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Abstract

One pivotal feature of transcriptomics data is the unwanted variations caused by disparate experimental handling, known
as handling effects. Various data normalization methods were developed to alleviate the adverse impact of handling effects
in the setting of differential expression analysis. However, little research has been done to evaluate their performance in the
setting of survival outcome prediction, an important analysis goal for transcriptomics data in biomedical research.
Leveraging a unique pair of datasets for the same set of tumor samples—one with handling effects and the other without,
we developed a benchmarking tool for conducting such an evaluation in microRNA microarrays. We applied this tool to
evaluate the performance of three popular normalization methods—quantile normalization, median normalization and
variance stabilizing normalization—in survival prediction using various approaches for model building and designs for
sample assignment. We showed that handling effects can have a strong impact on survival prediction and that quantile
normalization, a most popular method in current practice, tends to underperform median normalization and variance
stabilizing normalization. We demonstrated with a small example the reason for quantile normalization’s poor performance
in this setting. Our finding highlights the importance of putting normalization evaluation in the context of the downstream
analysis setting and the potential of improving the development of survival predictors by applying median normalization.
We make available our benchmarking tool for performing such evaluation on additional normalization methods in
connection with prediction modeling approaches.
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Introduction
Survival analysis plays a foundational role in cancer transcrip-
tomics studies for developing reliable predictors of patient prog-
nosis and treatment response [1–4]. While statistical methods
are available to address the issues of high dimensionality and
signal sparsity in these studies, research is still lacking on the
issue of unwanted data variations associated with disparate
experimental handling, which is a pivotal feature of transcrip-
tomics data [5–8]. Many of these studies borrowed existing meth-
ods for data normalization that were developed in the setting
of differential expression analysis for group comparison, when
signals are the difference between group means [9–12]. While
the performance of these normalization methods has been
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extensively studied in group comparison, little research has been
done to reevaluate their performance in the setting of survival
analysis, when signals are associated with a censored outcome,
partly due to lack of awareness and dearth of benchmarking
tools [13–18].

We set out to develop the much-needed benchmarking tool
and conduct such an assessment in microRNA microarrays [19,
20]. Our approach leverages a pair of datasets for the same set
of tumor samples that we previously collected. One dataset was
collected with uniform handling to minimize handling effects;
the other was collected without uniform handling and exhibited
handling effects [21, 22]. The uniformly handled dataset enabled
estimation of the biological effects for each sample, serving as
‘virtual samples’, and the difference between the two arrays
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for each sample allowed estimation of the handling effects for
each array in the nonuniformly handled dataset, serving as
‘virtual arrays’. The virtual samples and the virtual arrays were
then reassigned and rehybridized to generate additional data
under various scenarios for evaluating normalization methods
[21, 23]. In addition, outcome data were simulated by sequen-
tially reallocating the observed outcomes to the virtual samples
with probability weighting to achieve a prespecified level of
association [24].

In this paper, we report this benchmarking tool based
on resampling and our findings on how survival prediction
accuracy is impacted by the application of three popular
normalization methods: quantile normalization [13], median
normalization and variance stabilizing normalization [25]. In
addition to post hoc data normalization, we also considered
the use of two study designs for assigning arrays to samples:
randomized and sorted by survival time (leading to longer
survival times being assigned to earlier arrays and shorter
survival times to later arrays).

Methods
Collection of the empirical data

Ninety-six high-grade serous ovarian cancer samples and 96
endometroid endometrial cancer samples were collected at
Memorial Sloan Kettering Cancer Center between 2000 and 2012.
Their microRNA expression levels were measured using Agilent
microarrays (Release 16.0, Agilent Technologies, Santa Clara,
CA) twice, each with a different experimental design. In the 1st
design, the 192 samples were handled by a single experienced
technician in one experimental run and assigned to the arrays
in a balanced manner via the use of randomization and blocking
(each slide of eight arrays serves as an experimental ‘block’).
In the 2nd design, the same samples were handled by two
technicians in multiple batches over time and assigned to
arrays in the order of sample collection. We call the 1st design
the ‘uniformly handled’ design and the 2nd the ‘nonuniformly
handled’ design. Further details on data collection can be found
in the articles by Qin et al. [21, 22].

Estimation of biological effects and handling effects
from the empirical data

Estimation of biological effects

We used the data collected with the uniformly handled design
for the 96 ovarian cancer samples as a best approximate for
the biological effects of these samples. We call them ‘virtual
samples’.

