { |} (7)

where the triply excited determinants, μ3a, are restricted to the
active space. These determinants are generated using the
contravariant excitation operator, X̃μ, such that

X X0 0| = | | = (8)

The coupled cluster energy, ECC, and the cluster amplitudes
are then obtained by projection onto the reference
determinant and the set of excited determinants, respectively11

HECC 0 0= | | (9)

H 00= | | = (10)

To obtain compact equations, we incorporate the effect of the
singles cluster operator into the Hamiltonian and obtain the
so-called T1-transformed Hamiltonian

H T H Texp( ) exp( )1 1= (11)

In analogy to MBPT, the T1-transformed Hamiltonian is split
into a T1-transformed Fock operator, F = exp(−T1) F̂ exp(T1),
and fluctuation potential, U = exp(−T1) Û exp(T1),
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H F U= + (12)

In CC3, the double excitation amplitudes and the fluctuation
potential are treated as first order in the perturbation while the
triples amplitudes are considered second order. The single
excitation amplitudes are included as zeroth order parameters,
as they have a special role as relaxation parameters.19,20

Inserting eq 3 and eq 7 into eq 8 and neglecting all terms of
third and higher order in the perturbation, we obtain the
MLCC3 ground state equations

H H T H T, , a
1 2 3 01

= | + [ ] + [ ]| (13)

H H T H T T H T, , , , a
2 2 2 2 3 02

= | + [ ] + [[ ] ] + [ ]|
(14)

H T F T, ,a a
3 2 3 0a

3
= |[ ] + [ ]| (15)

The Fock matrix is not necessarily diagonal in the local orbital
basis, but it can be block-diagonalized within the active orbital
space, such that the off-diagonal elements do not contribute to
the triples amplitudes. Therefore, the triples amplitudes can be
expressed in terms of the doubles amplitudes

H T1
,ijk

abc

ijk
abc

a
3 2 0= |[ ]|

(16)

where εijkabc are the orbital energy differences

ijk
abc

a b c i j k= + + (17)

In equation of motion coupled cluster (EOM-CC), we start
out from the matrix representation of the similarity trans-
formed Hamiltonian

H
H H

H H
0 0 0

0

i

k
jjjjjjj

y

{
zzzzzzz=

| | | |

| | | | (18)

If the CC ground state equations, eq 8, are converged, the
similarity transformed Hamiltonian can be written as

H
J

I
0

0
E

T

CC

i
k
jjjjjj

y
{
zzzzzz= +

(19)

where ην = ⟨ϕ0|[H̅, Xν]|ϕ0⟩ and J is the so-called Jacobian with
matrix elements ⟨μ|[H̅, Xν]|ϕ0⟩. The eigenvectors of H̅ are the
EOM states and the corresponding eigenvalues the energies of
these states. As the similarity transformed Hamiltonian is
nonsymmetric, the left and right eigenvectors are not hermitian
conjugates, but they are biorthonormal,11

HR R L H L L RE Em m m m
T

m m
T

m
T

n mn= = = (20)

From the biorthogonality of the EOM states and the structure
of the Hamiltonian matrix, we obtain the left and the right
ground state,

L R
0

1 1
0 0

i
k
jjjj

y
{
zzzz

i
k
jjj y

{
zzz= =

(21)

and the left and right excited states21

L
L

R
R

R

0
m

m
m

T
m

m

i
k
jjjj

y
{
zzzz

i

k
jjjjjj

y

{
zzzzzz= =

(22)

The parameters λ are determined from

JT = (23)

while the parameters of the excited states are determined as
eigenvectors of the Jacobian, J. The MLCC3 Jacobian is given
by74

J

H H T X H X H X

H H T T X H H T X H X

H H T X H X F X

, , , ,

, , , , ,

, , , ,

a

a a a

MLCC3

1 2 0 1 0 1 0

2 2 3 0 2 2 0 2 0

3 2 0 3 0 3 0

a

a

a

1 2 3

1 2 3

1 2 3

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz
=

|[ + [ ] ]| |[ ]| |[ ]|

|[ + [ + ] ]| |[ + [ ] ]| |[ ]|

|[ + [ ] ]| |[ ]| |[ ]| (24)

The vectors in eq 21 and eq 22 correspond to operators that
generate the EOM states from the Hartree−Fock determinant,

X TCC 1 exp( )0

i

k
jjjjjjj

y

{
zzzzzzz

ˆ| = | +
(25)

TCC exp( ) 0| = | (26)

m L X Texp( )0| = |
(27)

m R X R Texp( ) 0

i

k
jjjjjjj

y

{
zzzzzzz| = |

(28)

