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eDiabetic kidney disease (DKD) 
is the leading cause of chron-
ic kidney disease (CKD) re-

sulting in end-stage renal disease 
(ESRD) and premature death in the 
developed and developing world (1). 
In the United States alone, 44% of 
all cases of ESRD are attributed to 
DKD. Clinically, CKD is defined as 
albuminuria (ratio of albumin to cre-
atinine >30 mg/g) and/or impaired 
kidney function (estimated glomer-
ular filtration rate [eGFR] <60 mL/
min/1.73 m2) for ≥3 months. In most 
cases, CKD associated with diabetes 
is the result of DKD, but kidney dis-
ease from other causes also occurs in 
people with diabetes. The earliest ev-
idence for DKD typically is increased 
levels of albuminuria, followed by re-
duction in eGFR. However, DKD is 
increasingly being recognized by low 
eGFR without albuminuria. (See re-
lated article by Narva and Bilous on 
p. 162 of this issue.)

DKD develops in ~30% of peo-
ple with type 1 diabetes and ~40% 
of people with type 2 diabetes (1). In 

parallel with the rising rates of obe-
sity and diabetes in United States, 
the prevalence of DKD increased 
50% between 1998 and 2008 (2). 
Worldwide, ~8% of the adult pop-
ulation has been diagnosed with 
diabetes. This translates to >366 
million people with diabetes, with a 
projection of 552 million worldwide 
by 2030. As a result, DKD is also 
expected to reach pandemic levels (3). 

Risks of cardiovascular disease 
(CVD) and all-cause mortality are 
strongly related to CKD in general 
and to DKD in particular. If eGFR 
is mildly or moderately decreased or 
albuminuria is increased, patients are 
20 times more likely to experience 
a major CVD event or to die than 
they are to need kidney replacement 
therapy in the form of dialysis or 
transplantation (4). It is a sobering 
fact that <10% of the population 
with DKD progresses to ESRD 
because most die during the long 
course of this debilitating illness. The 
financial costs and human suffering 
associated with DKD have contin-
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ued to increase despite widespread 
implementation of therapies to con-
trol hyperglycemia and hypertension 
by renin-angiotensin system (RAS) 
inhibition. Successful development 
and deployment of novel therapies 
for DKD is essential to reverse this 
trend. DKD presents a serious and 
rising global health burden, prompt-
ing an exigent need for more effective 
therapeutic approaches.

The State of Current Therapies: 
A Case for Novel Approaches

Renin-Angiotensin System 
Currently, the available therapies for 
DKD include treatment of hyper-
tension with RAS inhibition, glyce-
mic control, and dietary interven-
tions. Inhibition of the RAS has been 
the primary therapeutic interven-
tion for DKD for two decades. Sev-
eral clinical trials demonstrated that 
administration of single RAS inhibi-
tors, angiotensin II receptor blockers 
(ARBs), or ACE inhibitors was mod- 
estly renal-protective in patients with 
DKD and “overt proteinuria/macro- 
albuminuria” (generally, urine protein- 
to-creatinine ratio >500 mg/g or albu-
min-to-creatinine ratio >300 mg/g) 
(5–7). 

This result prompted testing of the 
hypothesis that further suppression of 
the RAS by “dual blockade” (combi-
nation therapy with two agents (e.g., 
ACE inhibitor, ARB, and/or a direct 
renin inhibitor) may be synergistic 
and result in greater renal protec-
tion (8–10). These clinical trials were 
stopped early because of safety con-
cerns and high rates of adverse events, 
particularly hyperkalemia and acute 
kidney injury with dual therapy 
(8–10). There were no apparent ben-
efits on outcomes from combination 
therapy. However, because the trials 
were stopped prematurely, the efficacy 
results from these trials are inconclu-
sive. (See the related article by Patney 
et al. on p. 175 of this issue.) Despite 
evidence that single RAS inhibi-
tion with either an ARB or an ACE 
inhibitor can reduce the risk of DKD 
progression, there is increased risk of 

adverse events with dual RAS block-
ade and no obvious additional benefit 
of this form of combination therapy 
in recent clinical trials. Development 
of RAS-independent therapies is an 
important direction for future work.

