
Transition to invasive breast cancer is associated with 
progressive changes in the structure and composition of tumor 
stroma

Tyler Risom1,2, David R. Glass1,7, Inna Averbukh1,7, Candace C. Liu1, Alex Baranski1, 
Adam Kagel1, Erin F. McCaffrey1, Noah F. Greenwald1, Belén Rivero-Gutiérrez1, Siri H. 
Strand1, Sushama Varma1, Alex Kong1, Leeat Keren1, Sucheta Srivastava1, Chunfang Zhu1, 
Zumana Khair1, Deborah J. Veis6, Katherine Deschryver3, Sujay Vennam1, Carlo Maley5, 
E. Shelley Hwang4, Jeffrey R. Marks4, Sean C. Bendall1, Graham A. Colditz3, Robert B. 
West1,*, Michael Angelo1,6,8,*

1Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

2Department of Research Pathology, Genentech, South San Francisco, CA, USA

3Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA

4Department of Surgery, Duke University, Durham, NC, USA

5Biodesign institute, Arizona State University, Tempe, AZ, USA

6Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, 
MO, USA

7These authors contributed equally

8Lead Contact

SUMMARY

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor 

to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment 

(TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of 

flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated 
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surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and 

object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed 

coordinated transitions between four TME states that were delineated based on the location and 

function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption 

was more advanced in DCIS patients that did not develop IBC, suggesting this process could 

be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers 

insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these 

processes.

In brief

A spatial imaging atlas of patient-matched ductal carcinoma in situ and invasive breast cancer 

depicts coordinated changes in the tumor microenviroment associated with invasive relapse, 

suggesting a potential protective role of myoepithelial disruption against invasive progression.

Graphical Abstract

INTRODUCTION

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion of tumor cells within the breast duct 

that are isolated from the surrounding stroma by a near-continuous layer of myoepithelium 

and basement membrane proteins. This histologic property is the primary feature that 

distinguishes DCIS from invasive breast cancer (IBC), where this barrier is absent and tumor 

Risom et al. Page 2

Cell. Author manuscript; available in PMC 2022 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells are in direct contact with the stroma (Figure 1A). DCIS comprises 20% of new breast 

cancer diagnoses, but unlike IBC, is not a life-threatening disease in itself. However, if left 

untreated, up to half of patients with DCIS develop IBC within 10 years (Betsill et al., 1978; 

Erbas et al., 2006; Eusebi et al., 1994; Page et al., 1982; Ryser et al., 2019), leading to the 

current practice of surgical intervention for all DCIS patients.

Sequencing-based approaches have been used extensively over the last decade to identify 

molecular mechanisms that could explain the connection between DCIS and IBC. Genomic 

profiling has identified recurrent copy number variants that are more prevalent in high-grade 

DCIS lesions (Afghahi et al., 2015; Buerger et al., 1999; Fujii et al., 1996). Comparison of 

DCIS and IBC lesions from the same patient has provided clues into the clonal evolution 

from in situ to invasive disease by revealing genomic alterations that are acquired during this 

transition (Casasent et al., 2018; Kim et al., 2015; Newburger et al., 2013). To date, however, 

these findings have not consistently explained this transition. Similarly, the utility of tumor 

phenotyping by single-plex immunohistochemical tissue staining has been limited as well.

In light of this uncertainty, clinical management has favored treating all patients 

presumptively as progressors to IBC with surgery, radiation therapy, and pharmacological 

interventions, all of which carry risks for adverse events. Consequently, this approach is 

likely to be overly aggressive for patients who do not progress (non-progressors). Thus, 

understanding what drives DCIS to transition to IBC is a critical unmet need and opportunity 

for prevention. Surprisingly, despite all the information now known about the genetic and 

functional state of tumor cells in DCIS, histopathology remains the only reliable way to 

diagnose it. Thus, DCIS is an intrinsically structured entity for which the spatial orientation 

of tumor, myoepithelial, and stromal cells are defining characteristics.

To understand how DCIS structure and single-cell function are interrelated, we used tools 

previously developed by our lab for highly multiplexed subcellular imaging to analyze 

a large cohort of human archival tissue samples covering the spectrum of breast cancer 

progression, from in situ to invasive disease, in a spatially resolved manner (Keren et al., 

2019; McCaffrey et al., 2020). In previous work, we used multiplexed ion beam imaging 

by time of flight (MIBI-TOF) to identify rule sets governing the tumor microenvironment 

(TME) structure in triple-negative breast cancer that were highly predictive of the 

composition of immune infiltrates, the expression of immune checkpoint drug targets, and 

10-year overall survival (Keren et al., 2018). This effort provided a framework for how 

TME structure and composition could be used more generally as a surrogate readout to 

understand the functional response to neoplasia. With this in mind, we sought to determine 

to the extent to which similar themes involving myoepithelial, stromal, and immune cells in 

the DCIS TME might play pivotal roles in breast cancer progression. These cell types have 

been implicated previously in promoting local invasion (Gil Del Alcazar et al., 2017; Barsky 

and Karlin, 2005; Ibrahim et al., 2020), metastasis (Pelon et al., 2020; Shani et al., 2020), 

and correlation with clinical progression (Yang et al., 2018; Zhou et al., 2018).

Here, we report the first systematic, high-dimensional analysis of breast cancer progression 

using the Washington University Resource Archival Human Breast Tissue (RAHBT) cohort, 

a clinically annotated set of archived tissue from patients diagnosed with DCIS and 
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IBC. Because the DCIS patient population is complicated by differences in age, parity 

status, tumor subtype, and treatment course, a well-conceived cohort design is crucial for 

identifying meaningful features amidst these confounding variables. The RAHBT cohort 

was therefore composed of primary DCIS tumors from women who later progressed to IBC 

that were matched by age and year of diagnosis with DCIS from women who did not have a 

subsequent ipsilateral breast event. We used MIBI-TOF and a 37-plex antibody staining 

panel to comprehensively define the cellular composition and structural characteristics 

in normal breast tissue, DCIS, and IBC relapses. These findings were corroborated by 

transcriptomic data acquired from adjacent co-registered tissue regions isolated by laser 

capture microdissection. We used the 433 parameters quantified in these analyses to build 

a random forest classifier for predicting which DCIS patients would later progress to IBC 

based on the original resection specimen. This classifier was heavily weighted for spatially 

informed parameters quantifying breast cancer TME structure, particularly those relating 

to ductal myoepithelium. Surprisingly, myoepithelial loss was more pronounced in samples 

from DCIS patients that did not recur and was typically associated with a more reactive 

stroma. Taken together, the studies reported here provide insight into potential etiologies of 

DCIS progression that will guide development of future diagnostics and serve as a template 

for how to conduct similar analyses of pre-invasive cancers.

RESULTS

A longitudinal cohort of DCIS patients with or without subsequent invasive relapse

The goal of this study was to explore two central questions of breast cancer progression. 

First, how does the structure, composition, and function of breast tissue change with 

progression from DCIS to IBC? Second, what distinguishes DCIS lesions in patients that 

later develop IBC (progressors) from those that do not (non-progressors)? To examine 

these questions, we mapped the phenotype, structure, and spatial distribution of tumor, 

myoepithelium, stroma, and immune cells of 79 archival formalin-fixed paraffin-embedded 

patient tissues from the RAHBT cohort (Figure 1A; Table S1).

Patient samples included normal breast tissue (N = 9, reduction mammoplasty), primary 

DCIS (N = 58), and IBC (N = 12). Of the 58 primary DCIS samples, 44 were from non-

progressors (median follow-up = 11.4 years), while the remaining 14 were from progressors 

(median time to subsequent breast event = 9.1 years; Figure 1B). Importantly, all IBC tissues 

were ipsilateral breast events from patients with a prior diagnosis of DCIS, 9/12 of which 

were longitudinal samples that were matched to a progressor DCIS sample.

A single-cell phenotypic atlas of DCIS epithelium and its microenvironment

As part of the Human Tumor Atlas Network (HTAN) PreCancer Atlas, we created a 

multiomic atlas of breast cancer progression using co-registered adjacent serial sections cut 

from each RAHBT tissue microarray (TMA) block. For this study, these tissues were used 

for hematoxylin and eosin (H&E) histochemical staining, RNA transcriptome laser-capture 

microdissection (LCM-Smart-3SEQ), and highly multiplexed imaging (MIBI-TOF; Figure 

2A). The location of DCIS-containing ducts in H&E sections were manually demarcated 

by a breast pathologist. This information was then used to guide spatial co-registration 
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of LCM-Smart-3SEQ and MIBI-TOF analyses to ensure that the same ductal and stromal 

regions were sampled with each technique (Foley et al., 2019).

