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Abstract

Background: Multiple types of fast and slow skeletal muscle fibers form during early embryogenesis in vertebrates. In
zebrafish, formation of the earliest slow myofibers in fin muscles requires expression of the zinc-finger transcriptional
repressor Prdm1 (also known as Blimp1). To further understand how the role of Prdm1 in early myogenesis may vary
through evolution and during development, we have now analyzed Prdm1 expression in the diverse types of myotubes that
form in culture from somitic, embryonic, and fetal chicken myoblasts.

Principal Findings: In cultures of somitic, embryonic limb, and fetal limb chicken cells, we found that Prdm1 was expressed
in all of the differentiated muscle cells that formed, including those that expressed only fast myosin heavy chain isoforms, as
well as those that co-expressed both fast and slow myosin heavy chain isoforms. Prdm1 was also expressed in Pax7-positive
myoblasts, as well as in non-myogenic cells in the cultures. Furthermore, though all differentiated cells in control somite
cultures co-expressed fast and slow myosin heavy chains, antisense knockdown of Prdm1 expression inhibited the
formation of these co-expressing cells in somite cultures.

Conclusions: In chicken myogenic cell cultures, Prdm1 was expressed in most Pax7-positive myoblasts and in all
differentiated muscle cells, irrespective of the developmental stage of cell donor or the pattern of fast and slow myosin
heavy chains expressed in the differentiated cells that were formed. Thus, Prdm1 was expressed in myogenic cells prior to
terminal differentiation; and, after differentiation, Prdm1 expression was not limited to cells that expressed slow myosin
heavy chain isoforms. In addition, Prdm1 appeared to be required for differentiation of the somitic myocytes, which are the
earliest myocytes to form in the avian embryo.
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Introduction

In developing vertebrates, distinct types of fast and slow

myofibers form during embryonic and fetal development. One

marker for this myofiber diversity is differential expression of fast

and slow isoforms of myosin heavy chain (MyHC). Recent work

with several animal models has begun to uncover molecular and

cellular mechanisms that regulate the formation of distinct types of

fast and slow myofibers. As one example, studies with zebrafish

mutants have shown that the zinc finger protein Prdm1 (also known

as Blimp1) is required for formation of the first population of slow

MyHC-expressing myocytes that form during development [1,2].

The expression pattern of Prdm1 in lamprey somites is compatible

with a similar function [3]. In the mouse, Prdm1 is known to

function in the differentiation of multiple non-myogenic cell lineages

and is expressed in somites, though analyses of slow muscle

formation have not been reported in Prdm1-null mice [4–6].

Because it was not known if Prdm1 was required for slow muscle

formation in vertebrates other than teleost fish, we have now

examined Prdm1 expression and function in differentiating skeletal

muscle cells from the chicken.

As in chickens and other vertebrates, zebrafish myogenesis

proceeds through multiple cellular stages to produce the final

complement of skeletal muscles [7]. The first slow myofibers in the

zebrafish form from adaxial cells of the somites in response to

hedgehog (Hh) signaling, and, in these cells, Prdm1 appears to

promote the slow phenotype both by directly repressing fast

muscle genes and by lifting Sox6-mediated repression of slow
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muscle genes [8–10]. Prdm1 also is required for formation of an

additional group of superficial slow myofibers, though this process

is independent of Hh signaling, and, furthermore, many slow

fibers form in the zebrafish independently of Prdm1 [7]. The

hedeghog (Hh) family proteins, particularly sonic hedgehog (Shh),

regulate expression of the Gli family of zinc finger transcription

factors [11–14] that in turn regulate expression of the muscle

regulatory factors (MRFs) including Myf5 and MyoD [15].

Myogenesis in the developing chicken embryo proceeds through

distinct stages in which multiple types of myoblasts and myofibers

appear [16–20]. The first differentiated muscle cells appear in the

myotomal compartment of the rostral somites by Hamburger-

Hamilton (HH) stage 14 on embryonic day 2 (E2); and these

somitic myocytes begin to co-express both fast and slow isoforms of

MyHC shortly after they form [21]. In chicken embryo limb buds,

the first myofibers begin to form by E3 – E4, and these primary

myofibers are of at least two distinct types: a fast type that

expresses only fast MyHC(s) and a fast/slow type that co-expresses

both fast and slow MyHCs [22]. This initial diversification of fast

and fast/slow myofibers does not depend on functional innerva-

tion [18,22,23]. Embryonic chicken limbs also contain distinct

types of myoblasts that are committed to form either fast or fast/

slow myotubes [24–27]. As fetal development begins on ,E8, a

distinct population of fetal myoblasts appears and secondary

myofibers are formed alongside the primary fibers in the limbs

[23,28].