Once the ground and excited states are determined, left and
right transition moments can be obtained in terms of left
(Dm−0) and right (D̃0−m) transition densities,87−89

A m D ACC
pq

pq
m

pq
0ˆ| | =

(29)

m A D ACC
pq

pq
m

pq
0| | =

(30)

Here, A is a general one-electron operator A = ∑pq ApqEpq.
Note that transition moments in the EOM framework are not
size-intensive, but the errors will be small for high-level
methods like CC3 and MLCC3.90,91

To obtain accurate excitation energies and transition dipole
moments, the selection of the active orbital space is crucial. In
this paper, two conceptually different approaches are chosen to
partition the orbital space. The first strategy utilizes Cholesky
orbitals for the occupied and PAOs for the virtual space. This
approach provides an efficient way to obtain semilocal orbital
spaces, but the orbitals are not particularly well suited to
describe excited states. To obtain Cholesky orbitals, the
Hartree−Fock density, D, is Cholesky decomposed using the
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AOs (denoted by greek indices) of the active atoms as possible
pivoting elements,75,92

D C C D
J

J
a

J
a= +

(31)

The decomposition is stopped when the size of all active
diagonal elements of the density is below a given threshold.
The active orbital coefficients are then the Cholesky vectors
CαJ
a , where the indices α and J denote AOs and Cholesky
vectors, respectively. The inactive orbitals are obtained by
decomposing the remaining part of the density, ΔD. Cholesky
orbitals are not suited to describe the virtual space, and we
resort to PAOs28,32 for the virtual space instead. Cholesky
orbitals together with PAOs have been shown to give a good
description of the orbital space for solvated systems.80,93,94

In the second approach, both the occupied and virtual
orbital spaces are partitioned using correlated natural transition
orbitals. This approach is more computationally expensive as
the CNTOs are constructed from CCSD excitation vectors,
but the orbitals are well suited for the description of excited
states.The CNTOs are generated by diagonalizing two
matrices, denoted by M and N, defined as

M R R R R1
2

(1 )ij
a

i
a

j
a

abk
ai ij ik

ab
jk
ab

,bk= + +
(32)

N R R R R1
2

(1 )ab
i

i
a

i
b

cij
ai ab ij

ac
ij
bc

,cj= + +
(33)

The eigenvectors of M and N correspond to the CNTO
transformation matrices for the occupied and virtual CNTOs,
respectively. The CNTOs whose eigenvalues sum up to a
certain cutoff, ξ, are chosen as active space,

1 M
o

o
M<

(34)

1 N
v

v
N<

(35)

where λoM and λvN are the eigenvalues ofM and N. To obtain the
most compact basis, separate CNTO bases for each excited
state would be preferable. However, because of the non-
orthogonality of the orbitals, subsequent calculation of
transition moments between excited states would be
complicated. Therefore, we choose a state averaged approach

M M N N
n n
1

,
1

ES i

n

i
ES i

n

i

ES ES

= =
(36)

where Mi and Ni are constructed according to eqs 32 and 33
for the i-th excited state and nES is the number of excited states
included in the matrices.

■ IMPLEMENTATION
The closed shell MLCC3, ground and excited states as well as
EOM transition properties have been implemented in the eT
program package.95 One of the advantages of MLCC3
compared to other reduced cost methods is that only the
space, in which the triples amplitudes are defined, is restricted.
Therefore, we can split the occupied and virtual orbitals into
active and inactive subsets, and use almost identical code for
MLCC3 as for full CC3. The algorithms employed to calculate
closed shell CC3 properties in eT have been detailed in ref 21,

and only a short summary will be given in this paper. The
working equations for MLCC3 can be found in the Supporting
Information.
The ground state residual, Ω, and the transformations of a

trial vector with the Jacobian are computed in a restricted loop
over the occupied indices i ≥ j ≥ k. An nv3-block of triples
amplitudes is constructed for a given set of indices {i, j, k}.
Using this structure, the permutational symmetry of the triples
amplitudes can be exploited, while utilizing efficient matrix
multiplication routines for the contractions of the block of
virtual orbitals.96−98 By reformulating the equations in terms of
contravariant triples amplitudes, τĩjkabc, and residuals, Ω̃, the
number of memory-bound reordering operations is reduced,

4 2 2 2ijk
abc

ijk
abc

jik
bac

kji
cba

ikj
acb

kij
cab

jki
bca= + + (37)

After all contributions to the contravariant residual are
collected, it is converted back to the covariant form, using
the relations

I
A

I
A= (38)

2 ,
1
3

(2 )IJ
AB

IJ
AB

IJ
BA

IJ
AB

IJ
AB

IJ
BA= = +

(39)

As in CC3, the τ3 amplitudes are defined in terms of the τ2
amplitudes

P g g( )ijk
abc

ijk
abc

ijk
abc

D
ij
aD

bDck
L

iL
ab

Ljck
1

i
k
jjjjjj

y
{
zzzzzz=

(40)

However, because the triples determinants are restricted to the
active space only the summation indices in the expression for
τ3 are over the full space. Here, Pijkabc is a permutation operator
creating a sum of all unique permutations of the index pairs ai,
bj, ck. The two-electron integrals in the T1-transformed basis
are denoted by gpqrs.