MIBI-TOF imaging was performed on each RAHBT TMA using a 37-plex metal-conjugated 

antibody staining panel (Figure 2B; Figure S1; Table S2), acquiring one 500 × 500 μm 

region of interest per core. A deep learning pipeline (Mesmer) was subsequently used 

to annotate single cells in each image (mean = 875 cells per image, standard deviation 

= 316 cells; Figure S2; STAR Methods “low-level image processing” and “single-cell 

segmentation”) (Greenwald et al., 2021a; Keren et al., 2018; McCaffrey et al., 2020; Moen 

et al., 2019; Van Valen et al., 2016). We then used FlowSOM to identify tumor cells, 

fibroblasts, myoepithelium, endothelium, and 12 types of immune cells (Figure 2C; Figures 

S2C–S2H) (Van Gassen et al., 2015). Overall, we assigned 95% of segmented cells (n = 

69,151 single cells) to one of these 16 cell classes that had an aggregate frequency range of 

0.7%–58.3%; a robustness analysis of FlowSOM assignments can be found in Figures S3A–

S3D comparing these cluster-based measurements to phenotypic assignments by manual 

gating. To examine how cell type and function varied with respect to tissue structure (Figure 

2D), these data were combined to generate cell phenotype maps (Figure 2E) and tissue 

compartment masks (Figure 2F) demarcating the epithelium, stroma, and myoepithelium.

DCIS epithelial and stromal tissue compartments were predominantly composed of 

epithelial cells and fibroblasts, respectively, which were each composed of four major 

phenotypic subsets. Epithelial cells consisted of luminal (56.9% ± 33.7), basal (4.4% ± 

6.6), epithelial-to-mesenchymal (EMT, 2.3% ± 2.8), and CK5/7-low (36.2% ± 33.5) subsets 

defined by variable expression of vimentin, CK7, and CK5 (Figure 2G, H, Figure S2G). 

Fibroblasts consisted of normal fibroblasts (12.1% ± 15), myofibroblasts (23.5% ± 16), 

resting fibroblasts (47% ± 20.3), and cancer-associated fibroblasts (CAFs; 17.4% ± 18.2 

of fibroblasts) that were defined by variable coexpression of CD36, fibroblast activation 

protein (FAP), and smooth muscle actin (SMA) (Figures 2I and 2J; Figure S2H). Per-

patient interrogation of epithelial, fibroblast, and immune cell subsets across DCIS, IBC, 

and normal breast revealed that all phenotypic subsets were observed in all tissue types, 

including ER−, HER2−, and AR-defined functional subsets, with primary DCIS tumors 

showing high interpatient heterogeneity in cellular and PAM50 subtype makeup (Figure 

2K; Figures S4A–S4C). These data indicate that beyond the presence of myoepithelial 

cells, DCIS tumors have a diverse epithelial, stromal, and immune makeup that cannot be 

differentiated from IBC solely based on the presence of discrete cell types.

Transition to DCIS and IBC is marked by coordinated changes in the TME

In the previous section, we defined normal, DCIS, and IBC samples in terms of bulk 

cellular composition in a manner that was agnostic to the spatial location of each cell 

population. Next, to interrogate potential spatial differentiators of disease state, and to 

understand how tissue composition, cellular organization, and structure are interrelated, 

we augmented these compositional data with a description of the spatial distribution 

of each cell subset within the TME. First, to determine the proportion of each cell 

population residing within ductal or stromal regions, we used regional masks demarcating 

the epithelium and stroma to quantify the frequency of each cell type in these regions 
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(“tissue compartment enrichment,” Figure 3A; Figure S5A; STAR Methods “single-cell 

phenotyping and composition”; note: due to loss of myoepithelium in IBC, this compartment 

was not analyzed in these samples). Next, we used two cell-cell proximity metrics—pairwise 

cell distances and cell neighborhoods—to capture preferential spatial interactions between 

discrete cell types (“cellular spatial enrichment analysis,” Figure 3A; Figure S5B; STAR 

Methods “region masking”). In addition to this more general cell-centric approach, we 

also developed custom tools for capturing specific morphologic and phenotypic attributes 

of the thin monolayer of myoepithelium-encapsulating ductal epithelial cells and the 

structure of stromal collagen (“TME morphometrics,” Figure 3A; Figures S5D–S5G; STAR 

Methods “myoepithelial morphology analysis, “myoepithelial pixel clustering analysis,” and 

“collagen morphometrics”). Taken together, this analysis yielded a digitized TME profile 

consisting of 433 parameters quantifying both the cellular composition and spatial structure 

of each patient sample.

We then compared these profiles for normal, DCIS, and IBC tissues to address our first 

question: how do the composition and structure of the TME change with progression to 

IBC? We applied the Kruskal-Wallis H test to discern which aspects of tissue composition 

and structure were significantly distinctive of each clinical group (p < 0.05; Table S3; 

STAR Methods “distinguishing feature analysis”). This analysis identified 137 parameters 

that were preferentially enriched or depleted in normal, DCIS, or IBC tissue, with spatially 

agnostic (cell type, cell state) and spatially informed metrics accounting for 39% and 

61% of differentially expressed parameters, respectively (Figure 3B; Figure S5H; Table 

S3). Notably, all three categories of spatially informed parameters were overrepresented. 

For example, morphometrics were 3-fold enriched, accounting for 16% of distinguishing 

parameters but only 5% of all parameters (Figure 3C).

To organize distinguishing features into interpretable TME signatures, we performed k-

means clustering to yield four clusters defining the breast tissue states: TME1, TME2, 

and TME3 uniquely distinguished normal, DCIS, and IBC samples, respectively, and 

TME4 consisted of features that were specifically depleted in DCIS samples (Figure S5I; 

Table S3). Not surprisingly given its enrichment in normal breast, TME1 was typified 

by myoepithelium with high cellularity, thickness, and continuity (Figure 3D; Table S3) 

(Ding et al., 2019). Additionally, this robust myoepithelial layer in TME1 was paired 

with elevated CD36 expression in endothelium and immune cells (Figure 3D; TME1 

“CD36+ immune and endothelial cells”), consistent with normative lipid metabolism in 

homeostatic breast tissue. TME2 was specifically enriched in DCIS tumors and was typified 

by increased myoepithelial proliferation (%Ki67+), stromal mast cells, and CD4 T cells. 

Notably, TME2 contained the highest proportion of tumor and myoepithelial parameters 

(Figure 3D; TME3 “pS6+, CK5+, Ki67+ myoepithelium”), suggesting that the transition to 

in situ disease involves a coordinated shift in the function of these two lineages (Figure 3E). 

IBC-enriched TME3 was stroma-predominant (50%) and had surprisingly few distinctive 

tumor parameters (4%; Figure 3E; Table S3).

Along these lines, we noted when comparing TME2 and TME3 that—aside from the 

pathognomonic loss of ductal myoepithelium—the most distinctive property delineating 

DCIS from IBC samples was an increase in stromal desmoplasia (collagen deposition, CAF 
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frequency, and proliferation). To further evaluate whether these trends reflected changes 

specific to the interval between a new DCIS diagnosis and ipsilateral invasive relapse, 

we compared these parameters in a subset of sample pairs in which both DCIS and IBC 

tissue had been procured longitudinally from the same patient (N = 9). We found that 

the degree of statistical significance in this lesser-powered pairwise analysis and the larger 

unpaired analysis were linearly correlated (R2 = 0.58, p = 3E-15) and that the salient trends 

reflected in TME2 and TME3 occurred at the patient level (Figure 4A; Table S3). These 

significant longitudinal changes included a reduction in mast cells, resting fibroblasts, and 

normal fibroblasts in the stroma between paired patient samples (Figure 4B), reflecting a 

transition where normal fibroblasts in primary DCIS samples (Figure 4C, green arrows) 

were supplanted by CAFs (Figure 4C, pink arrows) in patients’ subsequent later invasive 

breast events (Figure S6A).