To begin to determine the possible role of Prdm1 in avian

myogenesis, we have now analyzed the pattern of Prdm1 expression

in cultures of myogenic cells obtained from the somites, embryonic

limbs, and fetal limbs of developing chickens. We found that Prdm1

was expressed in all of these different types of myogenic cells and

was not limited to differentiated muscle cells that expressed slow

MyHC. In addition, we found that antisense knockdown of Prdm1

inhibited MyHC expression in somite cultures, suggesting that

Prdm1 has a functional role in chicken myogenesis.

Results

Using RT-PCR and immunoblotting, we first found that Prdm1

mRNA and protein was detectable at E4 and E12 in each of the

different regions of the embryo that we assayed (Fig. 1). By RT-

PCR, we detected Prdm1 mRNA in E4 trunk, hindlimb, and

forelimb, and E12 hindlimb and forelimb tissues (Fig. 1A, top).

The PCR primers spanned a splicing site in the Prdm1 mRNA

and were designed to produce a 240 bp cDNA. Restriction

analysis of the amplified cDNA was used to confirm identity of the

amplification product (not shown). The PCR primers, which were

specific for chicken Prdm1, did not amplify a product from

cultures of the mouse C2C12 myogenic cell line, but Prdm1 mRNA

was found in cultures of chicken E4 and E12 hindlimb cells

(Fig. 1A, top). By immunoblot, we detected an immunoreactive

band with Mr of ,100 kDa as expected for the Prdm1 protein in

the same chicken tissues and cell cultures in which we detected

Prdm1 mRNA (Figs. 1A and 1B). Both the Cell Signal Technology

and Abcam antibodies detected the ,100 kDa band. Though the

anti-Prdm1 antibody (Abcam) did react with Prdm1 in a sample of

mouse thymus tissue (not shown), no Prdm1 protein was detectable

in mouse C2C12 cell cultures.

Having detected Prdm1 at E4 and E12 in regions of the embryo

in which myogenesis occurs, we next used immunocytochemistry

to determine the expression pattern of Prdm1 in cultures of cells

obtained from these different regions and developmental stages.

Specifically, to study Prdm1 expression in the different types of

somitic, embryonic, and fetal myoblasts, we examined cultures of

cells prepared from E4 somites, E4 limbs, and E12 limbs (see

Methods). As described below, we found Prdm1 to be expressed in

each of the different types of somitic, embryonic limb, and fetal

limb myogenic cells.

In cultures of somite-derived cells, we found that the MyHC-

expressing cells were mononucleate and that all of these myocytes

co-expressed fast MyHC(s), slow MyHC(s), and Prdm1 (Fig. 2). In

particular, after 1–2 days of differentiation, all somite-derived

myocytes immunostained with both mAb F59, which reacts with

all fast class MyHC isoforms (embryonic, neonatal, and all adult

isoforms) and mAb S58, which reacts strongly with the slow

MyHC2 and slow MyHC3 isoforms and weakly with the slow

MyHC1 isoform (Fig. 2A, B) [21,29]. We also found that Prdm1

was expressed in the nuclei of all somitic myocytes (Fig. 2C). We

found this same pattern of Prdm1 nuclear immunostaining with

three different antibodies that were prepared against two different

epitopes that are conserved between human and chicken Prdm1

(see Methods for details of antibodies). Prdm1 expression was not

limited to differentiated myocytes in the somite cultures, as most

MyHC-negative cells in these cultures also showed nuclear

staining for Prdm1 (Fig. 2C).

We also found that Prdm1 was expressed in the different fast

and fast/slow types of MyHC-expressing cells that formed in

cultures of E4 hindlimb and forelimb bud cells. As found

previously [16,30], the differentiated muscle cells formed in E4

limb bud cultures after 2–4 days of differentiation were small (1–3

nuclei). Also consistent with previous studies [24,25,30], about

two-thirds of the differentiated cells were of the fast type that

reacted with mAb F59 but not mAb S58 and thus expressed only

fast MyHC(s), whereas the remaining differentiated cells were of

the fast/slow type that reacted with both mAbs F59 and S58 and

thus co-expressed both fast and slow MyHCs (Fig. 3). A previous

study had shown that the fast/slow type of differentiated cells also

express the slow MyHC1 isoform in addition to the S58-reactive

slow MyHC2/3, but that none of the three slow MyHCs is

expressed in the fast type of embryonic myotubes in culture [29].

By immunostaining, we found that Prdm1 was expressed in the

nuclei of both the fast and fast/slow types of differentiated cells in

the E4 limb cultures (Fig. 3). Prdm1 was also expressed in most of

the cells that did not express MyHC (e. g., Fig. 3B). These results,

which were obtained with both the Cell Signal Technology and

Abcam antibodies, showed that Prdm1 expression in differentiated

E4 limb cells was found in cells that expressed only fast MyHC(s),

as well as in those that co-expressed fast and slow MyHC(s).

