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C O R O N A V I R U S

Kynurenic acid may underlie sex-specific immune 
responses to COVID-19
Yuping Cai1,2, Daniel J. Kim3, Takehiro Takahashi3, David I. Broadhurst4, Hong Yan1, 
Shuangge Ma5, Nicholas J. W. Rattray6, Arnau Casanovas-Massana7, Benjamin Israelow3,8, 
Jon Klein3, Carolina Lucas3, Tianyang Mao3, Adam J. Moore7, M. Catherine Muenker7, Ji Eun Oh3, 
Julio Silva3, Patrick Wong3, Yale IMPACT Research team, Albert I. Ko7, Sajid A. Khan9, 
Akiko Iwasaki3,10, Caroline H. Johnson1*

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune re-
sponses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, 
we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high 
KA–to–kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines 
and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those 
that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically de-
teriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) 
project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotrans-
ferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals 
that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive 
feedback between metabolites and immune responses in males.

INTRODUCTION
Sex-related differences in coronavirus disease 2019 (COVID-19) 
severity and morbidity exist, with the male sex being a risk factor; 
compared to females, male COVID-19 patients have an increased 
risk of admission [odds ratio (OR), 1.68; 95% confidence interval 
(CI), 1.45 to 1.90] and in-hospital mortality (OR, 1.87; 95% CI, 1.33 
to 2.63). Hospitalized patients with moderate infection with severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have in-
creased amounts of inflammatory cytokines and chemokines, and 
sex differences exist in these immune responses (1). Furthermore, 
across all ages, female patients at baseline (when first admitted into 
hospital) have more robust T cell activation than males. Loss of 
T cell activation correlates with older age in males, and this poorer 
T cell response is correlated with worse disease outcomes in males only 
(1). Therefore, males and females have clear differences in COVID-19 
immune responses that correlate with clinical course.

Because immune responses are regulated, in part, by metabolites, 
it is possible that sex-related differences in metabolism could affect 
the host immune response to SARS-CoV-2 infection. For example, 
specific metabolites are required for macrophage, neutrophil, 
and T cell functions, enhancing glycolytic and fatty acid synthesis 

pathways in these cells (2). Conversely, immune stimulation can also 
elicit metabolic reprograming in cells, thereby affecting disease tra-
jectory by altering metabolite abundance (3). In addition to the met-
abolic requirements of the host immune system, viruses also require 
host-derived metabolites and lipids (4). Thus, utilization of meta-
bolic substrates for viral replication could affect metabolite avail-
ability required for immune responses.

In this study, we used an untargeted metabolomics approach to 
identify sex-specific serum metabolites associated with COVID-19, 
immune responses, and disease severity. We observed that 17 me-
tabolites were associated with COVID-19; however, in male patients 
only, kynurenic acid (KA) amounts are positively associated with 
age, inflammatory cytokines and chemokines, and clinical respons-
es. In addition, KA negatively regulates glutamate, and lower gluta-
mate amounts were observed in patients that clinically deteriorated. 
These results suggest a critical role of KA in COVID-19 and a po-
tential target for therapeutic intervention.

RESULTS
Metabolites correlate with COVID-19
To address how metabolites might mediate the sex-related differ-
ences in COVID-19 immune responses, we first used an untargeted 
metabolomics workflow with multivariable logistic regression to 
identify serum metabolites associated with COVID-19. Serum sam-
ples were collected from 39 COVID-19 patients (n = 22 females and 
n = 17 males) on the day of enrollment into the IMPACT study at 
Yale New Haven Hospital (CT, USA). The timing of the sample 
collections was 11.4 ± 8.1 and 10.2 ± 6.3 days after symptom onset 
for female and male patient groups, respectively (table S1). All of the 
patients had moderate disease at the time of sample collection, with 
a clinical score of 1 or 2 and who required ≤3 liters of supplemental 
oxygen by nasal canal to maintain an SpO2 of >92% (see Materials 
and Methods), and none of them had been administered high-dose 
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corticosteroids or the immunosuppressive drug tocilizumab by 
the time of sample collection [cohort A patient group described by 
Takahashi et al. (1)]. Uninfected health care worker (HCW) controls 
were included in the analysis. There was a statistically significant 
difference in age between the COVID-19 patients and HCWs, which 
was adjusted for in our models (table S1).

We first performed metabolite identification on detected signals 
that were present in the serum metabolomes of quality control 
(QC) samples pooled from both COVID-19 patients and HCWs. 
We identified 75 metabolites with the highest confidence (table S2). 
Logistic regression analysis revealed that 17 metabolites were asso-
ciated with COVID-19 status after adjustment for age, body mass 
index (BMI), sex, and multiple comparisons (table S3). Whereas 
glutamate, cysteine-S-sulfate, palmitoleic acid, arachidonic acid, 
lysophosphatidylethanolamine (22:6), uracil, and myristic acid were 
positively associated with COVID-19, glutamine, 3-methylxanthine, 
tryptophan, proline, citrulline, homoserine, 2,3-dihydroxybenzoic 
acid, lysophosphatidic acid (LPA) (18:2), LPA (20:2), and lysophos-
phatidylcholine (14:0) were negatively associated with COVID-19. 
Pathway and network analyses were performed to identify metabol-
ic pathways and specific diseases that were overrepresented in the 
metabolites positively or negatively associated with COVID-19. 
Metabolic pathway analysis revealed 17 pathways that were signifi-
cantly enriched for metabolites associated with COVID-19 (table S4). 
In addition, eight of these metabolites were overrepresented in a 
network consisting of three disease functions: immunological disease, 
inflammatory disease, and inflammatory responses (fig. S1). Network 
analysis showed links between metabolites and cytokine activa-
tion, activation of extracellular signal–regulated kinase 1/2 (ERK1/2), 
and regulation of glucose and insulin signaling in COVID-19 pa-
tients (fig. S1).