To quantify how this shift in fibroblast phenotype relates to the extent of stromal 

desmoplasia, we compared the shape, length, and density of individual collagen fibers 

with CAF location, frequency, and phenotype (Figure 4D, Figures S6B–S6D; STAR 

Methods “collagen morphometrics”). Collagen fiber density was linearly correlated with 

the presence of stromal CAFs and myofibroblasts (R2 = 0.4; Figure 4E), suggesting a direct 

relationship between CAF activation and the extent of collagen fibrillization. Finally, to 

identify changes in the proportion of collagen isoforms accompanying CAF activation, we 

compared transcript levels in stroma of CAF high- and low-density tumors using LCM RNA 

sequencing (RNA-seq). The majority of collagen species were upregulated in CAF-high 

tumors with COL5A2, COL3A1, and COL1A1 (p < 0.01; Figure 4F; Table S3). In addition, 

CAF-high tumors showed increased deposition of fibronectin (FN1; p < 0.05), SPARC (p < 

0.01), and periostin (POSTN; p < 0.01), which have been shown to promote a pro-invasive 

stromal niche (Barth et al., 2005; Malanchi et al., 2011).

Identifying DCIS features correlated with risk of invasive progression

We next leveraged both spatially informed and agnostic parameters to examine our second 

central question: what distinguishes DCIS lesions that later progress to IBC from those that 

do not? We compared tissue procured at the time of diagnosis in two sets of patients with 

primary DCIS. The first set, referred to as “progressor,” consisted of 14 patients who had a 

subsequent ipsilateral invasive recurrence following a diagnosis of pure DCIS (median time 

to recurrence = 9.1 years). The second set, referred to as “non-progressor,” consisted of 44 

patients with pure DCIS that did not have a breast event following tumor resection (median 

time of follow = 11.4 years).

To identify predictive features of the TME, we trained a random forest classifier to predict 

which patients would relapse with invasive disease based on cell-type prevalence, tissue 

compartment enrichment, cell-cell proximity, and morphometrics for each sample (Figure 

5A; Table S1). Although sample size precluded us from being able to eliminate patient 

demographics and differences in clinical therapy as confounders in this analysis, treatment 

regimens known to affect recurrence rates (mastectomy, radiation, tamoxifen) were well 

distributed between the progressor and non-progressor patients (Figure S6E). Likewise, no 
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significant differences in classifier predictions were identified with respect to these variables 

(Figure S6F).

After removing sparse and overly correlated parameters, we randomly split the patient 

population 80/20 into training and test sets, respectively (Figure S6G). We evaluated 

classifier accuracy in the withheld test set, where the model achieved an area under the 

curve (AUC) of 0.74 (Figure 5B). To control for variation due to the random partitioning 

of training and test sets, we repeated this approach with 10 different seeds, resulting in 10 

different training test partitions, and maintained a median AUC of 0.74 (Figure 5C). For 

additional rigor, we trained classifiers on randomly permuted patient group labels for each 

seed and compared the distribution of resultant AUCs to the unpermuted models. Pairwise 

comparison of these replicates demonstrated significantly superior accuracy when using 

unpermuted data (median AUC of 0.74 [red] versus 0.48 [blue], p = 0.02), demonstrating 

that the model’s predictive power is predicated on the distinct biological features of 

progressors and non-progressors.

To understand the biology being leveraged by the model to accurately discriminate pre-

invasive from indolent DCIS tumors, we ranked the top 20 features based on Gini 

importance (Table S4). These features primarily consisted of metrics related to the 

phenotype of myoepithelium and the spatial distribution of multiple immune cell subsets 

(Figures 5D and 5E). Notably, spatially informed metrics describing cell densities, cell 

neighborhoods, pairwise cell distances, collagen structure, and multiplexed subcellular 

features were overrepresented and accounted for 15 of the top 20 Gini-ranked metrics in 

the model, while representing less than half of total measured features (Figures S6H and 

S6I; Table S4.

Myoepithelial breakdown and phenotypic change between progressors and non-
progressors

In the above analysis, myoepithelial structure and phenotype were overrepresented among 

the top Gini-ranked classifier features (Figure 5D), with myoepithelial expression of E-

cadherin (ECAD) being the most discriminative feature. This parameter quantifies ECAD 

coexpression at the pixel level exclusively in periductal SMA-positive pixels (Figure 6A, 

pink arrows) and was significantly elevated in progressor samples (p = 0.001; Figure 

6B; Figures S7A–S7C). We validated this finding using multi-color immunofluorescence 

for ECAD and SMA. Pixel-level coexpression in immunofluorescence measurements was 

higher in progressors than non-progressors (p = 0.034) and was well correlated with patient-

matched values attained by MIBI (Figure 6C; Figures S7D and S7E).

In our analyses comparing normal tissue, DCIS, and IBC, we observed the highest 

myoepithelial ECAD expression in normal breast tissue (Figure 3; Table S3). To our 

surprise, on comparing normal samples with respect to DCIS clinical subgroups, we found 

that ECAD expression in normal ductal myoepithelium was more similar to progressor 

samples than non-progressor samples (Figure 6D). A similar trend was observed with 

other morphologic and phenotypic properties: progressor DCIS samples more closely 

resembled normal samples than non-progressor samples. For example, myoepithelium in 

non-progressors was thinner and less continuous than in progressor and normal samples 
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(Figures 6D and 6E). To examine this difference more comprehensively, we trained a 

linear discriminant analysis model to differentiate progressors and non-progressors using all 

myoepithelial parameters exclusively, with only DCIS samples in the training set (STAR 

Methods “myoepithelial features LDA”). Composite scores (myoepithelial character) for 

DCIS samples calculated with the resultant model proficiently separated progressors from 

non-progressors (progressor mean = 1.65 ± 1.32, non-progressor mean = −0.75 ± 0.88; 

Figure 6F, left). We then used the trained model to quantify the myoepithelial character 

of normal samples. In line with Figure 6D, normal breast samples diverged significantly 

from non-progressor samples (p = 2.64E-4) but were statistically indistinguishable from 

progressor samples (p = 0.314; Table S5).

These data suggest that the loss of normal-like features, reflected in myoepithelial character 

composite scores, serves a protective function in non-progressors in preventing IBC relapse. 

To understand how this loss might influence recurrence outcomes, we used a method derived 

from gene set enrichment analysis to identify ontologies that were correlated with high 

or low myoepithelial character (Table S5; STAR Methods “feature ontology enrichment 

analysis”). Low scores typical of non-progressors were enriched for parameter ontologies 

relating to hypoxia, glycolysis, stromal immune density, and desmoplasia/remodeling of the 

extracellular matrix (ECM; Figure 6G; Table S5). Conversely, high myoepithelial character 

scores typically seen in progressors were enriched for immunoregulatory marker expression 

(PDL1, IDO1, COX2, PD1) in tumor and immune cells (Figure 6G; Table S5). Taken 

together, these results suggest that myoepithelial loss serves a protective, tumor-sensing 

function that favors fibroblast and immune-cell activation in the surrounding stroma.

DISCUSSION

Here, we report the first spatial atlas of breast cancer progression. The central focus of this 

study was to characterize features in primary DCIS that are associated with risk of invasive 

relapse, where tumor cells have breached the duct and invaded the surrounding stroma. 

Previous work examining breast cancer progression has attributed this transition either to 

tumor-intrinsic factors (Bartova et al., 2014; Fujii et al., 1996; Perez et al., 2015; Rakovitch 

et al., 2012) or to specific features of stromal cells in the surrounding TME (Aguiar et al., 

2015; Gil Del Alcazar et al., 2017; Aponte-López et al., 2018; Ding et al., 2019; Sprague 

et al., 2021). By simultaneously mapping both of these entities in intact human tissue, we 

sought to treat the DCIS TME as a single ecosystem in which progression to invasive disease 

depends on an evolving spatial distribution and function of multiple cell types, rather than on 

any single cell subset.

Meeting this goal required first assembling a large, well-annotated, and diversified pool of 

human breast cancer tissue: the RAHBT cohort. This effort was motivated in part by the 

success of similar works investigating invasive disease (Molecular Taxonomy of Breast 

Cancer International Consortium, The Cancer Genome Atlas) that have provided deep 

insights into breast tumor composition and have served as authoritative resources in breast 

cancer research (Cancer Genome Atlas Network, 2012; Curtis et al., 2012). The Breast 

PreCancer Atlas constructed a unique set of archival human surgical resections that captured 

the full spectrum of breast cancer progression, from normal tissue, to primary DCIS, 
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and onto patient-paired ipsilateral IBC recurrences. Here, assembling all these cases into 

TMAs has enabled a one-of-a-kind workflow for multiomics analyses in which genomic, 

transcriptomic, and proteomic techniques are performed not only on the same samples but 

on co-registered serial sections of the same local region of tissue.