Glycemic Control 
Glycemic control is essential to the 
optimal management of diabetes and 
prevention of complications, includ-
ing DKD in both type 1 and type 
2 diabetes. Long-term follow-up of 
type 1 diabetes patients in the Diabe-
tes Control and Complications Trial/
Epidemiology of Diabetes Interven-
tions and Complications (DCCT/
EDIC) cohort study, showed durable 
benefits of intensive glycemic con-
trol to an A1C of ~7% versus stan-
dard treatment to an A1C of ~9% on 
preventing albuminuria and reduced 
kidney function (11). After approx-
imately three decades of follow-up, 
there was also reduction of ESRD 
risk, although the absolute number 
of cases was small.

A strong positive association 
between A1C concentration and inci-
dent DKD was found after 11 years 
of follow-up in type 2 diabetes in the 
Atherosclerosis Risk in Communities 
study (12). The association was pres-
ent in the absence of albuminuria 
and retinopathy at baseline. Similar 
to the DCCT/EDIC in type 1 dia-
betes, several studies in relatively 
early-onset type 2 diabetes found that 
controlling hyperglycemia (to an A1C 
of ~7% vs. an A1C of ~9%) prevented 
new-onset and progressive albumin-
uria (13–17). More recent studies 
enrolling older adults (generally >60 
years of age) with longstanding type 
2 diabetes, including ACCORD 
(Action to Control Cardiovascular 
Risk in Diabetes), ADVANCE 
(Action in Diabetes and Vascular 
Disease: Preterax and Diamicron MR 
Controlled Evaluation), and VADT 
(Veterans Affairs Diabetes Trial), 
which targeted even lower A1C goals 
(<6–6.5%), failed to demonstrate 
benefits of more intensified glyce-
mic control on the primary CVD 

outcomes, although the risk of albu-
minuria development or progression 
was reduced (18,19). The ADVANCE 
trial eventually showed reduced risk 
for ESRD after the period of inten-
sive glycemic control in the follow-up 
ADVANCE-Post Trial observational 
study, but like the DCCT/EDIC in 
type 1 diabetes, the absolute number 
of cases was low. Importantly, the risk 
of severe hypoglycemia (neurological 
compromise) was increased ~2.5-fold 
in these trials, which greatly restricts 
use of intensive regimens in this pop-
ulation (1). Limitations of regimens for 
glycemic control highlight the need for 
alternate approaches to improve clinical 
outcomes in DKD.

Novel Therapies: Targeting 
Pathogenic Mechanisms in the 
Kidney
Numerous mechanisms driving the  
development and progression of DKD 
have been investigated as possible tar-
gets for novel therapies (Table 1). In 
humans and animal models, DKD is 
characterized by glomerular and tu-
bulointerstitial disease with inflam-
mation and fibrosis figuring promi-
nently. Glomerulosclerosis and tub- 
ulointerstitial fibrosis culminate in 
loss of kidney function (20–23). Un-
derlying mechanisms of DKD in-
clude hemodynamic and metabolic 
disturbances leading to activation of 
myriad mediators with autocrine and 
paracrine actions in the kidney. Pri-
mary among the aberrant metabolic 
products that drive the DKD process 
are advanced glycation end products 
(AGEs) and reactive oxygen species 
(ROS). These products are key acti-
vators for upregulation of proinflam-
matory and pro-fibrotic mediator 
production. Multiple cell types pro-
duce these mediators, ultimately re-
sulting in the pathogenesis of DKD. 

AGEs
AGEs are modified proteins, pep-
tides, and amino acids that are non-
enzymatically glycated and oxidized 
after interaction of amino groups 
with aldose sugars. AGEs increase 
in hyperglycemic conditions and 
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after consumption of foods high 
in protein, especially animal meats 
cooked at high temperatures. AGEs 
are increased in the kidneys of pa-
tients with DKD, and serum levels 
of AGEs correlate with DKD sever-
ity (24,25). AGEs are nephrotoxic 
by mechanisms including inflamma-
tion, fibrosis, and apoptosis of kid-

ney cells (26). A major pathway for 
cellular demise in response to AGEs 
is via the receptor for AGEs (RAGE), 
which initiates signals that activate 
transcription for mediators of these 
processes. 