We also found that Prdm1 was expressed in the myotubes

formed from fetal E12 limb myoblasts (Fig. 4). As in previous work

[16,30], we found that fetal E12 myoblasts formed very large,

multinucleate myotubes that reacted with mAb F59 but did not

react with mAb S58 after 3–4 days in differentiation medium

(Fig. 4E, F). Furthermore, previous work had shown that the slow

MyHC1 isoform is not expressed by myotubes in such E12

cultures until at least 7–10 days after myotube formation and then

only in a subset of the myotubes [30,31]. Thus, when we analyzed

fetal cultures after 3–4 days of differentiation, these fetal myotubes

expressed only fast MyHC(s). We found that Prdm1 immuno-

staining in all nuclei within the multinucleate fetal myotubes

(Fig. 4C, D), as well as in mononucleate cells in the cultures

(Fig. 4A, B). Both the Cell Signal Technology and Abcam

antibodies gave this result. Thus, as in the embryonic E4 cultures,

Prdm1 was expressed in differentiated cells that expressed only fast

MyHC(s).

To determine if Prdm1 was expressed in myoblasts, as well as in

MyHC-expressing cells, we next examined E4 somite and limb

bud cultures by double immunofluorescence for Prdm1 with the

Prdm1 and Avian Myogenesis
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Cell Signal Technology antibody and an antibody specific for the

myoblast marker Pax7 [32,33] (Fig. 5). We found that ,40% of

the cells in E4 somite, hindlimb bud, and forelimb bud cultures

had nuclei that were immunostained for both Pax7 and Prdm1

(Fig. 5A, B). Furthermore, cells that were Pax7-positive but

Prdm1-negative were rare at only 3–6% of the total cells, thus

,80–90% of the all the cells that were Pax7-positive were also

Prdm1-positive. In addition, we found that about a quarter of the

cells were Prdm1-positive/Pax7-negative or doubly negative

(Fig. 5C). The identity of these cells is not known, but non-

myogenic cells such as fibroblasts are certainly in the cultures.

Thus, Prdm1 was expressed by a large majority of the Pax7-

positive myoblasts, suggesting that Prdm1 was expressed not only

in the terminally differentiated, MyHC-expressing cells but at

earlier stages of myogenesis as well.

Finally, to begin to determine the function of Prdm1 in

myogenesis, we examined fast and slow MyHC expression after

antisense knockdown of Prdm1 expression in E4 somite explant

cultures (Fig. 6). During the first 1–2 days after explants were

established, we found that cells migrated from the main explant to

form a surrounding monolayer of cells and that Prdm1-positive

cells and MyHC-expressing myocytes formed among the cells in

the monolayer. Treatment of the somite cultures with a control

oligonucleotide that was not specific for Prdm1 had no affect on

formation of either the surrounding monolayer of cells or on the

differentiation of fast/slow myocytes (Figs. 6A, C, E). This pattern

of differentiation in which cells in the surrounding monolayers

were almost all Prdm1-positive and a fraction of the cells were

MyHC-expressing myocytes was seen consistently in nine

independent explants treated with the control oligonucleotide.

We also examined ten independent somite explant cultures that

had been treated with Prdm1 antisense oligonucleotides (see

Methods) for 1 or 2 days. In seven of these explants, we found that

formation of the surrounding monolayer of cells appeared to be

Figure 1. Prdm1 mRNA and protein were expressed in chicken tissues and muscle cell cultures. A. As indicated, RNAs or proteins were
isolated from trunk tissues (Tk), hindlimbs (HL), and forelimbs (FL) of chicken embryos (E4 = day 4 in ovo) and fetuses (E12), and also from
differentiated cultures of mouse C2C12 myogenic cells (C2) and primary cultures of E4 and E12 chicken hindlimb cells. RNAs were analyzed by RT-PCR
with exon-spanning primers specific for chicken Prdm1 and, as a positive control, GAPDH as indicated. Proteins were analyzed by immunoblotting
with antibodies specific for Prdm1 (Cell Signaling Technology) or GAPDH. Bands with the expected ,240 bp size of the Prdm1 RT-PCR product or the
expected ,100 kDa Mr of the Prdm1 protein were obtained from all chicken embryonic and fetal tissues and from both E4 and E12 chicken myogenic
cell cultures. Prdm1 mRNA and protein were not obtained from cells of the mouse C2C12 myogenic cell line, though GAPDH was found. Specificity of
the amplified cDNAs for Prdm1 was confirmed by restriction enzyme analysis (not shown). Bands from some gels were re-arranged for presentation.
B. Full-length Prdm1 immunoblot (Ab from Cell Signaling Technology) of the same tissue samples shown in panel A, demonstrating lack of non-
specific bands. MW = molecular standards with number = kDa.
doi:10.1371/journal.pone.0009951.g001
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unaffected (Fig. 6B), whereas staining was largely eliminated for

Prdm1 (Fig. 6D), mAb S58 (Fig. 6F), and mAb F59 (not shown).