Metabolites correlate with immune response in a  
sex-specific manner
Next, we examined how the 75 identified serum metabolites from 
both COVID-19 patients and HCWs correlated with immune markers 
[cytokine and chemokine abundances in plasma, as well as numbers 
of T cells, B cells, and proportions of natural killer (NK) cells, NK T 
cells, monocytes, macrophages, and dendritic cells in peripheral 
blood mononuclear cells (PBMCs), and proportions of T cell sub-
sets in T cells] that were previously measured from the same indi-
viduals (fig. S2 and data files S1 and S2) (1). In COVID-19 patients, 
we observed 36 significant correlations between immune markers 
and metabolites with |R| > 0.5 (fig. S3 and data file S1). However, 
after stratification by sex, additional correlations were observed be-
tween metabolites and immune markers for each sex independent-
ly, suggesting that sex-specific immune responses could be linked to 
metabolism (fig. S3 and data file S1).

Further examination revealed that KA, an endogenous ligand 
of the aryl hydrocarbon receptor (AhR), which regulates immune 
responses (5), had positive correlations with immune markers (fig. 
S2). Many of these positive correlations were observed in male pa-
tients, including plasma abundances of interleukin-1 (IL-1) receptor 
antagonist (IL-1RA), IL-6, IL-10, tumor necrosis factor– (TNF), 
macrophage colony-stimulating factor (M-CSF), stem cell factor 
(SCF), and the chemokines CX3CL1, CXCL9, CXCL13, CCL1, CCL21, 
and CCL22. In addition, KA in males was negatively associated with 
the numbers of T cells and proportions of naïve CD8+ T cells, CD4+ 
effector memory (CD4Tem) T cells, and CD8+ effector memory 

(CD8Tem) T cells in T cells (Fig. 1, A and B). In female patients, KA 
was positively associated only with plasma abundances of IL-12p40, 
CCL3, CXCL9, and SCF (Fig. 1, A and B). In summary, sex-specific 
differences in correlations between metabolites and immune re-
sponses were observed in COVID-19 patients, wherein KA had the 
most prominent connection to immune response in males.

KA is associated with a sex-specific immune response
To further understand the sex-specific correlation of KA with im-
mune markers, we investigated the relationship between KA and 
kynurenine. Kynurenine (K) is a product of tryptophan metabolism 
that is converted to KA by kynurenine aminotransferases (KATs), 
which are encoded by KYAT genes (Fig. 1C). Note that tryptophan 
was inversely associated with COVID-19 disease (table S3). We ex-
amined the ratio of KA:K in patients with COVID-19 as a surrogate 
for KAT-mediated production of KA from K (6). In males, we 
observed that a high KA:K was positively correlated with the abun-
dances of IL-6, CCL1, CCL21, TNF, and M-CSF, as well as the pro-
portion of NK cells in PBMCs and proportion of CD8+ terminally 
differentiated effector memory (Temra) T cells in T cells (Fig. 1B). 
A high KA:K was negatively correlated with the abundances of 
sCD40L, PDGFAA, and PDGFAB/BB, as well as the proportion of 
monocytes in PBMCs and proportions of PD1+TIM3+CD8+ T cells, 
CD38+HLA-DR+CD8+ T cells, naïve T cells, and IL-6+CD4+ T cells 
in T cells (Fig.  1B). Note that a high KA:K was positively cor-
related with T cell activation in females, but overall T cell numbers 
showed a negative correlation with the ratio of KA:K in males with 
COVID-19 (Fig. 1B). We also observed that the KA:K ratio and KA 
abundance positively correlated with age in males with COVID-19 
(Fig. 1D and fig. S4A). KA abundance had a low positive correlation 
with age in females with COVID-19, but the ratio of KA:K was not 
correlated (fig. S4A and Fig. 1D). In HCWs, KA abundance nega-
tively correlated with age only in males (fig. S4A), whereas KA:K 
negatively correlated with age in both males and females (Fig. 1D).

Closer examination of other metabolites involved in K and KA 
metabolism revealed additional correlates of the cellular immune 
response during COVID-19. The abundance of the microbial catab-
olite of tryptophan, indole-3-lactic acid (7), was positively associat-
ed with the abundances of IL-4+CD4+ and CD38+HLA-DR+CD8 
T cells in T cells in males (fig. S4B). In females, indole-3-lactic acid 
abundance was negatively associated with the plasma abundance of 
granulocyte colony-stimulating factor (G-CSF), M-CSF, and CXCL10 
(fig. S4B); K abundance was positively associated with IL-2, CCL15, 
CXCL13, and SCF abundance (Fig. 1B); and tryptophan abundance 
was positively correlated with the abundance of follicular CD8+ 
T cells in T cells (Fig. 1B).