11 From eq 40, it is evident that the most
memory efficient implementation will make use of two separate
arrays for τiLab and τijaD. Similarly, two vectors are needed for the
doubles part of the ground state residual because one index
originates from a T1-transformed two-electron integral, gpqrs,

giL
ab

jck
ijk
abc

jLkc=
(41)

gij
aD

bjc
ijk
abc

Dbkc=
(42)

To obtain the singles part of the residual, all indices of the two-
electron integral are contracted with τ3

gi
a

bjck
ijk
abc

jbkc=
(43)

Therefore, the overall memory requirement and the computa-
tional cost of the triples contributions scale linearly with the
full size of the system, and the overall asymptotic scaling for
constructing the ground state residual is 4nVnv3no3 floating-point
operations (FLOP).
The triples amplitudes of the right excitation vector can be

expressed as
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R P R g R g
1

ijk
abc

ijk
abc ijk

abc

D
ij
aD

bDck
L

iL
ab

Ljck

D
ij
aD

bDck
L

iL
ab

Ljck

i
k
jjjjjj

y
{
zzzzzz

=

+
(44)

where ΥbDck and ΥLjck are treated as one-index transformed
integrals

R g R g R g( )bDck
E

k
E

bDcE
M

M
b

MDck m
c

bDMk= +
(45)

R g R g R g( )Ljck
E

j
E

LEck k
E

LjcE
M

M
c

LjMk= +
(46)

and R̅ijab = (1 + δai,bj) Rijab.11 From eq 44 can be seen that the
construction of R3 is twice as expensive as the construction of
τ3. For the Jacobian transformation, the same terms have to be
computed as for the ground state residual, but R3 is contracted
instead of τ3. Additionally, the τ3 amplitudes are required for a
single term leading to an overall asymptotic scaling of 8nVnv3no3
FLOP. It should be noted that the construction of ΥbDck scales
quadratically with the full system size. However, this term will
not be significant compared to the other terms in the Jacobian
transformation.
The transpose Jacobian transformation also scales with

8nVnv3no3 FLOP, as the L3 and τ3 amplitudes need to be
constructed and two contractions, each scaling as 2nVnv3no3
FLOP, are needed. The triples amplitudes of the left excitation
vector are first constructed in their covariant form

)

L P L g L F L g

L g

ijk
abc

ijk
abc

i
a

jbkc ij
ab

kc L Lk
ab

iLjc

D jk
aD

ibDc

1

ijk
abc

i
k
jjj= +

+ (47)

and then transformed to the contravariant form using eq 37.
The final contractions contributing to the singles part of the
transformed vector contains terms that scale quadratically with
the full size of the system. However, these terms scale at most
as 2nVnOnv2n0 FLOP and are therefore negligible compared to
full CCSD.
To obtain core excited states core−valence separation is

employed, where all nonzero elements of both the trial vector
and the transformed vector need to contain at least one index
corresponding to a core orbital.21,79,83 Therefore, in this

implementation of the Jacobian transformations, we skip
iterations in the loop over i, j, k if all indices correspond to
valence orbitals. This reduces the scaling for both Jacobian
transformations to 8nVnv3no2.
As in the full CC3 code, the EOM transition densities are

constructed in a loop over the occupied indices and another
loop over the virtual indices. We calculate all contributions to
the density in a loop over the occupied indices, except for one
contribution to the occupied−occupied block of the density,
which cannot be efficiently calculated in a loop over i, j, k,

D L1
2kl

m

abc
ij

ijl
abc

ijk
abc0 =

(48)

As shown in eq 48 for the occupied−occupied block of the left
transition density, the triples amplitudes that are contracted
differ in the occupied indices. Therefore, a triples loop over the
virtual indices has to be used in order to exploit the
permutational symmetry of the triples amplitudes. This leads
to an increase in contractions scaling as 2nVnv3no3 FLOP.
However, the triples amplitudes have to be reconstructed for
the loop over a, b, c, which also leads to a larger prefactor in
the scaling. While the contractions inside the triple loops scale
linearly with the full system size, there exists one term in the
right transition density, D̃0−m, that requires storing a subblock
of τ2 scaling as nVnOnvn0 in memory. This is, however, not an
issue as CCSD is used as a lower level method where the full τ2
array scaling as nV2nO2 needs to be kept in memory.
Because the triples amplitudes have to be calculated twice,

the overall scaling to construct a single Dm−0 amounts to
10nVnv3no3 FLOP. The construction of a single D̃0−m totals
16nVnv3no3 FLOP, as the R3 amplitudes are twice as expensive as
the L3, and also the τ3 and λ3 amplitudes are required. For
transition moments from the ground state, these densities only
need to be computed once per state, compared to the iterative
cost (per state) for the Jacobian transformations.