Here, we analyzed these TMAs using MIBI-TOF and a 37-marker staining panel to map 

breast cancer progression and to understand why some patients with DCIS relapse with 

invasive disease while others do not. Our results suggest that coordinated transformation of 

ductal myoepithelium and surrounding stroma plays a central role in determining clinical 

outcome by establishing a tumor-permissive niche that favors local invasion. Relative to 

normal tissue, the thin myoepithelial layer in DCIS samples was less phenotypically diverse 

and more proliferative (Figure 3D). Curiously, these changes were accompanied by an influx 

of stromal CD4 T cells and mast cells that subsequently declined in IBC. Aside from the 

canonical loss of myoepithelium, stromal desmoplasia in IBC was the most consistent, 

distinctive aspect of invasive progression and was marked by higher numbers of proliferating 

CAFs and densely aligned fibrillar collagen (Figure 4) (Conklin et al., 2011; Esbona et al., 

2018; Friedman et al., 2020).

Typified changes in TME structure and function were not only discriminative of DCIS 

and IBC but also separated DCIS progressors from non-progressors. Using 433 spatial and 

compositional parameters drawn exclusively from original primary DCIS samples, we built 

a random forest classifier model to predict which patients would relapse with an ipsilateral 

invasive tumor following initial DCIS diagnosis (AUC = 0.74, p = 0.02). On examining the 

relative weighting given to each parameter in the model, two compelling and overarching 

insights emerged. First, spatially informed metrics relating cell function to structure and 

morphology were significantly over-represented relative to non-spatial metrics. Second, the 

most influential features were primarily related to myoepithelium and stroma rather than to 

the tumor cells themselves.

Given its loss in IBC, ductal myoepithelium has long been thought to act as a barrier that 

deters local invasion by partitioning in situ carcinoma cells away from the surrounding 

stroma (Barsky and Karlin, 2005; Jones et al., 2003; Sirka et al., 2018). Initially, we 

hypothesized that a more intact and robust myoepithelial barrier resembling normal breast 

tissue would be protective against invasive progression. Surprisingly, however, our data 

seem to suggest the opposite: DCIS samples with more continuous myoepithelium and high 

ECAD expression were at higher risk of ipsilateral invasive recurrence following primary 

DCIS surgical excision. Retention of these normal-like myoepithelial traits correlated with 

fewer stromal immune cells and CAFs (Figure 6G). Conversely, the thin, discontinuous, 

low-ECAD myoepithelium present in non-progressor tumors was correlated with a more 

reactive desmoplastic stroma with more immune cells, CAFs, and collagen remodeling. 

Given the relationships uncovered here between myoepithelial integrity and reactive stromal, 

our observations are consistent with a model in which a compromised myoepithelial barrier 

promotes stromal sensing of tumor, which provides protection against future invasive 

relapse.
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Taken together, the analyses reported here deliver a comprehensive, multi-compartmental 

atlas of preinvasive breast cancer that illustrates the full continuum of tissue structure and 

function starting from a homeostatic state in normal breast through in situ and invasive 

disease, including matched longitudinal samples. Combining this comprehensive dataset 

with extensive patient follow-up has enabled identification of tumor features that are 

associated with risk of invasive relapse in DCIS patients and offers a framework for exciting 

follow-on efforts.

Limitations of study

Limitations with respect to the patient cohort, imaging methodology, data analysis, and 

results interpretations should be noted in framing the significance of this work. First, while 

our long-term goal is to determine risk factors that promote DCIS progression in the absence 

of surgical intervention, all tissue analyzed here was procured from women who underwent 

surgical intervention for their disease. Additionally, the sample size used in this study, 

particularly when examining longitudinal changes in DCIS patients that progressed to IBC, 

are relatively modest and were procured from a single medical center. Consequently, the 

possibility that statistically significant features attributed here to inherent differences in 

DCIS and IBC are instead driven by sampling bias cannot be definitively ruled out. Thus, 

follow-up on multi-center studies examining these factors in patients undergoing or forgoing 

surgical intervention will be needed to test this hypothesis and assess its clinical utility for 

prospective risk stratification.

With respect to cell identification in tissue sections, accurate cell enumeration in two 

dimensional images can be confounded by partial overlap of cellular features that are 

difficult to discern without spatial information in the z-dimension. Cell classification and 

clustering introduce another potential source of variance as well. Unsupervised approaches 

where the number of cell clusters is arbitrarily specified by the user can be prone 

to overclustering and misclassification of low-frequency cell populations. In this work, 

we attempted to mitigate these issues using a hybrid approach where iterative rounds 

of FlowSOM were used to hierarchically stratify cell populations based on well-vetted 

multiparameter phenotypes. To assess robustness, we have included in the supplemental 

information a comparison of these estimates with those attained by manual gating, which did 

not reveal material differences between the two approaches. To enable further interrogation 

of this work as new tools for computational image analysis become available, we have made 

all images, cell masks, tissue masks, and data tables publicly available.

Finally, key questions remain of how myoepithelial integrity is causally related to disease 

recurrence in progressors. While we find correlations between low myoepithelial integrity 

and increased stromal immune infiltration, collagen deposition, and CAFs, due to the 

observational nature of this study we cannot determine if myoepithelial breakdown triggers 

this shift in the tumor microenvironment or vice versa. In future studies we plan to confirm 

this relationship in a larger independent cohort of DCIS patients who progressed to invasive 

disease and to probe its association with stromal desmoplasia in functional models.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by corresponding author, and lead contact, Michael Angelo 

(mangelo0@stanford.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All single channel images and area masks are present as single Tiffs in this 

public Mendeley Data repository. The DOI is listed in the key resources table. 

Accession numbers are listed in the key resources table.

• All original code has been deposited at Mendeley and is publicly available as of 

the date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohort—We utilized a retrospective study cohort of patients from the Washington 

University Resource of Archival Tissue (RAHBT). The study was approved by the 

Washington University in St. Louis Institutional Review Board (IRB ID #: 201707090).

The RAHBT cohort includes women ages 18 and older with documented cases of 

premalignant breast disease (DCIS) and contained two outcome groups: non-progressors, 

which was composed of patients with DCIS who had no new breast event following 

resection (median follow-up = 11.4 years), and progressors, which was composed of patients 

with DCIS who had a new ipsilateral invasive breast cancer event following primary DCIS 

resection (median time to new event = 9.1 years). For each progressor, we matched two 

non-progressors who remained free from recurrent lesions, based on age at diagnosis (±5 

years) and type of definitive surgery (mastectomy or lumpectomy).

Table S1 summarizes the data for the patients in the cohort. Patients with cancer diagnosis 

prior to qualifying premalignant lesions were excluded from the study. After exclusion, 

the study included samples from 70 patients, with a median age at diagnosis of 54 years, 

diagnosed between 1986 to 2017. Median time to recurrence was 9.1 years for invasive 

lesions and 5.3 years for pre-malignant lesions. For women in the cohort with no recurrence, 

follow-up extended to 132 months, on average. Treatment of initial DCIS ranged from 

lumpectomy with radiation (approximately half of cases), lumpectomy with no radiation 

(20%), and mastectomy with no radiation (30%). The RAHBT cohort is composed of 

African American women (26%) and white women (74%). Patient ages and additional 

clinical data are provided in Table S1.
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METHOD DETAILS

TMA construction—For each DCIS diagnosis, we retrieved primary and recurrent tumor 

slides and blocks for pathology review, secured a whole slide image of each sample, marked 

for TMA cores, and generated TMA blocks with 84 1.5-mm cores, including additional 

tonsil and normal breast tissue sourced from reduction mammoplasty. Serial sections (5 

μm) of each TMA slide were cut onto glass slides for hematoxylin and eosin (H&E) 

staining, onto laser-capture slides for LCM-RNaseq (SMART-3SEQ) and cut onto gold- and 

tantalum-sputtered slides for MIBI-TOF imaging. H&E slides were inspected by a breast 

cancer pathologist to address DCIS purity and to demarcate regions of DCIS to guide MIBI 

imaging and laser dissection of epithelial and stromal area.