To evaluate whether the sex-specific association between KA and 
the immune response, which was observed in males with COVID-19, 
was also observed in healthy individuals, we analyzed tissue-specific 
expression data from the Genotype-Tissue Expression (GTEx) project 
(8). Whereas the expression of KYAT genes generally tended to 
have more positive correlations with cytokines in males compared 
to females, KYAT3 had particularly stronger correlations in a subset 
of tissues (including the brain and colon), many of which are typi-
cally involved in COVID-19 (fig. S5). Within the brain, we found that 
these positive correlations between the extent of KYAT3 expres-
sion and cytokine abundance were specific to older males (aged 
>60 years old) (fig. S6A). Because KA is a ligand for AhR, which reg-
ulates immune responses and inflammation (5), we analyzed AhR 
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Fig. 1. Tryptophan pathway metabolites and immune responses. (A) Correlation between KA ion intensities and immune markers in male patients with COVID-19 (Pt. M, 
n = 17) and female patients with COVID-19 (Pt. F, n = 22). Ninety-five percent confidence intervals (CIs) for the correlation coefficients are indicated as shaded areas colored 
according to patient sex. (B) Heatmap showing the correlation between tryptophan metabolites and immune markers in males and females with COVID-19. Spearman cor-
relations >0.5 or <−0.5 are displayed; P < 0.05. (C) Tryptophan (T) metabolism pathway schematic. (D) Correlation between age and KA:K ratio in patients with COVID-19 and 
in HCWs. (E) Correlation between KYAT3 expression (averaged within each age group) and age in GTEx samples (n = 729 males, n = 1914 females). Metabolites are displayed 
as log10-transformed ion intensities. Cytokines and chemokines are displayed as log10-transformed concentrations in the plasma (in picograms per milliliter), T cell subsets are 
given as a percentage of CD3+ T cells, and T cell numbers are given as 106 cells/ml, and these values were used for the correlation analysis. In the heatmap (B), correlations 
between tryptophan metabolites and percentages of B cells, NK cells, and total and classical monocytes (TotalMono and cMono, respectively) in live PBMCs are also included.
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activation using a previously defined score (9) and found that AhR 
activation correlated most positively with KYAT3 expression in the 
brain and muscle in older males while closely correlating in colon 
(fig. S6B). Correlations in the brain became even more pronounced 
when analyzing only the AhR target gene cytochrome P450 1B1 
(CYP1B1), which is classically used to monitor AhR activation in 
the brain (fig. S6C) (10). We also showed that KYAT3 expression 
decreased with age in both males and females, which was consistent 
with the decreasing ratios of KA:K observed in HCW control sam-
ples (Fig. 1E). In summary, these data suggest that older males are 
uniquely sensitive to increases in KA, reacting disproportionately 
with increases in inflammatory cytokines, likely as part of a broader 
AhR activation.

KA correlates with disease severity in a sex-specific manner
Because KA correlated with numerous immune markers, and these 
immune markers were previously linked to disease progression (1), 
we examined whether KA was directly associated with disease se-
verity. We used previously defined clinical scores to classify disease 
severity in COVID-19 patients as deteriorated or stabilized (1). KA 
abundance was not significantly different between deteriorated and 
stabilized patients or after additional stratification by sex. However, KA 
abundance was positively correlated with the amounts of CXCL9, 
IL-6, IL-12p40, CCL1, CCL3, CCL15, CCL21, CCL27, SCF, M-CSF, 
and G-CSF in COVID-19 patients that deteriorated. In stabilized 
patients, KA abundance was also positively correlated with the 
amounts of CXCL9 and CX3CL1 (Fig. 2, A and B). We further ex-
amined whether KA:K was correlated with disease severity by sex. 
Males who deteriorated had a significantly higher KA:K than those 
patients that stabilized, whereas there was no difference in KA:K 
between females based on clinical course (Fig. 2C) as determined by 
a Wilcoxon Mann-Whitney U test with false discovery rate (FDR) 
correction. Furthermore, a high KA:K was positively correlated with 
CXCL9 and CCL1 abundance in males that deteriorated, but this cor-
relation was not seen in patients that stabilized or in females (Fig. 2D).

We also examined whether any of the 17 metabolites associated 
with COVID-19 status (table S3) were correlated with disease sever-
ity. We observed that only glutamate was associated with disease 
trajectory, and a significantly greater glutamate abundance was ob-
served in stabilized patients compared to that in patients that dete-
riorated (Fig. 3A), as assessed by Wilcoxon Mann-Whitney U test 
with FDR correction. Note that KA is a glutamate receptor antago-
nist; thus, high KA production inhibits glutamate release (11). Cor-
relation analysis revealed that the plasma concentrations of eotaxin2 
and IL-5 and the abundances of CD4+ T cells and CD4+ rnTreg (resting 
natural regulatory T) cells in T cells negatively correlated with glu-
tamate abundance in deteriorated patients, whereas IL-6 amounts 
and CD8+ T cell and GzB+CD8+ T cell abundances positively cor-
related (Fig. 3B). Further stratification by sex showed a similar trend 
whereby stabilized patients had greater amounts of glutamate than 
deteriorated patients within each sex group (Fig. 3A), as assessed by 
Wilcoxon Mann-Whitney U test with FDR correction. Correlation 
analysis of immune markers with glutamate abundance by sex re-
vealed a negative correlation with eotaxin2 and a positive correlation 
with IL-6 amounts, but only in females that deteriorated. The abun-
dance of CD4+ T cells negatively correlated, and that of GzB+CD8+ T 
cells positively correlated with glutamate abundance, but only in 
males that deteriorated. The amount of IL-5 negatively correlated 
with glutamate abundance in males who deteriorated, whereas it 