■ RESULTS AND DISCUSSION
With the MLCC3 method, we can obtain excitation energies
and oscillator strengths of CC3 quality at significantly reduced
cost. We compare the MLCC3 results for oxygen core
excitations of guanine to the CC3 results. The scaling with
the size of the inactive space is shown for formaldehyde with
up to six explicit water molecules. To show the capabilities of

Table 1. Timings in Seconds to Compute a Core Excited State from the Oxygen Atom of Guanine at the CCSD and MLCC3
Levels with Several Active Spacesa

CCSD MLCC3 CC3

n0/nv 10/100 13/130 15/150 18/180 20/200

ω [eV] 535.91 533.90 533.76 533.69 533.61 533.58 533.51

f × 100 3.26 2.42 2.31 2.26 2.20 2.18 2.12

τ 15.49 3.03 10.72 24.93 70.31 125.74 2220.55
λ 25.78 5.40 21.49 46.08 130.22 238.02 4157.37
R 24.48 1.72 4.82 9.22 20.90 33.13 301.98
L 23.62 1.86 5.27 9.83 22.59 36.58 317.90
D0‑0 0.59 5.80 25.76 66.43 175.06 312.30 5147.35
Dm‑0 0.21 3.68 14.76 33.33 95.24 171.81 2340.44
D̃0‑m 0.71 7.29 29.97 65.50 182.68 320.64 4638.42

aTimings are given, averaged over the number of iterations when solving for τ, λ, R, and L. Additionally, timings to construct the ground state
density, D0−0, left transition density, Dm−0, and right transition density, D̃0−m, are reported. Note that the MLCC3 and CC3 timings only comprise
the triples part. The excitation energy is denoted by ω and the oscillator strength by f.
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the method, the UV−vis spectrum of azobenzene and a core
excited state of betaine 30 with more than 1000 molecular
orbitals are reported.

Guanine. A single core excited state of the oxygen atom of
guanine is calculated with the aug-cc-pCVDZ basis set99,100 on
the oxygen atom and aug-cc-pVDZ100,101 on the remaining
atoms using two Intel Xeon-Gold 6138 processors with 40
threads in total. The results and timings per iteration are
summarized in Table 1 for selected active spaces. The number
of virtual orbitals is chosen to be 10 times larger than the
number of occupied orbitals. Already with an active space
comprising 10 occupied orbitals, the excitation energies
improve by 2 eV compared to CCSD and the difference to
CC3 is only 0.4 eV. Increasing the active space to 15 occupied
orbitals, the deviation from the CC3 results is below 0.2 eV.
For 15 occupied orbitals, the error of MLCC3 is below the
expected error of CC3 for oxygen core excitations. For the
oscillator strength, the relative error to full CC3 is reduced
from more than 50% for CCSD to less than 15% for the
smallest active space. For an active space of 13 occupied
orbitals, the relative error is already below 9%, and for 18
occupied CNTOs, the error reduces to below 3%. For the
smallest active space listed in Table 1, the cost per iteration is
much smaller than the CCSD timings. The CC3 contribution
is only a bottleneck during the construction of the densities,
because CCSD densities scale as n n( )V

3
O
2 in contrast to

n n n( )V v
3

o
3 for MLCC3 densities. Considering active spaces

with 13 and 15 occupied orbitals, the time spent in the
MLCC3 part of the code is almost identical to the time in the
CCSD code. The CC3 and MLCC3 excited states are
significantly cheaper compared to the ground state as CVS is
implemented by skipping iterations in the i, j, k loop, effectively
reducing the scaling of the triples’ contribution to n n n( )V v

3
o
2 .