Using Fisher’s exact test, the difference between the consistent

appearance of Prdm1 and MyHC in 9 of 9 control cultures was

significantly different from the opposite findings in 7 of the 10

antisense cultures (P,0.01). Though we cannot explain why the

antisense knockdown protocol sometimes failed, the overall

findings support the conclusion that knockdown of Prdm1

expression was accompanied by knockdown of expression of

F59-reactive fast MyHC(s) and S58-reactive slow MyHCs 2

and/or 3.

Discussion

In cultures of embryonic E4 somite, embryonic E4 limb, and

fetal E12 limb cells, we found that Prdm1 was expressed in a large

majority of Pax7-positive myoblasts and in all differentiated

MyHC-expressing cells, irrespective of the developmental stage of

cell donor or the pattern of fast and slow myosin heavy chains

expressed in the differentiated cells that were formed. Thus,

Prdm1 was expressed in myogenic cells prior to terminal

differentiation and expression was not limited to cells that

expressed slow myosin heavy chain. In addition, the antisense

experiments provided evidence that Prdm1 was required for

differentiation of somitic myocytes in culture. Somitic myocytes

are the earliest myocytes to form in the avian embryo. Below, we

discuss our results in relation to current understanding of the

multiple stages of chicken myogenesis and to previous studies,

largely in zebrafish, of Prdm1 function in myogenesis.

In the developing chicken, multiple types of somitic, embryonic,

and fetal myoblasts arise and form different fast and slow types of

myofibers [16,17,24–27]. The first chicken skeletal muscle cells

form in the somitic myotome. Mature myotomal fibers in the

chicken embryo uniformly co-express the embryonic fast MyHC

along with all three of the slow MyHCs, whereas the neonatal and

adult fast MyHCs are not expressed in myotomal fibers [21]. The

adaxial somites of zebrafish also initially co-express fast and slow

MyHCs [34]. Of the MyHC isoforms expressed in chick

myotomal fibers, only slow MyHC2 requires functional innerva-

tion for expression [21].

In our studies of chick embyro somite explants (which contained

neural tube), we found that all myocytes reacted with both mAb

F59 (which reacts with embryonic fast MyHC, as well as all other

chicken fast MyHCs) and mAb S58 (which reacts strongly with

slow MyHCs 2 and 3 and weakly with slow MyHC1). This staining

pattern is consistent with the pattern of fast and slow MyHC co-

expression found in vivo [21]. In addition, we found that all somite-

derived myocytes expressed Prdm1 protein in vitro. In contrast to a

previous whole mount in situ hybridization study that did not

detect Prdm1 mRNA expression in chick somites [35], which may

have been due to lack of probe penetration, we found that Prdm1

mRNA was expressed in somite tissues and that Prdm1 protein

was expressed in the somitic myotome in vivo. Furthermore, we

found that expression of both fast and slow MyHC isoforms was

inhibited by antisense knockdown of Prdm1 in somite cultures,

suggesting that Prdm1 was required for MyHC expression in

somite-derived muscle cells.

Because many of the conclusions of this work rest on the

specificity of the antibodies for chicken Prdm1, we have presented

multiple lines of evidence that support the specificity of the Prdm1

staining, including: (i) antibodies that were made to two different

epitopes that are conserved in chicken Prdm1 showed similar

staining in chicken cells; (ii) in contrast, an antibody that was made

against a human Prdm1 epitope that is not conserved in chicken

Figure 2. Expression of Prdm1 and fast and slow MyHC
isoforms in E4 somite explant cultures and the somitic
myotome. Double immunofluorescence analysis for fast MyHC(s) with
mAb F59 (A, red fluorescence) and slow MyHC(s) with mAb S58 (B,
green fluorescence) showed that fast and slow MyHCs were co-
expressed by all differentiated myocytes in somite cultures. In addition,
Prdm1 immunostaining (Ab from Cell Signaling Technology) was found
in the nuclei of all myocytes, as well as in many MyHC-negative cells (C,
merged image, green fluorescence = S58, red fluorescence = Prdm1,
blue fluorescence = nuclei). D. Prdm1 (green fluorescence, Ab from
Abcam) was expressed throughout the myotome (mt, arrows) of a
mature somite at the forelimb bud level at E4. Additional Prdm1
staining was found in some cells of the sclerotome (sct) and neural tube
(nt). Arrows indicate Prdm1-positive nuclei within myocytes. Bar in
Panel A = 40 mm for panels A and B); 15 mm for panel C; and 50 mm for
panel D.
doi:10.1371/journal.pone.0009951.g002
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Prdm1 failed to stain chicken cells; (iii) on immunoblots, the