Several therapies that inhibit the 
formation of AGEs, or AGE crosslink 
breakers, have been under investiga-

tion for DKD. The crosslink breaker 
alagebrium reduces inflammation, 
fibrosis, and overall severity of kid-
ney damage in diabetic mice (27). 
Although enrollment began for a 
phase II randomized, placebo-con-
trolled trial of alagebrium in patients 
with type 1 diabetes and DKD, it 
was unfortunately terminated early 

TABLE 1. Summary of Novel Therapies

AGEs Therapies
Therapeutic Mechanism of Action Model Results Reference

Alagebrium Crosslink breaker STZ-induced 
diabetic 
mouse

Reduced renal AGE accumulation, 
glomerular expansion, expression 
of MCP-1 and ICAM-1

Watson et al., 2012 (27)

Alagebrium Crosslink breaker db/db mouse Reduced oxidative stress in kid-
neys and activity of PKCα/β

Park et al., 2011 (63) 

Pyridoxamine AGE inhibitor STZ-induced 
diabetic rat

Attenuated increase in albumin-
uria and reduced levels of AGE 
and CML

Degenhardt et al., 
2002 (30)

Pyridoxamine AGE inhibitor Type 2 diabet-
ic KK-Ay/Ta 
mouse

Improved levels of ACR, reduced 
glomerular accumulation of CML 
and reduced renal expression of 
TGF-β1

Tanimoto et al., 2007 
(29)

Pyridoxamine AGE inhibitor Human with 
T1DM or 
T2DM

Reduced change in serum  
creatinine and urinary TGF-β1 and 
AGEs

Williams et al., 2007 
(31)

Nrf2 Agonists
Therapeutic Mechanism of Action Model Results Reference

Sulforaphane Disruption of the 
Keap1-Nrf2 complex

STZ-induced 
diabetic 
mouse

Attenuated increase in ACR, 
reduced GBM thickening,  
mesangial cell proliferation,  
and renal tubular epithelial dam-
age. Decreased expression of 
TGF-β1 and CTGF

Cui et al., 2012 (34)

Sulforaphane Disruption of the 
Keap1-Nrf2 complex

STZ-induced 
diabetic 
mouse

Attenuated ACR, glomeru-
losclerosis, GBM thickening. 
Reduced renal oxidative stress, 
TGF-β1, and extracellular matrix 
deposition

Zheng et al., 2011 (64)

MG132  Induction of Nrf2 via 
protease inhibition

T1DM OVE26 
mouse

Attenuated renal hypertrophy, 
BUN, and ACR. Reduced glomer-
ular enlargement, expansion of 
mesangial matrix, and epithelial 
damage. Decreased renal expres-
sion of TGF-β1 and CTGF

Cui et al., 2013 (65) 

tBHQ Disruption of the 
Keap1-Nrf2 complex

STZ-induced 
diabetic 
mouse

Reduced renal hypertrophy, 
fibronectin accumulation, and 
glomerular malondialdehyde

Li et al., 2011 (41)

dh404 Disruption of the 
Keap1-Nrf2 complex

STZ-induced 
diabetic 
ApoE−/−mice

Attenuated ACR, mesangial 
expansion, glomerular injury, and 
improved renal tubular injury in 
diabetic mice. Reduced oxidative 
stress and proinflammatory me-
diators TNF-α, ICAM-1, VCAM-1, 
and MCP-1

Tan et al., 2014 (66) 

Table continued on p. 170 →
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because of business and regulatory 
considerations (28).