Estimation of handling effects

Assuming that handling effects were additive, we used the dif-
ferences between the two arrays for each tumor sample (one
from each design) to estimate the handling effects for each
array in the nonuniformly handled dataset. We call them ‘virtual
arrays’ and split them (by whole slides) into two equal-sized
sets, one set with the first 96 arrays for prognosticator training
and another with the last 96 arrays for validation. The additivity
assumption has been deemed reasonable for microarray data
and has been adopted in published methods on microarray data
normalization and analysis [26, 27].

Elicitation of regression coefficients

We used the data for the 96 ovarian cancer samples from the
uniformly handled design to assess each microRNA’s associa-
tion with progression-free survival (PFS), an important survival

outcome variable in ovarian cancer [28]. PFS is defined as the
time from primary surgery to disease progression, death or
loss of follow-up, whichever occurs first. The rate of censoring
was 23% (22/96) in our data. Univariate Cox regression analysis
showed that six markers have P-values <0.005 and regression
coefficients ranging from 0.26 to 0.78 [29]. For the purpose of
the simulation study, we generated three sets of ‘true regression
coefficients’ from the estimated regression coefficients at three
different signal levels to elucidate the impact of true marker
effect size on survival prediction.

(i) Moderate signal: we used the quadruple of the estimated
regression coefficients for the six significant markers and
zero for the other markers.

(ii) Weak signal: we randomly chose 30 markers and set their
regression coefficients to 0.35 and those of other markers
to zero. The L1 norm of the weak-signal coefficient vector
equals that of the moderate-signal coefficient vector, so
the two vectors have the same ‘total’ effect that was dis-
tributed differently among markers—one on a few mark-
ers with large effects and the other on many markers with
small effects.

(iii) Null signal: we used a null regression coefficient vector
with all zeros as a negative control.

Simulation of survival outcome and array data
for prognosticator training and validation

Simulation of survival outcome

We simulated new PFSs for the 96 virtual samples based on the
true regression coefficient vectors. To ensure a realistic marginal
distribution for PFS without having to arbitrarily assume a para-
metric distribution, we developed a permutation-based proce-
dure to simulate PFS exhibiting various levels of association
with biological effects. This method was inspired by a simi-
lar permutation-based method proposed by Heller [24]. It first
sorts the observed PFS times in an ascending manner regard-
less of the censoring status and then sequentially pairs them
with the virtual samples starting from the smallest time as
follows.

(i) At PFS time t(j), the probability of choosing virtual sample
i from those that have not been chosen is calculated as
Pr(choose virtual sample i at time t(j)) = pij = exp(xiβ0)

∑
k∈Rj

exp(xkβ0) ,

where xi is the biological effect of virtual sample i, β0 is
the true regression coefficient vector, Rj is the set of virtual
samples that have not been chosen by t(j).

(ii) Since
∑

i∈Rj
pij = 1, the selection of virtual samples at t(j)

is determined by a single realization of a multinomial
distribution with n = 1 and pj = (p1j, p2j, . . . , pkjj), where kj is
the size of Rj.

(iii) The above steps are repeated through all sorted PFS times.

We conducted a small simulation to demonstrate that the
above procedure leads to the intended association between the
covariates and the survival outcome and present the results in
the Appendix (Supplementary Figures 4 and 5).

Simulation of array data for prognosticator training

Training microarray data were simulated using a process called
‘virtual rehybridization’, so as to preserve the complex corre-
lation structure of the biological effects and handling effects
[21, 23]. Namely, the 96 virtual samples (along with their PFS
times) were reassigned to the 96 virtual arrays allocated for
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Table 1. Summary of simulation scenarios

Scenario
Notationa

Handling effects in
training data

Handling effects in test
data

Handling effects associated with
outcome in training data

Handling effects associated with
outcome in test data

HE00Asso00 No No No No
HE10Asso00 Yes No No No
HE10Asso10 Yes No Yes No
HE11Asso00 Yes Yes No No
HE11Asso10 Yes Yes Yes No
HE11Asso01 Yes Yes No Yes
HE11Asso11 Yes Yes Yes Yes
HE11Asso1-1 Yes Yes Yes Yes (negatively)

a‘HE’ stands for handling effects. The 1st and 2nd digits following ‘HE’ indicate presence (‘1’) versus absence (‘0’) of handling effects in training and test data,
respectively. ‘Asso’ stands for association with survival outcome. The 1st and 2nd digits following ‘Asso’ indicate the presence (‘1’ = positive, ‘-1’ = negative) versus
absence (‘0’) of association between handling effects and survival outcome in training and test data, respectively.

training, and handling effects for each virtual array were then
added to the biological effects of the assigned virtual sample. We
considered two scenarios for the reassignment: (1) randomized
and (2) sorted by simulated PFS time (leading to longer PFS times
being assigned to arrays handled by one technician and shorter
PFS times to arrays by the other) so that PFS time was associated
with handling effects. To examine whether the magnitude of
handling effects impacts the performance of the normalization
methods, we also simulated training data with augmented han-
dling effects by tripling the values in the virtual arrays before
adding them to the virtual samples.