antibodies recognized a single band of ,100 kDa, which is the

predicted size of chicken Prdm1 (Fig. 1); (iv) Prdm1 mRNA was

detectable by RT-PCR (using primers that spanned exon

junctions) in all cell cultures in which Prdm1 immunostaining

was found and in all tissue regions from which cells were obtained

for culture; (v) incubation with the C-terminal peptide used for

immunization blocked immunostaining by the corresponding

antibody (not shown, see Materials and Methods); (vi) on

immunoblots and in cultures, staining was eliminated in controls

that either lacked the Prdm1 antibody (no primary antibody), had

non-immune serum instead of the Prdm1 antibody, or had a non-

Prdm1 antibody; and (vii) Prdm1 immunostaining was almost

completely eliminated by treating somite-containing explants with

antisense RNAi oligonucleotides that were designed to specifically

target Prdm1 mRNA, whereas staining was not affected by

treatment with a scrambled RNAi that was not specific to Prdm1.

In addition to our results with somitic myocytes, we found that

Prdm1 was also expressed in myoblasts obtained from embryonic

(E4) limbs, as well as in the differentiated fast and fast/slow

myocytes and myotubes that were formed from these embryonic

myoblasts. Two main types of embryonic myoblasts are obtained

from E4 limbs: 60–70% of the myoblasts are committed to form

small (usually 1–3 nuclei) myocytes or myotubes that express only

fast MyHC(s) and the remaining 30–40% of the myoblasts are

committed to form myotubes that co-express both fast and slow

MyHCs [24,25,30]. We confirmed the formation of these fast

(F59-positive, S58-negative) and fast/slow (F59-positive, S58-

positive) types of myotubes in E4 cultures, and we found that

Prdm1 was expressed in the nuclei of both types of myotubes.

Because none of the three slow MyHC isoforms is expressed by

fast myotubes in E4 cultures [31], this result showed that Prdm1

expression was not limited to differentiated cells that expressed

slow MyHC, but was also found in myotubes that expressed only

fast MyHC(s). In addition, we found that Prdm1 was expressed in

80–90% of the Pax7-positive myoblasts in the E4 cultures. This

result suggests that Prdm1 was expressed by both types of

myoblasts in E4 cultures, i. e., the ,60–70% [24,25] of the total

myoblasts which were of the fast type and the remainder which

were of the fast/slow type.

Finally, we found that Prdm1 was also expressed in fetal E12

myoblasts and the myotubes they formed in culture. Fetal

myoblasts are distinct from and replace embryonic myoblasts as

development proceeds [16,17]. Fetal myoblasts form large

multinucleate myotubes that initially express only fast MyHC(s),

though, after 7–10 days of differentiation, a percentage of the fetal

myotubes begin to co-express slow MyHC1 (but not slow MyHC2

or 3) along with the fast MyHC(s) [31]. We examined fetal cultures

within 4–5 days of differentiation at which time only fast MyHCs

were expressed in the myotubes. Though it was unexpected to find

Prdm1 expression in the fetal myoblasts and myotubes, our

combination of mRNA, immunoblotting, and immunocytochem-

ical studies (with multiple antibodies to different epitopes) provided

confidence that Prdm1 was expressed in the fetal limb-derived

Figure 3. Expression of Prdm1 and fast and slow MyHC isoforms in cultures of E4 hindlimb cultures. As indicated, individual cultures
were analyzed by triple immunostaining for fast MyHC(s) with mAb F59 (A, E, blue fluorescence), Prdm1 (B, F, green fluorescence, Ab from Cell
Signaling Technology), and slow MyHC(s) with mAb S58 (C, G, red fluorescence). Merged photographs (D, H) showed that, as found previously, E4
myoblasts formed differentiated, usually mononucleate, cells of two types: those that express only fast MyHC(s) (e.g., downward pointing arrows in
panels E–H) and those that co-express fast and slow MyHCs (upward pointing arrows in all panels). Prdm1 immunostaining was found in the nuclei of
both types of differentiated cells. An additional Prdm1 antibody (Abcam) produced similar nuclear staining of E4 cultures (not shown). Bar in Panel
A = 20 mm.
doi:10.1371/journal.pone.0009951.g003
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myogenic cells. In fetal cultures, as in embryonic cultures,

therefore, Prdm1 expression was not limited to cells that expressed

slow MyHC(s), but was also found in myotubes that expressed only

fast MyHC(s).