In CCSD, CVS is implemented by projection, which does not
affect the scaling of the method.83

In Table 2, we report speed up compared to CC3. For terms
scaling as n n n( )V v

3
o
3 the speed up is calculated as

S
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while for core excited states the reduction in the scaling is
given by

S
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2
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2
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3= =

×
× (50)

It should be noted that only the dominating terms are included
in this estimate, but terms with a lower scaling can be
significant, especially for small active spaces. With an active
space of 15 occupied orbitals a speed up of about 90 can be
reached, while the deviation from the CC3 excitation energy is
below 0.2 eV and the relative error of the oscillator strength is
about 6%.
As we pursue a state-averaged approach in the determination

of the active space, the performance is expected to deteriorate
somewhat when more states are considered. Four core excited
states of the oxygen atom of guanine are calculated with the
aug-cc-pCVDZ basis set99,100 on the oxygen atom and aug-cc-
pVDZ100,101 on the remaining atoms. The calculations were
performed on two Intel Xeon E5-2699 v4 processors using 40
threads, so the timings are not directly comparable to those
listed in Table 1.
Instead of specifying active spaces explicitly, we chose to use

the CNTO threshold as defined in eqs 34 and 35. For a more
direct comparison, the results of calculations performed are
tabulated in the Supporting Information (Table S1). Both the
thresholds for the occupied and virtual orbital space are
reduced from 10−1 to 10−6 while keeping both thresholds at
the same magnitude. The size of the active spaces and the full
size of the system are summarized in Table 3. By using the
thresholds, the ratio between active virtual orbitals and active
occupied orbitals reduces to approximately 7.

The excitation energies, ω, and oscillator strengths, f, are
reported in Table 4. For a threshold of 10−1, the occupied
orbital space consists only of a single orbital, such that the
triples amplitudes are zero by definition. The results for this
threshold are always identical to CCSD. The results of Table 4
are plotted in Figure 1 in addition to the CCSD and CC3
results, depicted by the horizontal lines. Increasing the active
space improves the energies until the error is below the
expected error of the full CC3 method at a CNTO threshold of
10−4. The oscillator strengths of the first and second state
converge smoothly toward their CC3 values, however, larger
jumps are found for the third and fourth state. These jumps are
artifacts of the small active spaces, the plots in the Supporting
Information show a smooth convergence toward the CC3
values. For the oscillator strengths, the CCSD values have not
been plotted as horizontal lines because they would overload

Table 2. Speed Up of MLCC3 Compared to CC3 Calculated
According to Equations 49 and 50a

n0 10 13 15 18 20

nv 100 130 150 180 200

τ 732.9 207.1 89.1 31.6 17.7
λ 769.9 193.5 90.2 31.9 17.5
D0−0 887.5 199.8 77.5 29.4 16.5
Dm−0 636.0 158.6 70.2 24.6 13.6
D̃0−m 636.3 154.8 70.8 25.4 14.5
StheoGS 1079.1 223.6 94.7 31.7 16.9

R 175.6 62.7 32.6 14.5 9.1
L 170.9 60.3 32.3 14.1 8.7
StheoES 276.7 74.5 36.4 14.6 8.7

aThe first part shows the speed up for terms that scale asymptotically
as n n n( )V v

3
o
3 while the second part summarizes the speed up for

terms with a cost of n n n( )V v
3

o
2 .

Table 3. Number of Occupied and Virtual Orbitals in the
Active Space for Guanine for Various CNTO Thresholdsa

ξ n0 nv
10−1 1 4
10−2 5 8
10−3 16 56
10−4 26 138
10−5 29 208
10−6 32 244
full space 39 263

aThe CNTOs have been constructed from four core excited states
obtained at the CCSD level of theory.
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the plot, and they coincide with the data points for ξ = 10−1.
Table 5 lists the timings of one iteration of the most expensive
parts of the calculation of MLCC3 oscillator strengths. For
thresholds below 10−4, the CC3 contribution is negligible
when solving for ground and excited state amplitudes.
However, the calculation of the EOM densities is already
dominated by the CC3 part at ξ = 10−3. Compared to the
timings for solving the amplitudes, the densities are still
insignificant at a threshold of 10−3. At 10−4 the CC3
contribution dominates all timings, but compared to a full
CC3 calculation the cost per iteration is reduced by more than
a factor of 30 for the ground state equations and 20 for the
excited states (Supporting Information Table S2). Even at 10−6

there is still a reduction of a factor of 2, despite most orbitals
being included in the active space.