Antibody Preparation—Antibodies listed in the Key Resources Table Metal Conjugated 
Antibodies were conjugated to isotopic metal reporters as described previously (Keren 

et al., 2018; McCaffrey et al., 2020). Following conjugation, antibodies were diluted in 

Candor PBS Antibody Stabilization solution (Candor Bioscience). Antibodies were either 

stored at 4°C or lyophilized in 100 mM D-(+)-Trehalose dehydrate (Sigma Aldrich) with 

ultrapure distilled H2O for storage at −20°C. Prior to staining, lyophilized antibodies were 

reconstituted in a buffer of Tris (Thermo Fisher Scientific), sodium azide (Sigma Aldrich), 

ultrapure water (Thermo Fisher Scientific), and antibody stabilizer (Candor Bioscience) 

to a concentration of 0.05 mg/mL. Some metal-conjugated antibodies in this study 

were used as secondary antibodies targeting hapten groups on hapten-conjugated primary 

antibodies, including the pairs PDL1-Biotin and Anti-Biotin149Sm, and ER-Alexa488 and 

Anti-Alexa488142Nd, see Key Resources Table for antibody vendor information.

Tissue Staining—Tissues were sectioned (5 μm thick) from tissue blocks on gold- and 

tantalum-sputtered microscope slides. Slides were baked at 70°C overnight followed by 

deparaffinization and rehydration with sequential washes in xylene (3x), 100% ethanol (2x), 

95% ethanol (2x), 80% ethanol (1x), 70% ethanol (1x), and ddH2O with a Leica ST4020 

Linear Stainer (Leica Biosystems). Tissues next underwent antigen retrieval by submerging 

sides in 3-in-1 Target Retrieval Solution (pH 9, DAKO Agilent) and incubating them at 97°C 

for 40 min in a Lab Vision PT Module (Thermo Fisher Scientific). After cooling to room 

temperature, slides were washed in 1x phosphate-buffered saline (PBS) IHC Washer Buffer 

with Tween 20 (Cell Marque) with 0.1% (w/v) bovine serum albumin (Thermo Fisher). 

Next, all tissues underwent two rounds of blocking, the first to block endogenous biotin and 

avidin with an Avidin/Biotin Blocking Kit (Biolegend). Tissues were then washed with wash 

buffer and blocked for 1 h at room temperature with 1x TBS IHC Wash Buffer with Tween 

20 with 3% (v/v) normal donkey serum (Sigma-Aldrich), 0.1% (v/v) cold fish skin gelatin 

(Sigma Aldrich), 0.1% (v/v) Triton X-100, and 0.05% (v/v) sodium azide. The first antibody 

cocktail was prepared in 1x TBS IHC Wash Buffer with Tween 20 with 3% (v/v) normal 

donkey serum (Sigma-Aldrich) and filtered through a 0.1-μm centrifugal filter (Millipore) 

prior to incubation with tissue overnight at 4°C in a humidity chamber. Following the 

overnight incubation slides were washed twice for 5 min in wash buffer. On the second day, 

antibody cocktail was prepared as described above and incubated with the tissues for 1 h 

at 4°C in a humidity chamber. Following staining, slides were washed twice for 5 min in 

wash buffer and fixed in a solution of 2% glutaraldehyde (Electron Microscopy Sciences) in 
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low-barium PBS for 5 min. Slides were sequentially washed in PBS (1x), 0.1 M Tris at pH 

8.5 (3x), ddH2O (2x), and then dehydrated by serially washing in 70% ethanol (1x), 80% 

ethanol (1x), 95% ethanol (2x), and 100% ethanol (2x). Slides were dried under vacuum 

prior to imaging.

MIBI-TOF Imaging—Imaging was performed using a MIBI-TOF instrument (IonPath) 

with a Hyperion ion source. Xe+ primary ions were used to sequentially sputter pixels for a 

given field of view (FOV). The following imaging parameters were used: acquisition setting: 

80 kHz; field size: 500×500 μm, 1024 × 1024 pixels; dwell time: 5 ms; median gun current 

on tissue: 1.45 nA Xe+; ion dose: 4.23 nAmp h/mm2 for 500×500 μm FOVs. For each FOV, 

Mass-spec pixel data were then converted to TIFF images where the counts for each mass 

were taken between the ‘Start’ and ‘Stop’ values defined in Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Low-level Image Processing—Multiplexed images were pre-processed using an image 

processing pipeline previously developed in our lab specifically for multiplexed mass based 

images – MAUI (https://doi.org/10.1371/journal.pcbi.1008887, software publicly available 

at https://github.com/angelolab/MAUI). MAUI includes several steps:

• Subtracting background from bare regions in the slide and gold, using empty 

mass channels and the gold channel as reference.

• Noise removal, by filtering out very sparse and pixelated signals.

• Aggregate filtering-removal of antibody aggregates recognized as very small, 

connected components in the image.

All user defined parameters used for this pipeline can be found in Table S2.

Single-cell Segmentation—Cell segmentation was performed on pre-processed images 

using deep learning based software previously developed in our lab, Mesmer (Greenwald 

et al., 2021b), publicly available at https://www.deepcell.org/predict. The input to Mesmer 

is a two-channel image containing a nuclear marker in one channel and membrane or 

cytoplasmic markers in the other to accurately delineate single cell nuclei. For the cell nuclei 

channel we combined HH3 and endogenous phosphorous (P) signal, and a combination 

channel of E-cadherin, PanCK, CD45, CD44, and GLUT1 was used as the membrane 

channel input. To more effectively capture the range of cell shapes and morphologies present 

in DCIS, we generated two distinct segmentation parameter sets optimized for non-epithelial 

and epithelial cells, that were then combined for final cell segmentation. The non-epithelial 

settings used a radial expansion of two pixels from the nuclear border detected by Mesmer 

to generate a cell object, and a stringent threshold for splitting cells (Figure S2, Stroma 
Parameters). The epithelial settings used a radial expansion of three pixels and a more 

lenient threshold for splitting cells (Figure S2, Epithelial Parameters). We combined these 

masks using a post-processing step that gave preference to the epithelial segmentation 

objects, overriding stromal-parameter-detected objects in the same area. Smaller cells 

identified by the stromal settings and missed in the epithelial settings were combined to 

Risom et al. Page 14

Cell. Author manuscript; available in PMC 2022 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/angelolab/MAUI
https://www.deepcell.org/predict


the final cell segmentation mask. All segmentation masks are publicly available with the raw 

images on Mendeley, see resource table for DOI.

Single-cell Phenotyping and Composition—Single-cell expression of each marker 

was measured through total signal counts in each cell object, normalized by object area. 

Single-cell data were then linearly rescaled by the average cell area across the cohort, and 

subsequently asinh-transformed with a co-factor of 5. All mass channels were scaled to 

99.9th percentile.

In order to assign each cell to a lineage and subsequent cell type, the FlowSOM clustering 

algorithm was used in iterative rounds with the Bioconductor “FlowSOM” package in R 

(v.1.16.0, Van Gassen et al., 2015). The first clustering round separated cells into 100 

clusters (xdim = 10, ydim = 10), which were assigned to one of five major cell lineages 

based on well-established combinations of lineage marker expression, including: epithelial 

cells (PanCK+, ECAD+, CD45−, CK7+/−, VIM+/−), myoepithelial cells (SMA+, CD45−, 

PanCK+/−, ECAD+/−, CK5+/−, VIM+/−), fibroblasts (VIM+, PanCK−, ECAD−, CK7−, 

CD45−, SMA+/−, FAP+/−, CD36+/−), endothelial cells (CD31+, VIM+, PanCK−, ECAD−, 

CK7−, CD45−, SMA+/−), and immune cells (CD45+, PanCK−, ECAD−). Accurate lineage 

assignment was assessed by reviewing cells from each FlowSOM cluster in image overlays 

of lineage-defining markers. In clusters with rare, non-canonical combinations of marker 

expression, cluster assignments were extensively reviewed across images of various tissue 

types with pathologist assistance, utilizing morphometric and histological organization 

features in addition lineage marker expression to accurately phenotype the cells. See Figure 

S2E for examples of cell reassignment.