Our results suggest that the developmental pattern of Prdm1

expression differs between chickens and zebrafish. In the somites

of zebrafish, for example, Prdm1 expression is limited to the

adaxial somite cells (which later migrate to form the superficial

layer of slow myofibers) and is not found in the fast myofibers

[1,7,9]. Lamprey somites have a similar adaxial pattern of Prdm1

expression [4]. In the chick embryo, in contrast, we found that

Prdm1 was expressed both throughout the mature somitic

myotome (Fig. 2D) and in all somitic myocytes that formed in

culture. In addition, expression of zebrafish Prdm1 is limited to a

subset of all of the myofibers that express slow MyHC(s), whereas

we found that chicken Prdm1, at least in cultures, was expressed in

all myotubes, including those that did not express slow MyHC(s)

such as the embryonic and fetal fast myotubes. In the mouse, the

role of Prdm1 in myofiber formation and diversification has not

been analyzed in detail [4–6,36]. Similar to what we found in the

embryonic chicken, Prdm1 is expressed throughout the somitic

myotomes of the mouse [36,37]. In somites of E10.5 Prdm1-null

mouse embryos, the domain of Fgf8 gene expression is expanded,

but the possible effects of Prdm1 inactivation on myotomal

structure and MyHC expression in mouse somites have not been

reported [36]. Additional studies have shown that, in the mouse,

Prdm1 is required for formation of posterior limb structures

including musculature [4], though the effect of Prdm1 inactivation

on limb myofiber diversification was also not specifically

examined.

Though our study clearly points to a role for Prdm1 in the

different stages of chicken myogenesis, our study was limited and

much remains to be determined before a complete comparison

across evolution can be contemplated. For example, it remains to

be determined if myogenesis in E4 and E12 limb cultures or in ovo

is affected by Prdm1 knockdown, but these experiments were

beyond our resources at this time. Also, the expression pattern of

Prdm1 in developing chicken limbs needs to be studied throughout

Figure 4. Prdm1 and fast MyHC expression in cultures of E12 hindlimb cells. Prdm1 immunostaining (Ab from Cell Signaling Technology)
was found in the nuclei of both mononucleate cells (A, B) and myotubes (C, D). An additional Prdm1 antibody (Abcam) produced similar nuclear
staining of E12 mononucleate cells and myotubes (not shown). As found in previous studies, myotubes formed from E12 myoblasts showed
immunostaining with mAb F59 (E), which reacts with all fast MyHC isoforms, but did not stain with mAb S58 (F), which reacts with the slow MyHC2
and slow MyHC3 isoforms. Bar in Panel A = 10 mm for panels A–D and 30 mm for panels E and F.
doi:10.1371/journal.pone.0009951.g004
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development to determine if Prdm1 becomes limited to posterior

limb bud regions as found in the mouse embryo and suggested by

the previous in situ hybridization study in chicken embryos [35].

Experiments are also needed to determine in which of the somitic,

embryonic, and fetal myoblasts and myotubes or regions within

the developing somites and limbs that Prdm1 expression is

dependent on Hedgehog family signaling.

In summary, we provide evidence that in chicken myogenic cell

cultures, Prdm1 was expressed in most Pax7-positive myoblasts

and in all differentiated muscle cells, irrespective of the

developmental stage of cell donor or the pattern of fast and slow

myosin heavy chains expressed in the differentiated cells that were

formed. Thus, Prdm1 was expressed in chicken myogenic cells

prior to terminal differentiation and, after differentiation, Prdm1

expression was not limited to cells that expressed slow myosin

heavy chain isoforms. In addition, Prdm1 appeared to be required

for differentiation of the somitic myocytes, which are the earliest

myocytes to form in the avian embryo. In contrast to zebrafish,

where expression of Prdm1 is limited to a subset of slow MyHC-

expressing cells that originate from adaxial somite cells, Prdm1

expression in the chicken embryo and cultured myogenic cells was

much more widespread. Thus, Prdm1 is likely required at more

stages of myogenesis in avian than in fish embryos.

Methods

Cell nomenclature
We used our previous nomenclature for myogenic cells in the

developing chicken [31]. Myoblasts are myogenic, mononucleate,

and mitotic cells that do not express skeletal muscle MyHC(s).

Myotubes are non-mitotic, do express skeletal muscle MyHC(s),

and can be either mononucleate (also known as myocytes) or

multinucleate. The embryonic period of development is a period

of morphogenesis that, for the chicken, lasts until about E8 -10,

and the fetal period of development is a period of growth that

follows until hatching. Embryonic myoblasts, isolated from the

E4–5 developing bird, and fetal myoblasts, isolated from the E12

developing bird, correspond to the early and late muscle colony-

forming myoblasts defined by Hauschka and coworkers [16,17].