Pyridoxamine (PDX), a derivative 
of vitamin B6, inhibits the formation 
of AGEs. In two different rodent 
models of DKD, administration of 
PDX improved albuminuria and 
attenuated increases in serum creati-
nine (29,30). In an analysis of pooled 
data from two phase II clinical tri-
als of PDX for 24 weeks’ duration in 
people with DKD and overt protein-
uria, increases in serum creatinine 
levels were attenuated (31). The 
pro-fibrotic biomarker, urinary trans-
forming growth factor-beta (TGF-β), 
was also reduced. The beneficial effect 
of PDX was most readily observed in 
patients with type 2 diabetes and a 
serum creatinine level >1.3 mg/dL. 
Another phase II, randomized trial of 
PDX in patients with type 2 diabetic 
nephropathy did not show benefit on 
changes in serum creatinine except 
in patients who had reduced kidney 
function at the onset of the trial (32). 
Currently, a phase III clinical trial is 
being conducted to evaluate the effi-
cacy and safety of PDX for reducing 
the risk of clinical events (ESRD 

and eGFR loss of 50%) in patients 
with DKD and severely increased 
albuminuria receiving the standard-
of-care, background RAS inhibition. 
Reducing AGEs remains a promising 
area for development of DKD therapies.

ROS
ROS are increased and contribute to 
induction of cell-signaling pathways 
that produce inflammatory and fi-
brotic molecules in the diabetic kid-
ney (33). ROS promote formation of 
AGEs, which in turn further increase 
cellular ROS, eliciting an autocrine 
loop of AGEs and ROS production 
in the diabetic milieu (Figure 1). 
ROS also induce signaling cellular 
cascades, including protein kinase C 
(PKC) and nuclear factor κB (NF-
κB), culminating in the expression 
of numerous proinflammatory and 
pro-fibrotic genes (23). 

Nuclear factor (erythroid-derived 
2)-like 2 (Nrf2) is a transcription 
factor that functions as a regulator of 
an endogenous antioxidant system. 
Compounds that activate Nrf2 have 
attenuated diabetes-induced kidney 
hypertrophy, fibrosis, and albumin-
uria (34).

Bardoxolone methyl (BM), an 
activator of Nrf2, was studied in the 
phase III clinical trial Bardoxolone 
Methyl Evaluation in Patients with 
Chronic Kidney Disease and Type 
2 Diabetes Mellitus: the Occurrence 
of Renal Events (BEACON) (35). 
This trial was terminated prema-
turely because of numerous severe 
adverse events, including increased 
rates of CVD events, particularly 
heart failure, as well as higher levels 
of albuminuria and blood pressure. 
The consequences of this clinical trial 
have raised serious concern over the 
use of this strategy in DKD (36). For 
example, caution should be exercised 
when a drug increases, rather than 
decreases, albuminuria and blood 
pressure (37). The abrupt increase in 
eGFR observed in the phase II clin-
ical trial of BM was likely related to 
glomerular hyperfiltration and raised 
intraglomerular pressure. Preclinical 
experiments with two analogs of BM 
(dh404 and RTA 405) may provide 
insight into the fate of the BEACON 
trial (38–40). For example, in a study 
of RTA 405 in diabetic rats, measures 
of kidney damage (proteinuria, tubu-

TABLE 1. Summary of Novel Therapies

PKC Inhibitors
Therapeutic Mechanism of Action Model Results Reference

LY333531 
(Ruboxistaurin)

PKCβI/II inhibitor Diabetic rat Improved eGFR, albumin excre-
tion rate, and retinal circulation in 
diabetic rats

Ishii et al., 1996 (45)

Ruboxistaurin PKCβI/II inhibitor (mRen-2)27 rat Reduced albuminuria, glomerulo-
sclerosis, tubulointerstitial pathol-
ogy, and expression of TGF-β

Kelly et al., 2003 (47)

Ruboxistaurin PKCβI/II inhibitor Human with 
T2DM

Reduced increase in urinary  
TGF-β:creatinine ratio

Gilbert et al., 2007 (51)

Ruboxistaurin PKCβI/II inhibitor Human with 
T2DM

Decreased ACR and attenuated 
loss of eGFR

Tuttle et al., 2005 (50)