Following lineage assignment, each lineage was subclustered to identify immune cell types 

including B cells (CD20+, CD4+/−), CD4 T cells (CD4T; CD3+, CD4+, CD8−/low), 

CD8 T cells (CD8T; CD3+, CD8+, CD4−/low), monocytes (Mono; CD14+, CD11c−, 

CD68−, CD3−), monocyte-derived dendritic cells (MonoDCs; CD14+, CD11c+, HLADR+, 

CD68−, CD3−), dendritic cells (DCs; CD11c+, HLADR+, CD3−), macrophages (Macs; 

CD68+, HLADR+, CD14+/−), mast cells (Mast; Tryptase+), double-negative T cells (dnT; 

CD3+, CD4−, CD8−), and HLADR+ APC cells (APC; HLADR+, CD45+/low). CD45+-only 

immune cells were annotated as “immune other.” Neutrophils were rare in the dataset; they 

were assigned last based on the positivity threshold (> 0.25) of MPO expression in immune 

cells. Tumor and fibroblast cells were similarly subclustered to reveal phenotypic subsets, 

including luminal (ECAD+, PanCK+, CK7+), basal (ECAD+, PanCK+, CK5+), epithelial-

to-mesenchymal (EMT; ECAD+/−, PanCK+, VIM+), CK5/7-low (ECAD+, PanCK+) tumor 

cells, and normal (VIM+, CD36+), myo− (VIM+, SMA+), resting (VIM+ only), and CAF 

(VIM+, FAP+) fibroblasts (Figure S2). Overall, we assigned 94% (N = 127,451 of 134,631) 

of cells to 16 subsets, with the remaining nucleated cells with absent or very low levels of 

lineage markers assigned as “other.”

Comparative manual cell assignments were performed with Cytobank software 

(Cytobank.com) using nuclear intensity and area gates to define single cells, and iterative 

gating of established markers in biaxial plots that define the major cell lineages, cell types of 

each lineage, and phenotypic subsets of tumor and fibroblast cells as shown in Figure S3. A 
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table of all single cells in this study, their marker expression and their assigned lineage using 

both FlowSOM and manual gating is available on Mendeley Data, see Key Resources Table 

for DOI.

Throughout this work cellular data are presented as 1) the frequency of a cell type of its 

parental lineage across the entire image (e.g., luminal tumor cells as % of total tumor cells 

in image), 2) a cell type’s density within a particular compartment of the image (e.g., 50 

fibroblasts per mm2 of stroma (see Region Masking for compartment definition)), or 3) for 

immune cells, the frequency of immune cell types (of total immune) calculated for both 

epithelial and stromal regions (e.g., % macrophages of total epithelial immune). To calculate 

myoepithelial cell density, the number of cells phenotyped as myoepithelium in each image 

is normalized by the area of the myoepithelial mask in that image.

Region Masking—Region masks were generated to define histologic regions of each FOV 

including the epithelium, stroma, myoepithelial (periductal) zone, and duct. We removed 

gold-positive areas, which marked regions of bare slide from holes in the tissue, providing 

an accurate measurement of tissue area. This area measurement was used to calculate 

cellular density in specific histologic regions (e.g., fibroblast density in the stroma) to 

normalize observed cell abundances by the amount of tissue sampled.

The epithelial mask was first generated though merging the ECAD and PanCK signals and 

applying smoothing (Gaussian blur, radius 2 px) and radial expansion (20 px) to incorporate 

the myoepithelial zone; the insides of ducts were filled. The stromal mask included all of the 

image area outside of the epithelial mask. Duct masks were generated through the erosion 

of the epithelial masks by 25 px. The myoepithelial mask was generated by subtracting the 

duct mask from the epithelial mask, leaving a ~15 μm-wide periductal ribbon following the 

duct edge. To calculate the area in each mask, a bare slide mask was generated from the 

gold (Au) channel and this area was removed from the measurement, and pixel area was 

converted to mm2 of tissue.

Cellular Spatial Enrichment Analyses—A spatial enrichment approach was used as 

previously described (Keren et al., 2018, 2019; McCaffrey et al., 2020) for enrichment or 

exclusion across all cell-type pairs. HH3 was excluded from the analysis. For each cell type 

pair of cell type X and cell type Y, the number of times the centroid of cell X was within a 

~50 μm radius of cell Y was counted. A null distribution was produced by performing 100 

bootstrap permutations in which the locations of cell Y were randomized. A z-score was 

calculated comparing the number of true co-occurrences of cell X and cell Y relative to the 

null distribution. Importantly, symmetry was assumed: the values of the spatial enrichment 

of cell X close to cell Y are the same as the values with cell Y close to cell X. For each pair 

of cell types, the average z-score was calculated across all DCIS FOVs.

To analyze cellular associations with the edge of the epithelium, the distances between all 

cell centroids to the nearest perimeter location of the epithelial mask (described above) were 

calculated.
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Cell neighborhoods were produced by first generating a cell neighbor matrix in which 

each row represents an index cell and columns indicate the relative frequency of each cell 

phenotype within a 36-μm radius of the index cell. Next, the neighbor matrix was clustered 

to 10 clusters using k-means clustering, with the number of clusters being determined as the 

number that best separated distinct immune cell mixtures and tumor/myoepithelial spatial 

relationships. The neighborhood cellular profile was determined by assessing the mean 

prevalence of each cell phenotype within a 36-μm radius of the index cell.

Distinguishing Feature Analysis—To determine features that distinguish among 

normal breast tissue, DCIS, and IBC, means of all 433 features were compared between 

groups using the Kruskal-Wallis H test. Features with significance under p = 0.05 (Table S3) 

were subsequently clustered using k-means clustering into the 4 TME clusters. For paired 

analyses, feature means were compared between DCIS and IBC samples from the same 

patient (Table S3).

ECM Gene Analysis—To analyze ECM components by gene expression, an ECM gene 

signature (GO ECM structural constituent, GO:0030021) was downloaded from the GSEA 

website (www.gsea-msigdb.org) and used to compare MIBI-identified samples with the 

top and bottom quartiles of cancer-associated fibroblast density in the stroma. Stromal 

LCM-RNaseq samples were used for this analysis from a paired transcriptomic study of the 

RAHBT cohort (Strand et al., 2021). Raw reads were normalized with DESeq2 R package 

(version 1.30.0, Anders and Huber, 2010) and a paired t test was compared to the log2 ratio 

of group means to generate the volcano plot (Table S3).

Myoepithelial Morphology Analysis—In order to quantify myoepithelial continuity 

and thickness, we defined a window of myoepithelial signal quantitation. For this window, 

we used a topology-preserving operation and defined a curve 5 pixels out from the epithelial 

mask edge (see Region Masking) and a curve 30 pixels in from the epithelium mask 

edge; we defined those pixels between these two curves as the myoepithelium mask. 

We subdivided the outer curve into 5-px arc segments, and for each point on the outer 

edge between two segments, we found the nearest point on the inner edge, dividing the 

myoepithelium into a string of quadrilaterals or “wedges.” Wedges were then subdivided 

along the in-out (of the epithelium) axis into 10 segments. Wedges were merged when both 

their combined inner and outer edges had an arc length < 15 px.

We took pre-processed (background subtracted, de-noised) SMA pixels within the mesh and 

smoothed them with a Gaussian blur of radius of 1. We then calculated the density of SMA 

signal within each mesh segment as the mean pixel value of smoothed SMA within that 

mesh segment. This density was then binarized to create a SMA-positivity mesh using a 

threshold of 0.5 (density > 0.5 as positive).

The percentage of duct perimeter covered by myoepithelium was calculated by assigning 

an “SMA-present” variable to each wedge: “0” if no mesh segments in the wedge were 

positive for SMA, and “1” otherwise. Each wedge was weighted by its area relative to the 

myoepithelium area. The sum over all wedges of the product of the “SMA-present” variable 

and the weight was defined as the percent perimeter SMA positivity.
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The average (non-zero) thickness of the myoepithelium for each duct was calculated by 

finding the weighted average “wedge thickness” for SMA-positive wedges (“SMA-present” 

was 1). The wedge thickness was calculated as the distance between the innermost and 

outermost positive mesh segments. Positive wedges were weighted by their area relative to 

the total area of positive wedges.

The percent myoepithelial-covered perimeter and average myoepithelial thickness metrics 

were weighted over meshes (ducts) in a given image by assigning a weight to each duct 

equal to the total area of the duct myoepithelium divided by the sum of the total areas of all 

myoepithelium in the image that met a minimum size filter of 7500 px.