Antibodies
Previous studies have described both mAb F59, a mouse IgG1

that reacts with embryonic, neonatal, and all adult fast MyHC

isoforms of the chicken, and mAb S58, a mouse IgA that reacts

strongly with slow MyHC2 and slow MyHC3 and weakly with

slow MyHC1 [21,22,29,30,38]. Mouse anti–glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) was from Research Diagnos-

tics (Flanders, NJ) or Fitzgerald Industries (Concord, MA) and

monoclonal mouse anti-Pax7 was from the Developmental Studies

Hybridoma Bank (Iowa City, IA). To detect Prdm1 by

immunoblotting and immunocytochemistry, we used a monoclo-

nal rabbit-anti-Prdm1 (#9115, Cell Signaling Technology,

Danvers MA, USA) that was prepared against a human epitope

centered on Val90 [Swiss-Prot: O75626.1]; the corresponding

epitope region of chicken Prdm1 [ENSGALT00000024824]

differs by only one amino acid, whereas that for the mouse

Prdm1 [AAI29802.1] has two differences from the human in this

region. For immunocytochemistry, we also used two antibodies

prepared against the Prdm1 C-terminal amino acid sequence

(KVKQETVEPMDP) that is identical in human, mouse, and

chicken Prdm1. These two additional antibodies were a polyclonal

goat-anti-Prdm1 (ab13700, Abcam, Cambridge MA, USA) and a

polyclonal rabbit-anti-Prdm1 (custom preparation by GenScript,

Piscataway NJ, USA). The nuclear immunostaining found with

these antibodies was blocked by incubation with the immunizing

peptide and no staining was found when any of primary antibodies

was omitted or replaced with non-immune serum (not shown). We

also tested an additional polyclonal rabbit-anti-Prdm1 (NB100-

56264, Novus Biologicals, Littleton CO, USA). However, this

antibody was prepared against a 15 amino acid human epitope

TQTQSSLKQPSTEK [Genbank: CAI18902.1] that shared only

six identical amino acids with the corresponding region of the

chicken Prdm1 (TQTHVNPKQHSADKD), and we found that

this antibody did not react with chicken Prdm1.

Immunoblotting
Immunoblotting was performed much as described previously

(29, 31). From E4 embryos (HH stage 23–25), the forelimb buds,

hindlimb buds, and trunk tissue from between the fore- and

hindlimbs were dissected and homogenized on ice in a buffer

(recommended by Cell Signaling Technology) consisting of

20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM

EGTA, 1% Triton X-100, 2.5 mM Sodium Pyrophosphate,

1 mM b-glycerophosphate, Sodium Vanadate, and Calbiochem

III Protease Inhibitors. From E12 embryos, the thigh and upper

Figure 5. Expression of Prdm1 and Pax7 in E4 somite and limb
cell cultures. As indicated, individual cultures, in this case a
proliferating E4 hindlimb culture prior to myotube formation, were
analyzed by double immunofluorescence for Prdm1 (A, Ab from Cell
Signaling Technology) and the myoblast marker Pax7 (B). The
myoblasts illustrated here all co-expressed Prdm1 and Pax7. C.
Quantitative analysis of proliferating E4 cultures prior to myotube
formation. Cultures were double immunostained for Prdm1 (Ab from
Cell Signaling Technology) and Pax7 and staining patterns were
quantified. Cells positive for both Pax7 and Prdm1 were the most
abundant cell type in somitic (S), forelimb bud (F), and hindlimb bud (H)
cultures (yellow bars). A small percentage of cells was positive for Pax7
but negative for Prdm1 (red bars). Some cells were also negative for
Pax7 but positive for Prdm1 (green bars) or negative for both (gray
bars). Bar = 10 mm.
doi:10.1371/journal.pone.0009951.g005
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wing were dissected, skinned, and similarly homogenized.

Homogenized samples were subjected to SDS-PAGE in 12%

gels, transferred to nitrocellulose, and incubated with primary

antibodies for Prdm1 or GAPDH at 1.25 mg/ml overnight.

Primary antibody binding in Fig. 1 was detected with Alexa-

680-conjugated secondary antibodies with appropriate species

specificity (Invitrogen goat-anti-rabbit #A21076 and goat-anti-

mouse #A21057) [39].

Cell culture
For somite explant cultures, thoracic tissue from E4 embryos

was excised from between the fore- and hindlimbs in Hank’s

balanced salt solution. The resulting somite region tissue was cut in

half along the length of the neural tube and then crosswise into

small segments containing one or more somites. The explants were

cultured in equal parts fresh and conditioned [25] medium

consisting of F-10 (Invitrogen) supplemented with 5% chick

embryo extract, 15% horse serum, glutamine, and 1.2 mM CaCl2.

Cells from E4 embryonic and E12 fetal fore- and hindlimbs were

prepared and cultured as described [30,31]. Cells of the mouse

C2C12 myogenic cell line were grown as described [39,40].