Ruboxistaurin PKCβI/II inhibitor Human with 
T2DM

Similar outcomes in patients  
who received placebo and pa-
tients who received ruboxistaurin

Tuttle et al., 2007 (67) 

ACR, albumin-to-creatinine ratio; AGE, advanced glycation end product; ApoE−/−; apolipoprotein E deficient; BUN, 
blood urea nitrogen; CML, carboxylmethyllysine; GBM, glomerular basement membrane; ICAM-1, intercellular adhe-
sion molecule 1; Keap1, Kelch-like ECH-associated protein; MCP-1, monocyte chemoattractant protein 1; (mRen-2)27, 
hypertensive Ren-2 transgenic; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PKCα/β, protein kinase C alpha/beta; 
STZ, streptozotocin; T1DM, type 1 diabetes; T2DM, type 2 diabetes; TGF-β, transforming growth factor β (if a 1 appears, 
the specific isoform TGF-β1 was studied); TNF-α, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion protein 1.

TABLE 1. Summary of Novel Therapies, continued from p. 169
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lar damage, and glomerulosclerosis) 
actually worsened. To the contrary, 
RTA 405 attenuated increases in 
blood urea nitrogen and creatinine 
in diabetic rats in another study (40). 
Overall, there is limited and con-
fl icting evidence from experimental 
models supporting the use of BM 
for DKD.

Activation of Nrf2 in the kid-
neys with sulforaphane (SFN) and 
tert-butylhydroquinone (tBHQ) has 
attenuated kidney damage in mouse 
models of diabetes (34,41). For 
example, 3 months of SFN reduced 
albuminuria along with decreases in 
fi brosis, infl ammation, and oxida-
tive stress in the kidneys of diabetic 
mice (33). Administration of tBHQ 
signifi cantly reduced kidney weight 
and proteinuria, as well as decreased 
kidney levels of fi bronectin while 
concomitantly increasing expression 
of Nrf2 expression and antioxidant 
genes (41). Antioxidant therapies, per-

haps including Nrf2 activation, may be 
worthy of further exploration for DKD.

PKC
PKC is activated by a number of di-
abetes-related stimuli, such as AGEs, 
hyperglycemia, angiotensin II, and 
ROS (Figure 1). PKC conveys signals 
to several downstream targets, in-
cluding NF-κB, the SMAD/TGF-β 
axis, and apoptosis systems (42–44). 
Th us, PKC can be conceived as a 
nodal point in major signaling path-
ways of DKD, which makes it an at-
tractive therapeutic target.

PKC has at least 11 isoforms. 
Th ere has been substantial interest 
in determining which isoforms lead 
to DKD. Early studies implicated 
PKCβ as one of the primary isoforms 
(45). Administration of the selective 
PKCβ inhibitor ruboxistaurin (RBX) 
reduced glomerular hyperfi ltration 
and albuminuria in diabetic rats and 
reduced kidney fi brosis, mesangial 
expansion, and glomerulosclerosis 

in diabetic mice (45–47). PKCα is 
another isoform implicated in DKD. 
Inhibition of PKCα abrogated albu-
minuria but not expression of fi brotic 
genes or total kidney and glomerular 
hypertrophy in diabetic mice (48). 
Recently, studies exploring reduction 
of both PKCα and PKCβα abolished 
diabetes-induced renal hypertrophy, 
podocyte loss, and reduced fi brosis 
and albuminuria in mice. In all, these 
data suggest that dual inhibition of 
PKCαα and PKCβα may be a candi-
date therapeutic approach (49). 