negatively correlated with glutamate abundance in females that sta-
bilized. The proportion of CD8+ T cells in T cells positively correlated 
with glutamate abundance in males that deteriorated and neg-
atively correlated in males that stabilized (Fig. 3C). These data 
suggest that low glutamate abundance may contribute to poorer 
disease progression in patients with COVID-19 by regulating im-
mune responses. In addition, a high KA:K was correlated with 
poorer prognosis only in male COVID-19 patients.

DISCUSSION
Patients with severe COVID-19 disease experience a “cytokine storm,” 
which is characterized by an increase in the amount of proinflam-
matory cytokines and an aggressive inflammatory response (12), 
and sex specificity in the immune response has been previously re-
ported that could underlie these differences in clinical outcomes (1). 
Our analysis of serum metabolites from COVID-19 patients revealed 
that KA abundance and the ratio of KA:K correlated with the sex- 
specific immune response and clinical disease course. A previous 
study revealed that plasma metabolites in tryptophan and K metab-
olism correlated with IL-6 abundance in a sex-aggregated cohort of 
COVID-19 patients, but sex specificity was not examined (13). Our 
study demonstrated that, in males, high KA:K was positively cor-
related with increased abundances of cytokines and chemokines 
and portends clinical deterioration. On the other hand, a negative 
association was observed with the amounts of eotaxin, sCD40L, and 
PDGFs and the numbers of T cells, indicating that males with a high 
KA:K may have a poorer response to inflammation associated with 
COVID-19, including decreased eosinophil recruitment and T cell 
activation (14, 15).

A previous study indicated that PDGFs are associated with a bet-
ter prognosis from COVID-19 if the patients have reduced cytokine 
abundance, which supports the association between a higher KA:K 
and poorer outcomes in males (16). In females with COVID-19, a 
high KA:K positively correlated with a small number of cytokines 
and also T cell activation, but in contradistinction to males, a high 
KA:K was not associated with disease severity. Therefore, these 
results support the role of K metabolism in sex-related differences 
previously reported in immune responses to COVID-19 (1). On the 
basis of the gene expression data from GTEx, we found that older 
males (but not females or younger males) appeared to have exqui-
site sensitivity to changes in KYAT gene expression (which we used 
as a proxy for KA abundance), whereby natural increases in KYAT 
expression were met with concomitant natural increases in tissue 
cytokine expression. Note that the tissues exhibiting these sex-specific 
correlations, including the brain, muscle, kidney, and colon, are those 
that are commonly implicated in symptoms of COVID-19 patients 
such as anosmia, myalgia, acute kidney injury, and gastrointestinal 
distress.

Given its role in regulating the immune system and inducing the 
production of proinflammatory cytokines such as IL-6 (5), modula-
tions in the AhR signaling pathway likely account for this differ-
ential response among older males. In support of this hypothesis, 
we showed that AhR activation was most strongly associated with 
KYAT3 expression in healthy older males. In addition, studies pre-
viously showed that male rodents have a more toxic response than 
that of female rodents to stereotypical AhR agonists, such as TCDD 
(2,3,7,8-tetrachlorodibenzo-p-dioxin) (17). Furthermore, testosterone-
mediated signaling inhibits AhR activity (18), and in view of the 
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Fig. 2. Tryptophan metabolites, immune markers, and disease severity. (A) Heatmap of the correlations between metabolites in the tryptophan pathway and im-
mune markers by disease severity. Spearman correlations >0.5 or <−0.5 are displayed with P < 0.05. (B) Correlations between KA ion intensities and immune markers by 
disease severity. Ninety-five percent CIs for the correlation coefficients are indicated in the shaded areas colored according to disease progression status. (C) Comparison 
of the KA:K ratio by disease severity stratified by sex. Patients were classified as stabilized (females, n = 16; males, n = 11) or deteriorated (females, n = 6; males, n = 6). 
Nonparametric Kruskal-Wallis rank sum tests with pairwise Wilcoxon Mann-Whitney U tests were performed, and P values were adjusted for FDR (Benjamini-Hochberg). 
**P < 0.01; NS, not significant. (D) Correlation between the KA:K ratio and CXCL9 and CCL1 abundances stratified by disease severity and sex. Metabolites, cytokines and 
chemokines, T cell subsets, T cell numbers, and subsets of PBMCs are displayed and analyzed as described for Fig. 1A.
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Fig. 3. Glutamate, immune 
markers, and disease severi-
ty. (A) Comparison of gluta-
mate abundance in stablized 
patients and deteriorated pa-
tients (left) and stratified by 
sex (right). The numbers of the 
different patient groups are 
as follows: Stabilized patients 
(n = 27), deteriorated patients 
(n = 12), stabilized females (n = 
16), deteriorated females (n = 
6), stabilized males (n = 11), 
and deteriorated males (n = 6). 
Nonparametric Kruskal-Wallis 
rank sum tests with pairwise 
Wilcoxon Mann-Whitney U tests 
were performed, and P values 
were adjusted for FDR (Benjamini- 
Hochberg). **P < 0.01. (B) Cor
relation between glutamate ion 
intensities and the amounts 
of eotaxin2, IL-5, and IL-6, as 
well as the numbers of CD4+ 
T cells, CD4+ rnTreg cells, CD8+ 
T cells, and GzB+CD8+ T cells 
in stabilized patients and de-
teriorated patients, as indi-
cated. (C) Correlation between 
glutamate ion intensities and 
the amounts of eotaxin2, IL-5, 
and IL-6, as well as the num-
bers of CD4+ T cells, CD8+ 
T cells, and GzB+CD8+ T cells in 
stabilized patients and dete-
riorated patients stratified by 
sex. Ninety-five percent CIs for 
the correlation coefficients were 
indicated as the shadowed 
areas colored according to 
progression status. Metabolites, 
cytokines and chemokines, 
T cell subsets, T cell numbers, 
and subsets of PBMCs are dis-
played and analyzed as de-
scribed for Fig. 1A.
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decreasing plasma concentrations of testosterone seen in older males 
(19), it seems plausible that healthy older males could be naturally 
susceptible to greater AhR activation by endogenous ligands.