To assess automated thickness and continuity accuracy, myoepithelial SMA continuity and 

thickness were quantified manually in 5 progressor and 5 non-progressor SMA images 

by a board-certified pathologist using ImageJ, blinded to tumor outcome. For continuity, 

the total periductal perimeter in each image was first quantified by manually outlining 

each epithelial region. Then, gaps in the myoepithelial layer along this manual outline 

with no discernable SMA signal where identified. The length for each of these gaps along 

the periductal perimeter was quantified. Lastly, gap measurements were the summed and 

divided by total duct perimeter. Smooth muscle thickness was calculated by taking the 

average of 10 representative linear measurements.

Myoepithelial Pixel Clustering Analysis—Pre-processed (background subtracted, de-

noised) images were first subset for pixels within the myoepithelium mask (see Region 
Masking). Pixels within the myoepithelium mask were then further subset for pixels with 

SMA expression > 0. For all SMA+ pixels within the myoepithelium mask, a Gaussian 

blur was applied using a standard deviation of 1.5 for the Gaussian kernel. Pixels were 

normalized by their total expression such that the total expression of each pixel was equal 

to 1. A 99.9% normalization was applied for each marker. Pixels were clustered into 100 

clusters using FlowSOM (Van Gassen et al., 2015) based on the expression of six markers: 

PanCK, CK5, vimentin, ECAD, CD44, and CK7. The average expression of each of the 

100-px clusters was found and the z-score for each marker across the 100-px clusters was 

computed, with a maximum z-score of 3. Using these z-scored expression values, the 100-px 

clusters were hierarchically clustered using Euclidean distance into six metaclusters. SMA+ 

pixels that were negative for the six markers used for FlowSOM were annotated as the 

SMA-only metacluster, resulting in a total of seven metaclusters. These metaclusters were 

mapped back to the original images to generate overlay images colored by pixel metacluster.

Collagen Morphometrics—To identify collagen fibers, background-removed Col1 

images were first preprocessed: Col1 pixel intensities were capped at 5, gamma transformed 

(1 of 2), and contrast enhanced. Images were then blurred via Gaussian with a sigma of 

2. While this process enhances fidelity, it yields less clear “0-borders.” This effect was 

mitigated by generating a “0-region” mask and setting all values to 0 in that region. Then, 

highly localized contrast enhancement was applied. Since raw fiber signal intensity can 

vary greatly within a FOV, this step helps enhance locally recognizable—but globally dim—

fiber candidates. After this process, contrast was globally enhanced via a reverse gamma 

transformation (2 of 2).
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Collagen fiber objects were generated by watershed segmentation on the preprocessed 

images. An adaptive thresholding method was developed to appreciate variability in total 

image intensities across the large dataset. A dilated and eroded version of each preprocessed 

image was produced and subjected to multi-Otsu thresholding. Elevation maps for watershed 

were generated via the Sobel gradient of a blurred version of the preprocessed images. Once 

objects were extracted and segmented, length, global orientation, perimeter, and width were 

computed for each object. Objects that covered low-intensity regions of the image were 

treated as preprocessing artifacts and were not included in averaging. Average collagen fiber 

lengths and average collagen branch number were calculated in the entire stromal region. 

Collagen fiber density (#/area) and total collagen signal were also calculated in specific 

histological zones defined by distance from the epithelial mask. These zones comprised the 

periepithelial stroma region (0–20 px from the epithelial edge), mid-stroma region (20–60 

px), and distal stroma region (60+ px).

Collagen fiber-fiber alignment and fiber-epithelial edge alignment were also measured. 

For fiber-fiber alignment, fibers were filtered for elongated shape (length > 2*width) and 

alignment was scored as the normalized total paired squared difference over its k nearest 

neighbors (k = 4 was chosen). To accommodate for the elongated shape of these objects, 

k-nearest neighbors were computed with the ellipsoidal membrane distance, which is the 

Euclidean centroid distance minus the portion of that distance that lies within the ellipse 

representation of the object.

To compute the myoepithelial-to-fiber (myo-fib) alignment score, the myoepithelial region 

was identified as the boundary of a manually annotated epithelial mask. This region was 

then subdivided and labeled as separate objects. The global angle of each object is then 

compared to the global angle of the k-nearest fiber objects, via the same metric described in 

the fiber-fiber method.

Prediction of Recurrence—To predict recurrence, we compared tissue procured at the 

time of diagnosis in two sets of patients with primary DCIS. The first set, referred to 

as “progressor,” consisted of 14 patients who had a new ipsilateral invasive breast event 

following a diagnosis of pure DCIS (median time to recurrence = 9.1 years). The second set, 

referred to as “non-progressor,” consisted of 44 patients with pure DCIS that did not have 

a new breast event following primary tumor resection (median time of follow = 11.4 years). 

For each patient, a vector of summary statistics was generated from MIBI data using only 

images derived from the original lesion. The cohort was split into training (80%) and test 

(20%) sets; all model optimization and predictor selection steps used only the training set. 

Any missing values were replaced with the set’s predictor mean. Predictors with < 12 unique 

values in the training set were dropped from the analysis. We removed correlated parameters 

because they could confound predictor importance: all predictors were ranked in importance 

by performing a Kolmogorov-Smirnov test between progressor and non-progressor within 

the training set. Greater importance was placed on predictors with lower p values, with 

ties broken by weighting predictors with greater effect sizes between patient groups. We 

quantified pairwise correlation for all predictors (Spearman method). For each group of 

highly correlated predictors (R > 0.85), only the highest-ranked predictor was used in the 

model. We varied this cutoff and found no difference in model accuracy (Figure S6G). 
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Two-class random forest probability models (ranger package) (Wright and Ziegler, 2017) 

were trained to discriminate progressors versus non-progressors. Hyperparameters were 

tuned on the training set to minimize out-of-bag error. The optimized random forest model 

was evaluated on the test set and a receiver operating characteristic curve was generated for 

calculating the area under the curve (pROC package) (Robin et al., 2011) using the model’s 

assigned probability scores. Each predictor’s importance was evaluated in the model by 

its Gini index (Table S4). All analyses were repeated with 10 distinct random seeds for 

partitioning patients into training and test sets. For each seed, we additionally trained models 

using randomly permuted patient group labels (Figure 5C).

Myoepithelial Immunofluorescence Quantification—To identify the myoepithelial 

regions of interest, the SMA channel was first passed through a Gaussian filter, and had 

its maximum intensity capped, to mitigate intense autofluorescent signatures. Next, after 

being passed through a locally scaled gamma transform to enhance ridge-like features, the 

channel went through a Meijering ridge filter. To identify candidate myoepithelial “ridges,” 

the channel was thresholded and all “ridge” objects were labeled. To filter out distant 

candidates, their respective distances to a manually annotated mask of the epithelium were 

measured and gated, only classifying ridges within 80px as the myoepithelial region. The 

co-expression of SMA and ECAD was measured in these generated regions.

Myoepithelial Features LDA—All myoepithelial features (Table S5) were standardized 

(mean subtracted and divided by the standard deviation). DCIS (primary and recurring) 

samples were defined as training data while normal samples were defined as the test 

set. We then used a dimensionality reduction technique based on Linear Discriminant 

Analysis (LDA) (Tsai et al., 2020) on the DCIS-only training set in order to capture 

the main differences in myoepithelial character between progressors and non-progressors. 

This supervised method finds the optimal linear combination of a subset of features that 

maximizes the separation between pre-labeled classes. By combining the myoepithelial 

features with a progressor/non-progressor label, we separated the DCIS patients in a one-

dimensional LDA-generated space (LD1 coordinate) with respect to their progression status. 

LD1 is therefore the optimized linear combination of the myoepithelial- and SMA-related 

features for separating progressors from non-progressors (Table S5). We then calculated 

LD1 values for our test data—the normal samples based on the trained model (Table 

S5). The code for this LDA-based method was provided by (Tsai et al., 2020) and was 

made available on GitHub at https://github.com/davidrglass. p values for comparing LD1 

distributions between sample types were calculated with the Kruskal-Wallis H test using the 

MATLAB function kruskalwallis.