Comparing Table 1 and 4 shows that the results with 20
occupied and 200 virtual orbitals are slightly worse than the
first excitation for ξ = 10−4, although the latter includes only 6
more occupied but 62 less virtual orbitals. Therefore, we
included calculations with a lower ratio between active virtual
and occupied orbitals. Table 6 shows the results for these
calculations, confirming that significantly less virtual orbitals
are needed to obtain almost identical results. With 18 occupied
and 130 virutal orbitals a speed up of up to 80 is achieved, and
with 20 occupied and 130 virtual orbitals the speed up is still
around 50 (Supporting Information Table S3).
We have also performed some calculations with Cholesky

occupied orbitals and PAOs for the virtual space. The active
atoms are shown in Figure 2 as solid atoms, and 10−2 was used
as threshold for the Choleksy decomposition of the AO
density. The sizes of the active spaces are summarized in Table

Table 4. First Four Excited States of Guanine with MLCC3 for Descreasing CNTO Thresholdsa

state 1 state 2 state 3 state 4

ξ ω [eV] f × 100 ω [eV] f × 100 ω [eV] f × 100 ω [eV] f × 100

CCSD 535.9067 3.20 538.4340 0.12 539.3858 0.05 539.6794 0.08
10−2 534.8780 2.80 536.3546 0.08 537.7091 0.02 537.8040 0.00
10−3 533.9879 2.43 535.1010 0.07 535.6097 0.11 536.1425 0.00
10−4 533.5776 2.17 534.5033 0.06 534.7363 0.15 535.3402 0.01
10−5 533.5184 2.12 534.3886 0.05 534.6080 0.15 535.1326 0.01
10−6 533.5107 2.12 534.3704 0.05 534.5925 0.15 535.0691 0.02
CC3 533.5091 2.12 534.3599 0.05 534.5888 0.15 535.0139 0.02

aThe excitation energy is denoted by ω and the oscillator strength by f.

Figure 1. Convergence of the first four core excitation energies (ω, left) and oscillator strengths ( f, right) of guanine with CNTO threshold.
Dashed lines are the CC3 results and dotted lines denote the CCSD values.

Table 5. Timings in Seconds to Compute Four Core Excited States from the Oxygen Atom of Guanine at the CCSD, CC3, and
MLCC3 Levels with Decreasing CNTO Thresholdsa

CCSD MLCC3 CC3

10−2 10−3 10−4 10−5 10−6

τ 22.8 0.08 2.75 133.79 704.15 1783.39 4180.2
λ 44.2 0.13 5.68 270.98 1414.40 3408.42 8593.9
R 38.7 0.10 1.23 30.89 149.33 342.51 700.2
L 43.3 0.12 1.31 32.27 145.30 318.53 702.0
D0−0 0.6 0.02 6.27 324.25 1658.26 4020.82 8765.3
Dm−0 0.3 0.01 3.57 164.82 735.92 1662.66 3033.6
D̃0−m 1.2 0.06 7.39 330.58 1546.95 3647.72 7224.9

aTimings are given, averaged over the number of iterations when solving for τ, λ, R, and L. Additionally, timings to construct the ground state
density, D0−0, left transition density, Dm−0, and right transition density, D̃0−m, are reported. Note that the MLCC3 and CC3 timings only comprise
the triples part.
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7 and the results are reported in Table 8. As shown in Figure 3,
the excitation energies and oscillator strengths are already
significantly improved when only the oxygen is included in the
active space. However, the size of the active spaces increases
much faster compared to the active spaces constructed from
CNTOs. For instance, the results in Table 5 for ξ = 10−3 are
comparable to the second active space in Table 8, but only 16
occupied and 56 virtual CNTOs are required, compared to 23
Cholesky orbitals and 92 PAOs. The reason for the poor
performance of MLCC3 using Cholesky orbitals and PAOs is
that we split up the π-system of guanine. Additionally, the CC3
excitation vectors consist of multiple similarly large amplitudes
that need to be described accurately by the active space. An
active space consisting of CNTOs is better suited to describe
such excited states.

Formaldehyde in Water. To investigate the scaling with
the size of the inactive orbital space, we consider formaldehyde
with several explicit water molecules. The calculations were
performed on two Intel Xeon-Gold 6138 processors using 40
threads. Comparing excitation energy and oscillator strength is
not constructive for this system, because CCSD and CC3
already almost coincide for the first excited state. The
geometry for formaldehyde with six water molecules is
reported in the Supporting Information; it has been adapted
from a geometry with 10 water molecules from ref 102. The
other geometries are generated by subsequently removing
water molecules, starting with the last one. For a proper
investigation of solvent effects, randomized geometries would

have to be extracted from a molecular dynamics simulation and
the results would have to be averaged.103

For all calculations, we used an aug-cc-pVTZ100,101 basis set
and the active space comprises 8 occupied and 136 virtual
orbitals. The sizes of the systems considered are summarized in
Table 9.
Figure 4 shows the timing breakdown for the MLCC3

contribution in the calculation of EOM oscillator strengths. As
expected, the timings for every quantity increase linearly with
the number of water molecules added to the system, implying
the terms scaling quadratically with the full system size are
negligible.