In the context of COVID-19 infection, patients presented with 
increased KAT activity (as suggested by the higher KA:K ratios), 
especially among deteriorating male patients. Another study demon-
strated that a similar induction of AhR activity occurs in the context of 
murine coronavirus infection, inducing indoleamine 2,3-dioxygenase 
1 (Ido-1) expression (20). Proinflammatory factors increase IDO 
expression, which will lead to an increase in the production of 
kynurenine, which activates AhR, thereby enhancing the initial proin-
flammatory cytokine phase and suppressing the endogenous antivi-
ral response. Such AhR-driven changes are advocated as accounting 
for the heightened severity and fatality that are associated with pre-
existing, high-risk medical conditions, such as type 2 diabetes. Note 
that two major risk factors for COVID-19, type 2 diabetes and obe-
sity, are associated with increased AhR ligand activity (21, 22). Such 
an influx of endogenous AhR ligands, combined with an already 
enhanced susceptibility for AhR activation, therefore, would pose 
an increased risk of developing a cytokine storm, specifically in older 
male patients.

Our analysis also revealed discrete serum metabolites associated 
with COVID-19 that may account for some of the varying clinical 
outcomes in these patients. For example, metabolites that were 
positively associated with COVID-19 (table S3) have inflammatory 
[palmitoleic (23) and arachidonic acids (24)] and neurological [glu-
tamate (25) and cysteine-S-sulfate (26)] roles. Metabolites that were 
negatively associated with COVID-19 are involved in the urea cycle 
and the nitric oxide (NO) synthesis pathway [proline, citrulline, and 
glutamine (27)]. The NO synthesis pathway mediates responses 
to proinflammatory cytokines, macrophages, and neutrophils. Low 
concentrations of citrulline are observed in patients with acute re-
spiratory distress syndrome (28) and can cause NO synthase uncou-
pling and decreased NO synthesis, which is important for vascular 
function and endothelial cell function (29). It is suggested that ther-
apeutic NO could be used to improve pulmonary vascular function 
in COVID-19 patients (30). Metabolic pathway and network analy-
sis revealed further insight into the possible effects of COVID-19 on 
metabolism and signaling (table S4 and fig. S1). Five metabolites were 
overrepresented in 17 metabolic pathways in COVID-19 patients 
(table S4). These pathways are linked to amino acid biosynthesis and 
catabolism, suggestive of dysregulated nitrogen metabolism. In ad-
dition, pathways linked to nicotinamide adenine dinucleotide and 
nucleotide metabolism were enriched in COVID-19 patients. A previous 
study showed similar metabolic pathway enrichment in COVID-19 
patients that indicated responses to inflammatory signaling (13). Note 
that, in our study, network analysis showed a number of metabo-
lites linked to the regulation of ERK1/2 signaling, which has been 
previously associated with COVID-19 pathogenesis, including acti-
vation of viral transcription and translocation (31). Network analy-
sis also revealed links to insulin and glucose regulation, which is of 
importance for diabetic patients; however, insulin can also regulate 
immune cell function during viral infection, particularly in T cells, and 
thus may play a role in immune responses (32). Because cytokine re-
sponses were linked to metabolites associated with COVID-19 in this 
network, it is possible that these metabolites act in a coordinated man-
ner to regulate immune and cytokine responses in COVID-19.