Immunochemical staining
Cultures were fixed in 100% ice-cold methanol for ten minutes,

washed with PBS, blocked for 1 h, and incubated with primary

antibody (or antibodies) overnight at 4uC. Frozen transverse

sections of forelimb bud level somites of E4 embryos (HH stage)

were post-fixed with 4% paraformaldehyde. Cultures or sections

were incubated with anti-Prdm1 antibody at a dilution of 1:250

(Cell Signaling) or 1:100 (Abcam) overnight. Hybridoma superna-

tants were diluted 1:10 for mAbs F59 and S58 and 1:1000 for Pax7.

Binding of primary antibodies in Figs. 2, 3 (except panels C and G),

4, 5, 6C and 6D was detected with secondary antibodies conjugated

with Alexa-350 (blue, Invitrogen goat-anti-mouse #A11045),

Alexa-488 (green; Invitrogen goat-anti-rabbit #A11001), or

Alexa-594 (red, Invitrogen goat-anti-mouse #A11005). Binding of

mAb S58 in Figs. 3C, 3G, 6E, and 6F was detected with biotinylated

goat-anti-mouse IgA (Santa Cruz Biotech #SC-3691) and Texas

Red-conjugated avidin (Invitrogen #A820).

Figure 6. Antisense oligonucleotides decreased Prdm1 immunostaining and inhibited expression of fast and slow MyHCs in somite
explant cultures. Somite tissues were dissected from E4 embryos (HH stage 23–25), cultured for 2 days, and analyzed for expression of Prdm1 and
MyHC isoforms. A, C, E. In the presence of a non-specific oligonucleotide, cells derived from the main explant formed a surrounding monolayer of
cells (A, nuclei) and both Prdm1-positive cells (C, Ab from Cell Signaling Technology) and MyHC-expressing myocytes (E, S58-positive) were found
among these cells. The main tissue explant (exp) is to the lower right of each panel. B, D, F. In the presence of Prdm1 antisense nucleotides,
formation of the monolayer was not affected (B, nuclei), but expression of both Prdm1 (C, Ab from Cell Signaling Technology) and slow MyHC(s) (F,
mAb S58) was inhibited. Staining with mAb F59, and thus fast MyHC expression, was also inhibited by Prdm1 knockdown (not shown). See text for
quantitative analysis. Bar in A = 75 mm.
doi:10.1371/journal.pone.0009951.g006
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Antisense
Three RNAi oligonucleotides were designed to be specific for

the chicken Prdm1 mRNA [Genbank: AB278131] and were

synthesized (Stealth RNAi, Invitrogen, Carlsbad, CA, USA). The

RNAi sequences were GGACGGAGGCTGATTTCGAAGA-

GAA (start site at nt 38), GATTTCGAAGAGAAGTGCACG-

TACA (start site at nt 49), and CCTTGCCAAGGAACTT-

GACTTTCAA (start site at nt 137). A control oligonucleotide and

Lipofectamine 2000 were also from Invitrogen (product

#13750070). Lipofectamine 2000-mediated transfection was used

to introduce RNAi oligonucleotides into somite explant cultures.

For each experiment, 24 pmol of each Prdm1 antisense RNAi

(72 pmol total) or 72 pmol of the control oligonucleotide was

complexed with Lipofectamine in Opti-MEM (Invitrogen) and

then incubated with explant cultures on 35 mm culture dishes for

4 h at 37uC. Prdm1 mRNA is expected to have a short half-life

[41]. Cultures were fixed and examined by immunocytochemistry

24 h after the end of the transfection.

RT-PCR
RNA was isolated from cells or tissues, treated with DNase,

reverse transcribed, and PCR amplified [42]. For Prdm1, tissues and

cells were analyzed with two different PCR primer sets to increase

confidence. The first set of primers for Prdm1 mRNA included a

forward primer TCATACCAGCACCTAACAGTGCCT and a

reverse primer TCTTCAGTGGGTATGGGAGGGTTT that

were designed to give a product of 240 bp. The second set included

a forward primer AAGAGCTGCTTGTGTGGTATTGCC and a

reverse primer TCACACTGTGCTCCTTCTTTGGGA with a

product of 171 bp. For the control GAPDH, the forward primer

ATGCCATCACAGCCACACAGAAGA and reverse primer AT-

TCAGCTCAGGGATGACTTTCCC gave a product of 219 bp.

PCR amplification used 30 s cycles of denaturation at 95uC,

annealing at 57uC, and extension at 72uC. For cDNA products

produced with the first set of Prdm1 primers, restriction enzyme

analysis with either SgrAI (predicted to cut at nucleotide 159 of the

Prdm1 amplification product) or BsteII (nucleotide 82) was used to

confirm the identify of the amplified Prdm1 cDNA (not shown).
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