Azobenzene. In the aug-cc-pVDZ100,101 basis, azobenzene
has 48 occupied and 364 virtual orbitals. On two Intel Xeon
E5-2699 v4 processors using 40 threads a single iteration of the
CC3 ground state equations takes 6 h. As the Jacobian
transformations are twice as expensive per state, a CC3
calculation of 10 excited states is costly.
By using an active space containing 34 occupied and 238

virtual orbitals, the time per iteration of the ground state
equations reduced to 36 min. In Figure 5, the spectra
calculated at the CCSD and MLCC3 level of theory are
shown together with the experimental results. While the CCSD
results are significantly blue-shifted, the broadened MLCC3
values match very well with the experimental bands at 300 and
220 nm. While the overall shape of the spectra is very similar,
the intensity of the individual excitations is redistributed in
MLCC3. The intensity of the peak at 220 nm is reduced in
relation to the peak at 300 nm. Additionally, the intensity of
the two intense excitations within the peak at 300 nm is shifted
toward higher energies, which helps to reproduce the shoulder
of the experimental band. The very broad band at around 450
nm is not reproduced, but an almost dark excitation is found
around 420 nm. CCSD predicts this latter excitation to be at
400 nm instead.

Betaine 30. To demonstrate the capabilities of our
MLCC3 implementation, we consider the first core excitation
from the oxygen atom in betaine 30. The geometry is shown in
Figure 6. The system comprises 145 occupied and 992 virtual

Table 6. Calculations of a Single Core Excited State of
Guanine from the Oxygen Atom at the CCSD, CC3, and
MLCC3 Levels with Varying Sizes of the Active Spacea

MLCC3

n0/nv 16/160 18/130 18/150 18/180 20/130 20/200

ω [eV] 533.66 533.64 533.62 533.61 533.61 533.58

f × 100 2.23 2.24 2.21 2.20 2.22 2.18

τ 40.09 28.09 41.22 70.31 38.32 125.74
λ 70.96 53.86 76.78 130.22 73.14 238.02
R 12.83 8.70 12.30 20.90 10.59 33.13
L 13.43 9.69 13.23 22.59 11.88 36.58
D0−0 83.67 69.90 103.69 175.06 94.52 312.30
Dm−0 48.37 38.19 59.63 95.24 50.33 171.81
D̃0−m 90.03 75.51 111.44 182.68 95.11 320.64

aExcitation energies, ω, and oscillator strengths, f, as well as timings to
construct the ground state density, D0−0, left transition density, Dm−0,
and right transition density, D̃0−m, are reported. Additionally, timings
are given, averaged over the number of iterations when solving for τ,
λ, R, and L. Note that the MLCC3 and CC3 timings only comprise
the triples part and that timings are given in seconds. The excitation
energy is denoted by ω and the oscillator strength by f.

Figure 2. Geometry of guanine showing the active regions for which occupied Cholesky orbitals and PAOs have been constructed. The labels
denote the number of active atoms and hydrogens are always inactive.

Table 7. Number of Occupied and Virtual Orbitals in the
Active Spaces Constructed Using Cholesky Orbitals and
PAOs for Guanine

system label (Figure 2) n0 nv
1 5 26
4 23 92
7a 33 158
7b 33 158
11 39 245
full space 39 263
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orbitals using an aug-cc-pCVDZ99,100 basis set for the oxygen
atom, aug-cc-pVDZ100,101 for carbon and nitrogen atoms, and
cc-pVDZ101 for hydrogen atoms. In Table 10, we report the
excitation energy and oscillator strengths for CCSD and
MLCC3 using three active CNTO spaces of increasing size.
Using CCSD, both the excitation energy and especially the
oscillator strength are overestimated compared to the MLCC3
results. Despite the large change in excitation energy and
oscillator strength, we expect that MLCC3 converged to the
same state as CCSD. As CNTOs were used for the active
space, the orbitals are derived from the CCSD excitation vector
and the dominant MLCC3 amplitude represents a transition
between the occupied and virtual CNTOs with the largest
eigenvalues. Additionally, only small changes of 0.3 eV in the
excitation energy and 6 × 10−4 in the oscillator strength are

observed, when the active space is enlarged to 25 occupied and
250 virtual CNTOs. Therefore, we can assume that the
MLCC3 results are within the expected error range of a full
CC3 calculation.
Because of the significant size of the system, the time spent

calculating the contribution of the triple excitations is small
compared to the timings of CCSD, as reported in Table 11.
For the densities, the triples contribution dominates; however,