Of the 17 metabolites associated with COVID-19 status, only 
glutamate was associated with disease severity. In addition, sex-specific 

correlations between immune responses and glutamate abundance 
were also associated with disease severity. Males that deteriorated 
from COVID-19 had positive correlations between glutamate abun-
dance and CD8+ T cell proportion in T cells and a negative correla-
tion with CD4+ T cell proportion in T cells. A previous study showed 
that increased amounts of innate immune cytokines are associated 
with clinical deterioration in females with COVID-19 (1). Here, we 
observed that IL-6 abundance was positively correlated with gluta-
mate only in females that deteriorated. Increasing concentrations of 
glutamate are associated with decreased IL-5 secretion (33), and we 
found a negative correlation between glutamate and IL-5 amounts 
in males that deteriorated and also in females that stabilized. Fur-
thermore, eotaxin2 abundance negatively correlated with glutamate 
amounts in females that deteriorated. Similarly to eotaxin2, IL-5 is 
also linked to eosinophil activation; therefore, in females, glutamate 
may be important in regulating eosinophilia in COVID-19. Inci-
dentally, KA is a glutamate receptor antagonist. Glutamate receptors 
are expressed on the surface of T cells, and the expression of these 
receptors is induced by T cell activation (34). Glutamate transport-
ers have also been described in various immune cells (34); therefore, 
the correlation between glutamate and immune cell responses may 
reflect the actions of KA on glutamate abundance and also immune 
cell responses to COVID-19 (35). Because our study did not analyze 
non-COVID individuals exhibiting similar clinical symptoms to 
those of COVID-19 patients, it remains possible that increased KA 
abundance and KA:K may lead to increased cytokine production 
and more broadly mediate the inflammatory symptoms of other 
pathologies. This possibility, however, does not detract from our 
observations in COVID-19 patients or from the potential of AhR as 
a therapeutic target in COVID-19.

In summary, we have identified serum metabolites associated 
with COVID-19 clinical course, immune response, and sex-specific 
differences. Among these, we identified KA as a metabolite associ-
ated with sex, age, increased disease severity, and enhanced cyto-
kine and chemokine abundances. KA is a ligand for AhR, which, 
when activated, is a master regulator of immune responses and in-
flammation. Note that KA can also induce increased cytokine pro-
duction, which can positively feedback to activate IDO; therefore, 
KA can sustain immune responses particularly in males that have a 
greater sensitivity toward AhR ligands and exhibit more substantial 
immune responses. Sex-specific agonism of AhR has yet to be reported 
in humans, but it appears to be a prominent feature in COVID-19 
disease, potentially underlying the cytokine storm and the dampen-
ing of T cell activation. It is possible that KA production, despite 
occurring in both sexes, could elicit a specific immune response and 
worse clinical outcomes through AhR activation in male COVID-19 
patients. In addition, KA dampens glutamate release (11), and we 
observed reduced glutamate abundance in patients that deteriorated 
compared to those patients that stabilized. Further investigation 
into the relevance of KA, KAT, and AhR activation in COVID-19 
and the role of glutamate in clinical outcomes will be of utmost im-
portance, particularly for understanding the sex-specific differences 
in immune response and patient outcomes. In addition, further ex-
amination of these findings in another independent larger cohort is 
underway because our study has relatively small sample sizes with 
group stratification. As we learn more about the effects of the me-
tabolome on COVID-19 disease course, clinicians may find that 
modulating metabolite concentrations, either through enteral nu-
trition or targeted metabolic enzymes, may alter disease trajectory. 
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Future studies will target the KA pathway to determine whether 
dampening AhR activation lessens the cytokine storm observed in 
male patients, particularly in those that are older.

MATERIALS AND METHODS
Ethics statement
This study was approved by the Yale Human Research Protection 
Program Institutional Review Boards (FWA00002571, protocol ID: 
2000027690). Informed consent was obtained from all enrolled pa-
tients and HCWs.

Experimental design
Sex-specific differences in COVID-19 immune responses were iden-
tified in our previous study (1). The objective of the current study 
was to investigate the roles of metabolites in the observed sex-related 
differences in immune responses. An untargeted metabolomics 
analysis was conducted on a cohort of COVID-19 patients (n = 39) 
and HCWs (n = 20). After correlation, analyses of the metabolites 
identified and the immune markers measured in our previous study 
were performed for male and female patients to identify sex-specific 
immune responses mediated by metabolites.

Clinical biospecimens
Serum samples were collected from patients enrolled in the IMPACT 
study from Cohort A as described previously (1) and were stored 
at −80°C. Cohort A consisted of 39 patients aged ≥18 years old that 
tested positive for SARS-CoV-2 by reverse transcription polymerase 
chain reaction (RT-PCR) analysis from nasopharyngeal and/or oro-
pharyngeal swabs (females, n = 22; males, n = 17) (36). Intersex and 
transgender individuals were not represented in this study. Before 
serum collection, these patients were not in an intensive care unit, 
had not received tocilizumab, and had not received high-dose cor-
ticosteroids. Patients on hydroxychloroquine (n = 29) and remde-
sivir (n = 3) were not excluded. For control groups, we used 20 serum 
samples collected from COVID-19–uninfected HCWs working at 
the Yale New Haven Hospital between 2 and 28 April 2020 who 
enrolled in the IMPACT study (females, n = 10; males, n = 10). The 
detailed demographics and clinical characteristics of these study 
participants and controls are shown in table S1.