Simulation of array data for prognosticator validation

Data were simulated either with handling effects (following the
same virtual rehybridization method, except that the 96 virtual
arrays allocated for validation were used) instead or without
handling effects (mimicking a scenario when the validation
dataset was of better data quality).

Simulation scenarios

Table 1 summarizes the eight scenarios investigated in our sim-
ulations. The scenarios are arranged in such a way that handling
effects are increasingly prevalent and involved (i.e. associated
with the survival outcome). Each scenario used 400 simula-
tion runs.

Prognosticator training and validation

Array data preprocessing

We assessed three normalization methods: (1) quantile normal-
ization, (2) median normalization and (3) variance stabilizing
normalization. The same normalization methods were applied
to the training and test data, with the latter in a ‘frozen’ manner
[30]. Quantile normalization was applied to the training data
using the normalize.quantiles function in the R package preprocess-
Core; the quantiles derived from the training data were used to
apply frozen quantile normalization to the test data. Similarly,
when median normalization was used for the training data,
frozen median normalization was applied to the test data. Vari-
ance stabilizing normalization was carried out using the vsn2
function in the R package vsn. In addition to handling effects
adjustment via normalization, the data were additionally pre-
processed with log2 transformation and median summarization
across replicate probes for each marker [31].

Prognosticator training

We applied two commonly used methods for variable selec-
tion to build a multivariate Cox proportional hazard model for
PFS prediction: (1) univariate filtering using the per-marker P-
values and (2) regularized Cox proportional hazard regression. To
reduce computational burden and alleviate collinearity in model
fitting, we prefiltered the markers using two criteria: (1) high
abundance (mean expression on the log2 scale among the 96
samples ≥ 8) and (2) no strong intermarker correlation (Pearson
correlation coefficient <0.9). These criteria were applied to each
simulated dataset, and the set of markers that passed the fil-
tering varied across simulation runs. Typically, 100–200 markers
remained and entered the model-fitting step.

(i) In the univariate filtering analysis, we assessed PFS asso-
ciation for each marker using a univariate Cox proportional
hazards regression, and selected markers with a P-value less
than or equal to a given cutoff. The selected markers were
then included in a multivariate Cox proportional hazards
regression model. The P-value cutoff was selected via a grid
search from 0 to 0.01 by 0.0005. The value that minimized
the Akaike information criterion (AIC) from the multivariate
Cox model was selected as the optimal cutoff.

(ii) In the regularized regression, we first used the univariate
Cox regression to select [n0/4] markers that had the largest
partial likelihood, where n0 is the number of events in the
training data and [.] denotes the nearest integer, and then
performed regularized Cox regression with the selected
markers using one of two penalties: (1) the LASSO penalty
and (2) the adaptive LASSO penalty [32, 33]. This two-step
variable selection strategy has been extensively studied
in high-dimensional data literature [34–36]. Six-fold cross-
validation was used for selecting the tuning parameters of
these penalties.

(iii) As a reference, we also fitted a nonpenalized multivariate
Cox regression model using the true predictive markers (six
markers for the moderate-signal model and 30 markers for
the weak-signal model), referred to as the oracle method.
Although the oracle model is not obtainable in practice,
these results are nevertheless revelatory for assessing the
impact of handling effects and the performance of data
normalization with regard to prediction accuracy.

Prognosticator validation

An ideal approach for validating a prognostication model is to
assess its predictive accuracy in an independent test dataset. In
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our study, test data shared the same biological effects with train-
ing data but differed in handling effects and the random sample-
to-PFS pairing. Hence, the test data validation mainly reflected
the effectiveness of data normalization and the robustness of the
resulted model to handling effects. Harrell’s C-index was used
to measure prediction accuracy [37]. The mean, 2.5th and 97.5th
percentile of the C-index among the 400 runs for each simulation
scenario were reported.

To summarize, in this simulation study, we assessed the
performance of three methods for data normalization in combi-
nation with four approaches for prognostic model building using
data generated under eight scenarios of handling-effect pattern
and three levels of survival signal strength.