Table 8. First Four Excited States of Guanine with MLCC3 Calculated with Active Spaces Constructed from Cholesky Orbitals
and PAOsa

state 1 state 2 state 3 state 4

ω [eV] f × 100 ω [eV] f × 100 ω [eV] f × 100 ω [eV] f × 100

1 534.6250 2.81 537.0755 0.13 538.2042 0.39 538.2714 0.28
4 533.8427 2.37 534.9479 0.07 535.9413 0.05 536.0856 0.15
7a 533.5901 2.17 534.6548 0.06 534.9312 0.16 535.4104 0.04
7b 533.6082 2.19 534.6045 0.06 534.8809 0.16 535.4454 0.03
11 533.5110 2.12 534.4149 0.05 534.5932 0.15 535.0960 0.02
CC3 533.5091 2.12 534.3599 0.05 534.5888 0.15 535.01394 0.02

aThe excitation energy is denoted by ω and the oscillator strength by f.

Figure 3. Convergence of the first four core excitation energies (ω, left) and oscillator strengths ( f, right) of guanine for the five active spaces in
Figure 2. Dashed lines are the CC3 results and dotted lines denote the CCSD values.

Table 9. Number of Occupied and Virtual Orbitals for
Formaldehyde with Increasing Number of Water Molecules
with aug-cc-pVTZ100,101 Basis Set

aug-cc-pVTZ

system #H2O nO nV
1 13 217
2 18 304
3 23 391
4 28 478
5 33 565
6 38 652

Figure 4. Average time to calculate one transition density or one
iteration solving for τ, λ, L, and R with increasing number of water
molecules in the inactive space.
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the time used to construct densities is still small compared to
determining the ground and excited states.

■ CONCLUSION
The multilevel CC3 method provides a framework with which
intensive molecular properties can be calculated at an accuracy
approaching that of the CC3 method. For sufficiently large
inactive spaces, the computational cost will tend toward that of
CCSD. Compared to Cholesky PAOs, CNTOs provide smaller
orbital spaces without sacrificing accuracy. However, the cost
of constructing CNTOs is significant, as the CCSD ground and
excited state equations need to be solved.
There is some ambiguity regarding the selection of the active

space using CNTOs. We can either specify the number of
occupied and virtual orbitals explicitly or use a cutoff, ξ, and
include the orbitals whose eigenvalues sum up to 1 − ξ. The
first approach gives great flexibility, but several calculations are
typically needed to confirm that the excitation energies actually
converged. Using a cutoff on the other hand is a more blackbox
approach, as ξ = 10−4 gives accurate results, but the active
spaces can become larger than required. Further benchmark-
ing, especially on larger systems, is needed to obtain a rule of
thumb for the selection of an active space.
For large systems with several hundred to a thousand MOs,

CCSD becomes a bottleneck and another layer could be
introduced at the CCS level of theory. For the multilevel CC3
model with CC3 in CCSD in CCS, it has to be investigated
how the orbital space is set up effectively, as NTOs obtained
from CCS will not provide a suitable active space. One
possibility could be the approximated CNTOs introduced by
Baudin and Kristensen, or CNTOs obtained from a MLCCSD
calculation.105

Figure 5. UV−vis absorption spectrum of azobenezene calculated
with CCSD and MLCC3 employing an aug-cc-pVDZ100,101 basis set.
The theoretical stick spectrum is broadened using Gaussian functions
with a full width at half maximum of 0.5 eV, and the experimental data
is taken from ref 104.

Figure 6. Geometry of betaine 30.

Table 10. First Core Excitation from the Oxygen Atom
Calculated at the CCSD Level of Theory and MLCC3 with
Increasing Number of CNTOs in the Active Spacea

ω [eV] f × 100 n0 nv
CCSD 535.12 2.74
MLCC3 531.50 0.67 20 200
MLCC3 531.29 0.63 25 200
MLCC3 531.22 0.61 25 250

aThe excitation energy is denoted by ω and the oscillator strength by
f.

Table 11. Timings in Minutes to Compute a Core Excited
State from the Oxygen Atom of Betaine 30 at the CCSD and
MLCC3 Levels with Several Active Spacesa

CCSD MLCC3

n0/nv 20/200 25/200 25/250

τ 73.2 3.1 5.6 10.7
λ 143.5 6.4 12.0 21.4
R 122.6 1.2 1.7 2.8
L 130.8 1.3 1.9 3.2
D0−0 0.5 8.0 14.6 28.6
Dm−0 0.5 5.2 9.4 18.3
D̃0−m 1.0 9.1 16.5 31.2

aTimings are given, averaged over the number of iterations when
solving for τ, λ, R, and L. Additionally, timings to construct the
ground state density, D0−0, left transition density, Dm−0, and right
transition density, D̃0−m, are reported. Note that the MLCC3 and
CC3 timings only comprise the triples part.
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