A randomized, controlled phase II 
clinical trial examined the eff ects of 
RBX (32 mg/day) in people with type 
2 diabetes and persistent albuminuria 
(urinary albumin-to-creatinine ratio 
[UACR] 200–2,000 mg/g), despite 
therapy with RAS inhibitors (50). 
UACR decreased signifi cantly and 
substantially (mean reduction 24%) 
in those treated with RBX compared 
to placebo. The UACR-lowering 

■ FIGURe 1. Key mechanistic pathways in DKD. CD36, cluster of differentiation 36; CLA-1, LIMPII analogous-1; ERK, extra-
cellular signal-regulated kinase; GBM, glomerular basement membrane thickening; JNK, c-Jun N-terminal kinase; NADPH, 
nicotinamide adenine dinucleotide phosphate; Nrf2,  nuclear factor (erythroid-derived 2)-like 2; SAA, serum amyloid A; SBP-1, 
selenium-binding protein 1; TLR2, toll-like receptor 2; TLR4, toll-like receptor 4.
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effect of RBX appeared by 1 month. 
eGFR did not significantly decline 
in the RBX group, whereas the pla-
cebo group lost eGFR at a rate of ~5 
mL/min/1.73 m2 over a 1-year period 
(50). Urinary TGF-β increased by 
43% over 1 year in the placebo group, 
but not in study participants who 
received RBX (51).

In a post hoc safety analysis from 
11 controlled clinical trials of RBX 
in diabetic retinopathy, the overall 
rate of serious adverse events was not 
increased in the RBX group. Indeed, 
the placebo group experienced more 
frequent serious adverse events than 
the RBX-treated group (23 vs. 20%, 
respectively) (52). Recently, another 
post hoc analysis of kidney-related 
outcomes in phase III clinical tri-
als of RBX for diabetic peripheral 
neuropathy was conducted. After 3 
years, patients with RBX had lower 
UACRs and higher eGFRs com-
pared to placebo, suggesting that 
RBX might prevent or delay DKD 
development (53).

It is important to recognize that 
RBX has not moved from phase II 
to phase III clinical trials because 
of business and regulatory decisions 
rather than concerns regarding safety 
or efficacy. Studies of PKC inhibition 
may yet yield a novel therapy for DKD.

Serum Amyloid A
Serum amyloid A (SAA) is an acute-
phase proinflammatory protein ex-
pressed in podocytes, mesangial cells, 
and tubular epithelium that may con-
tribute to inflammatory and apop- 
totic mechanisms in DKD (54,55). 
SAA initiates an inflammatory signal- 
ing cascade that results in upregula-
tion of SAA itself, along with multi-
ple inflammatory cytokines and che-
moattractant molecules in podocytes 
(54,56). This suggests that the podo-
cyte may promote local SAA-medi-
ated inflammatory responses such as 
monocyte and macrophage recruit-
ment in the glomeruli. SAA expres-
sion at mRNA and protein levels 
are increased in glomerular and tu-
bulointerstitial compartments of di-

abetic mouse models and patients 
with DKD (56). Furthermore, SAA 
may also be a DKD biomarker in 
that blood levels associate with prev-
alent albuminuria in people with 
type 2 diabetes and predict incident 
albuminuria in type 1 diabetes (57–
60). In studies to date, associations 
of SAA with DKD are independent 
of traditional risk factors, suggesting 
that it could add to DKD risk pre-
diction in diabetic patients (56). SAA 
is an encouraging new candidate for 
therapeutic intervention and biomark-
er development in DKD.

Therapeutic Strategies 
Combination drug therapies that 
work synergistically to ameliorate se-
rial pathogenic mechanisms may ul-
timately prove to be more successful 
than single therapies. Because adverse 
safety signals have limited recent at-
tempts at intensified or combinatori-
al drug regimens, safety and efficacy 
together must be carefully considered 
in the preclinical experimental phase 
and in the design and execution of 
clinical trials. Additionally, methods 
for targeting therapies to specific 
sites and targets of disease, such as 
nano-particle delivery systems and 
antisense oligonucleotides, may be 
useful tools to enhance treatment ef-
ficacy and safety (61,62).

Conclusion
DKD is a multifactorial diabetic  
complication with numerous mech- 
anistic pathways contributing to dis-
ease pathogenesis. Comprehensive 
mechanistic-based studies and im-
proved strategies for clinical transla-
tion are required for the development 
of safe and effective new treatments. 
Among many possible targets, AGEs, 
ROS, PKC, and SAA are promising 
mechanisms for therapeutic and bio-
marker development.
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