Results
Moderate signal

We present the results of the oracle, LASSO-penalized and
univariate-filtering methods in the main text. In addition, we
include in the Appendix the result of the adaptive LASSO-
penalized method, which is very close to that of LASSO-
penalized method (Supplementary Figures 1 and 2).

Oracle method

The simulation result, in terms of prediction accuracy measured
by the test data C-index, of the oracle method is presented in
Figure 1A. Among the three normalization methods, median
normalization was the obvious best performer in all eight
simulation scenarios, whereas quantile normalization tended
to be the worst (closely following variance stabilizing normal-
ization). In the presence of handling effects, the C-index was
between 0.72 and 0.82 for median normalization, between 0.68
and 0.75 for variance stabilizing normalization and between
0.64 and 0.73 for quantile normalization, depending on the
specific handling-effect pattern. As a reference, when handling
effects were absent in both training and test data, the C-index
was 0.92, 0.80 and 0.74 for these three methods, respectively.
Across the eight scenarios, as handling effects became more
prevalent and outcome associated, their negative impact on
prediction became stronger. The most influencing factor was
the method of normalization, followed by the presence of
handling effects and then by their level of outcome associ-
ation (comparing HE10Asso00 with HE11Asso00 versus with
HE10Asso10).

Penalized regression method

Figure 1B shows the simulation result when the LASSO-
penalized Cox regression was used to build the prediction model.
The relative performance of the three normalization methods
stayed similar to that for the oracle method. That is, median
normalization was the best and quantile normalization the
worst across the eight patterns of handling effects. Their C-
index ranged from 0.74 to 0.83, 0.69 to 0.76 and 0.71 to 0.76
for median, quantile and variance stabilizing normalization,
respectively, in the presence of handling effects in training data
and/or test data; it was 0.92, 0.81 and 0.84 for the three methods,
respectively, in the absence of handling effects. Compared
with the oracle method, the LASSO method slightly improved
the prediction accuracy by up to 0.07 across the simulation
scenarios. This is likely due to the fact that LASSO tends to
select more predictor markers into the final model than the
true model.

Univariate filtering method

Figure 1C presents the results when the univariate filtering
method was used to build the prediction model. The relative
performance of the normalization methods was again consistent
with the oracle method. In the presence of handling effects, the
C-index ranged from 0.74 to 0.81, 0.64 to 0.74 and 0.70 to 0.76
for median, quantile and variance stabilizing normalization,
respectively. In the absence of handling effects, it was 0.93,
0.88 and 0.90, for the three methods, respectively. Compared
with the LASSO method, the prediction accuracy for the
univariate filtering method was slightly worse (by up to 0.05)
and substantially more variable.

In addition to the above results, we also performed simu-
lations when the magnitude of handling effects was tripled in
the training and test data. As expected, the prediction perfor-
mance of the normalization methods worsened across all sce-
narios. Nevertheless, the relative performance of these methods
remained the same. We therefore did not include the results in
the paper.

Weak signal

The simulation results of the three prediction modeling methods
under weak signals are presented in Figure 2. They are very sim-
ilar to those under moderate signals, supporting the robustness
of our findings in terms of the performance of normalization
methods to the size of predictive signal for survival outcome.

Null signal

We further examined the performance of data normalization
under the null model. Noting that the oracle method is not
available under the null model and the simulation results for
the other two methods were very similar, we present the result
for the LASSO method in Figure 3 and that for the univariate-
filtering method in the Appendix (Supplementary Figure 3).
Under the null model, as expected, the prediction model did not
offer any value beyond a random guess regardless of the choice
of normalization method in the first six scenarios. However, in
the 7th scenario when handling effects existed in both training
and test data with positive outcome–association (HE11Asso11),
normalization led to a small improvement in prediction with
C-index slightly over 0.5; conversely in the 8th scenario when
the direction of association between handling effects and the
survival time was opposite (HE11Asso1-1), normalization slightly
harmed prediction with C-index below 0.5, suggesting that the
prediction model performed even worse than a random guess.
The observations in the last two scenarios showcased that
handling effects that confound with the survival time can either
induce a false positive predictor or dampen a true positive one,
depending on the direction of the confounding association.