Immune markers and analysis of disease severity
An immune panel of markers for each patient was obtained and 
published in a previous study (1). The patients were assessed with a 
locally developed clinical scoring system for disease severity (16), as 
follows: 1: admitted and observed without supplemental oxygen; 2: 
required ≤3 liters of supplemental oxygen by nasal canal to main-
tain an SpO2 of >92%; 3: received tocilizumab, which per hospital 
treatment protocol required that the patient has >3 liters of sup-
plemental oxygen to maintain an SpO2 of >92% or has >2 liters of 
supplemental oxygen to maintain an SpO2 of >92% and had a high- 
sensitivity C-reactive protein of >70; 4: the patient required intensive 
care unit–level care; 5: the patient required intubation and mechanical 
ventilation. In relation to the World Health Organization (WHO) 
scoring, our clinical scores 1, 2/3, 4, and 5 largely correspond to 
WHO scores 3, 4, 5, and 6/7, respectively (37). All the patients en-
rolled in this study had a clinical score of 1 or 2 at the time of sample 
collection (1.3  ±  0.5 and 1.4  ±  0.5 for female and male patient 
groups, respectively; table S1), and the patients were categorized into 

the stabilized group and the deteriorated group according to their 
clinical trajectory after sample collection. If the patient’s score re-
mained at 1 or 2 throughout the admission, the patient was catego-
rized to the stabilized group, and if the score increased to 3 or more 
at any time during admission, the patient was categorized to the 
deteriorated group. Detailed demographic information on the 
patients was previously published (1). For the patients who were 
90 years old or older, their ages were protected health information, 
and 90 was put as the surrogate value for the analyses. Individuals 
with active chemotherapy against cancers, pregnant patients, patients 
with background hematological abnormalities, patients with auto-
immune diseases, and patients with a history of organ transplanta-
tion and that were on immunosuppressive agents were excluded 
from this study.

Serum metabolite extraction
Serum samples (50 l) were thawed and deactivated for COVID-19 
in 150 l of acetone:methanol (50:50, v/v) for 60 min at room tem-
perature. Control samples were treated in exactly the same manner. 
To precipitate proteins, the samples were incubated for 2 hours at 
−20°C, which was followed by centrifugation at 15,000g at 4°C for 
15 min. The resulting supernatant was removed and evaporated to 
dryness for 12 hours with a vacuum concentrator (Thermo Fisher 
Scientific). The dry extracts were then reconstituted in 100 l of 
acetonitrile:H2O (1:1, v/v), sonicated for 10 min, and centrifuged at 
15,000g at 4°C for 15 min to remove insoluble debris. The superna-
tants were transferred to ultraperformance liquid chromatography 
(UPLC) autosampler vials (Thermo Fisher Scientific). A pooled QC 
sample was prepared by mixing 5 l of extracted solution from each 
sample into a similar UPLC vial. All the vials were then capped and 
stored at −80°C before being subjected to UPLC–mass spectrome-
try (MS) analysis.

UPLC-MS–based metabolomics analysis
To analyze the serum metabolome, both hydrophilic interaction 
chromatography (HILIC)–MS and reverse-phase liquid chroma-
tography (RPLC)–MS approaches were used. A UPLC system (H-Class 
ACQUITY, Waters Corporation) coupled to a quadrupole time-of-
flight (QTOF) (Xevo G2-XS QTOF, Waters Corporation) was used 
for MS data acquisition. A Waters ACQUITY UPLC BEH Amide 
column {particle size: 1.7 m; 100 mm (length) by 2.1 mm [internal 
diameter (i.d.)]} and a Waters ACQUITY UPLC BEH C18 column 
[particle size: 1.7 m; 100 mm (length) by 2.1 mm (i.d.)] were used 
for the UPLC-based separation of metabolites. The column tempera-
ture was kept at 25°C for HILIC-MS analysis and at 30°C for RPLC-
MS analysis. The solvent flow rate was 0.5 ml/min, and the sample 
injection volume was 4 l for HILIC-MS and RPLC in positive mode 
analysis, 2 l for HILIC-MS in negative mode, and 6 l for RPLC-MS in 
negative mode. For HILIC-MS analysis, mobile phase A was 25 mM 
NH4OH and 25 mM NH4OAc in water, whereas mobile phase B 
was acetonitrile, for both electrospray ionization (ESI), positive and 
negative mode. The linear gradient was set as follows: 0 to 0.5 min, 
95% B; 0.5 to 7 min, 95% B to 65% B; 7 to 8 min, 65% B to 40% B; 8 
to 9 min, 40% B; 9 to 9.1 min, 40% B to 95% B; 9.1 to 12 min, 95% B.  
For RPLC-MS analysis, mobile phase A was 0.1% formic acid in 
H2O, whereas mobile phase B was 0.1% formic acid in acetonitrile, 
for ESI+. Mobile phase A was 5 mM NH4OAc in H2O, while mobile 
phase B was acetonitrile for ESI−. The linear gradient was set as fol-
lows: 0 to 1 min, 1% B; 1 to 8 min, 1% B to 100% B; 8 to 10 min, 
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100% B; 10 to 10.1 min, 100% B to 1% B; 10.1 to 12 min, 1% B. The 
LC-MS system was conditioned with eight QC samples before anal-
ysis. Serum samples were injected into the LC-MS system in a ran-
domized order. Pooled samples were analyzed every eight injections 
during the UPLC-MS analysis to monitor the stability of the data 
acquisition and were used for subsequent data normalization. QTOF 
scan data (300 ms per scan; mass scan range, 50 to 1000 Da) were 
initially acquired for each biological sample for metabolite quan-
tification. Then, both data-dependent acquisition data [QTOF scan 
time: 100 ms per scan; MSMS scan time: 500 ms per scan; collision 
energy: 20 eV; top five most intense ions were selected for fragmen-
tation, exclude former target ions (4 s after two occurrences)] and 
MSE data (low-energy scan: 300 ms per scan, collision energy: 6 eV; 
high-energy scan: 300 ms per scan, collision energy: 20 eV, mass 
scan range: 25 to 1000 Da) were acquired for QC samples to enable 
metabolite identification. ESI source parameters on the Xevo GS-XS 
QTOF were set as follows: Capillary voltage of 1.8 kV was used 
in ESI negative mode, and 2.5 kV was used in ESI positive mode; 
sampling cone, 30 V; source temperature, 100°C; desolvation tem-
perature, 550°C; cone gas flow, 40 liters/hour; desolvation gas flow, 
900 liters/hour.