Discussion
Effective prognostic biomarkers of patient clinical outcomes are
of keen interest in cancer research, as they can help identify
high-risk population, tailor treatment options for patients and
design clinical trials for assessing new therapies. While proven
useful for biomarker discovery and patient classification in the
setting of group comparison, quantile normalization performed
poorly for survival outcome prediction in our study. Intuitively,
quantile normalization replaces the ranked data of a marker
by the averaged ranked data across samples: for the purpose
of biomarker discovery, it is effective for removing bias due to
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Figure 1. Test data Harrell’s C-index of the prediction model developed by the oracle (panel A), LASSO penalized (panel B) and univariate filtering (panel C) method

under a moderate level of signal. Vertical bars represent 2.5th and 97.5th percentiles. Symbols in the bars represent mean values.

handling effects in the estimation of group mean difference; for
the purpose of building a prediction model for time to event vari-
ables, however, it runs the risk of changing the rank of marker
data across samples, which we show with numerical examples
in the Appendix (Supplementary Figure 4), and subsequently
attenuating its regression coefficient toward zero, similar to the
effect of adding noise to a predictor [38].

Median normalization, a runner-up in popularity to quantile
normalization, performed better than quantile normalization for

the purpose of survival outcome prediction. Its better perfor-
mance may be explained by the fact that median normalization
distorts the rank of marker data to a lesser extent as it only
forces the median instead of all percentiles to be the same across
samples (Supplementary Figure 5).

The prediction performance of variance stabilizing normal-
ization is only slightly better than quantile normalization. It
involves a step where all markers of each sample are rescaled
by a sample-specific affine–linear transformation [25]. This
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Figure 2. Test data Harrell’s C-index of the prediction model developed by the oracle (panel A), LASSO penalized (panel B) and univariate filtering (panel C) method

under a weak level of signal. Vertical bars represent 2.5th and 97.5th percentiles. Symbols in the bars represent mean values.

transformation may have resulted in rank distortion of marker
data across samples similar to the effect of quantile normal-
ization, hence the unsatisfactory performance in the setting of
survival risk prediction.

Our simulation results revealed that penalized regression
methods offer slightly more accurate and substantially less vari-
able prediction than the univariate filtering method. This obser-
vation agrees with the general opinion in statistical literature
that automated significance-based stepwise variable selection

procedures are unstable, especially when the correlation among
predictors is high [39]. In our study, adaptive LASSO method
tended to give slightly sparser models than the LASSO method,
but their prediction performances were similar.

Balanced sample assignment (via the use of study design
elements such as blocking, randomization and stratification) has
been shown to be effective for avoiding the negative impact
of handling effects when developing a predictor of a binary
outcome [21]. For predicting time to event outcomes, blocking
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Figure 3. Test data Harrell’s C-index of the prediction model developed by the LASSO penalized method under null signal. Vertical bars represent 2.5th and 97.5th

percentiles. Symbols in the bars represent mean values.

and stratification are no longer applicable; randomization (i.e.
random reassignment of virtual samples to virtual arrays) is still
useful as shown in our study. Our study under null signals clearly
demonstrated that, in the absence of randomization, spurious
positive or negative predictive value (Figure 3 HE11Asso11 and
HE11Asso1-1) could arise as a result of the association between
survival outcome and handling effects.

In this study we developed the resampling-based simulation
strategies and applied them to investigate the performance of
data normalization methods for managing handling effects. The
same strategies can also be used to study the performance of
other categories of methods for managing handling effects, such
as the ‘Batch-Effect Correction’ methods when data are collected
in separate ‘batches’, a notable member of which is ComBat
[40]. We will report the findings on the latter alongside a novel
alternative method for managing batch effects in a separate
paper.

To summarize, our study demonstrates the importance of
evaluating the performance of normalization methods in the
setting of survival prediction and provides a benchmarking tool
for such evaluation for microRNA microarrays. Among the meth-
ods examined in this study, median normalization and penalized
regression offer better survival risk prediction. We encourage
interested researchers to use our tool for assessing additional
methods for data normalization and prediction modeling that
they use in their practice.

Key Points
• Median normalization offers better survival prediction

accuracy than quantile normalization and variance
stabilizing normalization.

• In the absence of random assignment of samples
to arrays, spurious prediction accuracy could arise
due to the association between survival outcome and
handling effects.

• It is important to reevaluate normalization methods
using the benchmarking tool developed in this paper
when handling effect contaminated transcriptomics
data are used for survival risk prediction.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.

Data Availability

Human tumor tissues used in this study were obtained from
participants who provided informed consent, and their use
in our study was approved by the Memorial Sloan Kettering
Cancer Center Institutional Review Board. The R package
containing the data and simulation functions used in this
article can be freely downloaded at https://github.com/LXQi
n/PRECISION.survival.
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