UPLC-MS data processing
The raw MS data (.raw) were converted to mzML files with Prote-
oWizard MSConvert software (version 3.0.6150, www.proteowizard.
sourceforge.net/). The parameters of minimum SNR (signal-to-noise 
ratio) and minimum peak spacing were set at 0.1 for peak-picking 
in ProteoWizard. The files were then processed in R (version 3.4.3) 
with the XCMS package for feature detection, retention time correc-
tion, and alignment (38). The XCMS processing parameters were 
optimized and set as follows: mass accuracy for peak detection = 20 
ppm, peak width c = (2, 30), snthresh = 6, bw = 10, mzwid = 0.015, 
minfrac = 0.5. The CAMERA package was used for subsequent peak 
annotation. The resulting data were normalized using the support 
vector regression algorithm in R to remove an unwanted system 
error that occurred among intra- and interbatches (39). The gener-
ated data were subjected to principal components analysis, which 
demonstrated good analytical reproducibility as revealed by cluster-
ing of QC samples (fig. S7). Metabolic features in the QC sample 
with relative SD < 30% were used for subsequent statistical analyses. 
Initial metabolite identification was performed with the MetDNA 
algorithm (40). Metabolites were further identified by matching 
retention time with an in-house metabolite standard library. In 
addition, metabolite identification was performed by matching 
accurate mass and experimental MS/MS data against online databases 
(METLIN and HMDB).

Bioinformatics
Multivariable logistic regression analyses were performed on the R 
platform (version 3.4.3) using the “glm ()” R function. The model 
for each metabolite was adjusted for age, BMI, and sex to find me-
tabolites associated with COVID-19 disease. The abundances of 
metabolites were determined by log10 transformation of ion inten-
sities. P values were adjusted for multiple testing with Benjamini- 
Hochberg–based FDR using the “p.adjust ()” R function. Spearman 
correlation analyses were performed on the R platform (version 
4.0.2) using the “psych” R package. Correlation coefficient R and 
P values were calculated using the “corr.test ()” R function. Using pre-
viously defined interpretations of correlation coefficients, we used 

an |R| value of 0.5 to 1.0 to mark moderate–to–very high correlations 
(41). Heatmaps were plotted using the “pheatmap” R package. Gene 
transcripts per million (TPMs), subject phenotypes, and sample at-
tributes data were downloaded from GTEX Portal (gtexportal.org, 
accession: phs000424.v8.p2). After the TPM values were transformed 
as log10(TPM + 1), composite expression scores were calculated by 
adding the individual expression values together. Patients who were 
60 years or older were coded as “Older,” whereas patients 30 years 
or younger were coded as “Young.” After loading the expression data 
into R with the CePa package, Pearson correlation coefficients were 
calculated for pairs of target genes within each tissue of each sex, and 
data were visualized as a heatmap displaying the difference between 
the male and female coefficients using the ComplexHeatmap package. 
Male-specific correlations were validated by scatter plots and linear 
regressions, which were generated using the ggplot2 R package.

Statistical analysis
For untargeted metabolomics data, the statistically significant P value 
of each feature in the logistical model was determined, which was 
followed by a Benjamini-Hochberg–based FDR correction of the 
P value to calculate the corresponding q value. Metabolites were 
considered as significantly associated when q < 0.05.

Pathway analysis
Canonical metabolic pathway and network analyses were per-
formed with Ingenuity Pathway Analysis software (QIAGEN, www.
qiagen.com/ingenuity) to identify a network of connected pathways, 
diseases, and functions that were overrepresented in the metabolites 
associated with COVID-19. Each metabolite was mapped using the 
Ingenuity Pathway Knowledge Base. Significant (Benjamini-Hochberg 
FDR, P < 0.05) pathway enrichment within a reference network was 
performed with Fisher's exact test. A network score was determined 
on the basis of a P value calculation, which calculates the likelihood 
that the metabolites, which are part of a network, are found therein 
by random chance alone. It represents the negative exponent of the 
right-tailed Fisher's exact test result [for example, P = 1 × 10−3 rep-
resents score = 3).

SUPPLEMENTARY MATERIALS
stke.sciencemag.org/cgi/content/full/14/690/eabf8483/DC1
Figs. S1 to S7
Tables S1 to S4
Data files S1 to S3

View/request a protocol for this paper from Bio-protocol.
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