Feature Ontology Enrichment Analysis—Taking into account DCIS samples only, we 

calculated the correlation of features in Table S1 with LD1. In this calculation we excluded 

the 21 features used to define LD1 in the LDA analysis described above. We then sorted the 

features by correlation with LD1, creating a ranked list of features (Table S5). Features were 

also annotated based on belonging to one (or none) of the following functional modules or 

pathways: Desmoplasia and ECM remodeling (terms: CAFs, MMP9 expression, collagen 

deposition and fibers), Immune: immunoregulation (immune cells + PD1/PDL1/IDO1/
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COX2), Lipid metabolism (CD36), Lymphoid: growth/proliferation (CD4T, CD8T, B cell, 

dnT cell + Ki67/pS6), Myeloid: growth/proliferation (Macs, Mono, MonoDC, DC, APC 

+ Ki67/pS6), Immune density in stroma (immune cell + stroma density), Stroma: growth/

proliferation (Fibroblast or endothelium + Ki67/pS6), Tumor: ER/AR/HER2 expression 

(tumor + ER/AR/HER2), Tumor: immunoregulation (tumor + PDL1/IDO1/COX2), Tumor: 

growth/proliferation (tumor + Ki67/pS6), and Hypoxia and Glycolysis (HIF1a + GLUT1) 

(see Table S5 for specific ontology features). This ranked list of features combined with their 

annotations into pathways was used to perform gene set enrichment analysis (GSEA) using 

the R package FGSEA (Korotkevich et al., 2021). This procedure identified functionally 

related groups of features that were enriched either among the features highly correlated 

with LD1 or significantly anti-correlated with LD1 (Table S5).

Software used for data analysis—Image processing was conducted with MATLAB 

2016a and MATLAB 2019b. Data visualization and plots were generated in R with 

ggplot and pheatmap packages, in GraphPad Prism, and in Python using the scikitimage, 

matplotlib, and seaborn packages. Representative images were processed in Adobe 

Photoshop CS6. Schematic visualizations were produced with Biorender. R packages used 

for GSEA were AnnotationDbi (1.52.0) and org.Hs.eg.db, (3.12.0), clusterProfiler (3.19.0), 

msigdbr (7.2.1), for C2 curated datasets. Python packages used for spatial enrichment 

analysis and collagen morphometrics were sckikit-image, pandas, numpy, xarray, scipy, 

statsmodels.

Statistical analysis—All statistical analyses were performed using GraphPad Prism 

(9.1.0), MATLAB (2016b), or R (1.2.5033). Grouped data are presented with individual 

sample points throughout, and where not applicable, data are presented as mean and 

standard deviation. For determining significance, grouped data were first tested for 

normality with the D’Agostino & Pearson omnibus normality test. Normally distributed 

data were compared between two groups with the two-tailed Student’s t test. Non-normal 

data were compared between two groups using the Mann–Whitney test. Multiple groups 

were compared using the Kruskal-Wallis test. Statistical tests that were performed on 

multiple features were corrected for multiple comparisons using the Benjamini-Hochberg 

FDR Procedure and the corrected Q-values were then used for subsequent feature selection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A spatial atlas of breast cancer progression using MIBI-TOF and tissue 

transcriptomics

• Coordinated changes in the tumor microenvironment (TME) track invasive 

transition of DCIS

• DCIS TME structure is predictive of invasive relapse within 10 years of 

diagnosis

• Recurrence risk is heavily influenced by myoepithelial phenotype and 

morphology
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Figure 1. A longitudinal cohort of DCIS patients with or without subsequent invasive relapse
(A) Schematic of the tumor stages and patient sample numbers profiled in this study, 

including normal breast tissue, primary DCIS, and ipsilateral IBC relapses; 9/12 IBC 

samples were paired with primary DCIS samples.

(B) Primary DCIS samples consisted of two outcome groups: progressors, who recurred 

with ipsilateral invasive disease with a median of 9.1 years, and non-progressors, who never 

recurred within a median follow-up of 11.4 years.
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Figure 2. A single-cell phenotypic atlas of DCIS epithelium and its microenvironment
(A) Depiction of the parallel tissue analysis methods used in this study, including H&E 

staining, laser-capture microdissection (LCM) of stroma and epithelium with RNA-seq, and 

MIBI-TOF with an overview of the MIBI-TOF workflow.

(B) Markers used in the MIBI-TOF panel, grouped by target cell type or protein class.

(C) Cell lineage assignments based on normalized expression of lineage markers (heatmap 

columns). Rows are ordered by absolute abundance (bar plot, left), while columns are 

hierarchically clustered (euclidean distance, average linkage). Myoep, myoepithelial cell; 

Mono, monocyte; Endo, endothelial cell; APC, antigen-presenting cell; Macs, macrophages; 
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ImmOther, immune other; MonoDC, monocyte-derived dendritic cell; dnT, double-negative 

T cell; DC, dendritic cell.

(D) Representative MIBI image of a DCIS tumor with a nine-color overlay of major cell 

lineage markers. Inset showing the corresponding H&E image; scale bar: 100 μm. Pt., 

patient.

(E) A cell phenotype map (CPM) showing cell identity by color, as defined in C, overlaid 

onto the cell segmentation mask; scale bar: 100 μm.

(F) Region masks marking stroma (pink), myoepithelial (cyan), and ductal (blue) tissue 

regions; scale bar: 100 μm.

(G) Heatmap of normalized marker expression for four tumor cell subsets including 

luminal (CK7/PanCK/ECAD+), CK5/7-low (PanCK+, ECAD+ only), Basal (CK5/PanCK/

ECAD+), and EMT (VIM/PanCK/ECAD+), with an accompanying bar graph of cell subset 

prominence.

(H) Images of DCIS tumors with diversity in tumor cell subsets including basal/luminal 

heterogeneity (left) and EMT tumor cells (right); scale bar, 100 μm.

(I) Heatmap of normalized marker expression for four fibroblast cell subsets including 

resting fibroblasts (VIM+ only, Resting), myofibroblasts (SMA/VIM+, Myo), cancer-

associated fibroblasts (FAP/VIM+, CAFs), and normal fibroblasts (CD36/VIM+, Normal).

(J) Images of DCIS tumors with distinct stroma makeup of fibroblast subsets including 

normal fibroblast enriched (left) and CAF enriched (right); scale bar: 100 μm.

(K) Area plots of the frequency of tumor subsets (top), fibroblast subsets (middle), and 

immune lineages (bottom) in all DCIS, IBC, and normal patient samples profiled in this 

study. Tissue and PAM50 subtype are denoted by color in the top row.
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Figure 3. Transition to DCIS and IBC is marked by coordinated changes in the TME
(A) Schematic of the classes of spatial features quantified in all samples, including the 

measurement of cell type prevalence in specific tissue regions (1: Tissue compartment 

enrichment), the calculation of paired cell-cell spatial enrichment or spatially enriched cell 

neighborhoods (2: cell-cell proximity), and morphometric features of the myoepithelial layer 

and collagen fibers (3: morphometrics).

(B) Area plot of the distribution of each feature class in the features that significantly differ 

between normal breast tissue, DCIS, and IBC states by Kruskal-Wallis H test (p < 0.05).

(C) Column plot comparing the prevalence of each feature class in features that differ 

between tissue states, and total measured features.

(D) Heatmap of the distinguishing feature prevalence in normal breast tissue, DCIS, and 

recurrent IBC samples. K-means clustering separated features into four groups of distinct 

feature-enrichment patterns in the tissues states, including those highest in normal tissue and 

low in IBC (TME1: normal enriched), those highest in DCIS (TME2: DCIS enriched), and 

those highest in IBC and low in normal (TME3: IBC enriched). Features are organized by 

descending false-discovery rate Q value within each TME. Color indicates mean over tissue 

state, Z scored per feature across tissue states.

(E) Area plot of the distribution of the cellular compartment of the distinguishing features in 

each TME cluster.
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Figure 4. Increased desmoplasia and ECM remodeling distinguish primary DCIS from their IBC 
recurrence
(A) Paired vertical scatterplot of the stromal density of mast cells in the primary DCIS 

diagnosis and subsequent IBC recurrence in individual patients; paired Mann-Whitney test.

(B) The stromal density of normal fibroblasts is compared in longitudinal samples from 

single patients as in (A).

(C) Representative MIBI image overlays showing the primary DCIS diagnosis (left) and 

invasive recurrence (right) from patient 1023. Green arrows, normal fibroblasts, orange 

arrows, CAFs; scale bar: 100 μm.

(D) Example of dense MIBI collagen signal, collagen fiber object segmentation, and 

subsequent fiber area and orientation measurement, with fiber-fiber alignment denoted by 

fiber color.

(E) Scatterplot comparing summed stromal density of CAFs and myofibroblasts versus 

collagen fiber density.

(F) Volcano plot of ECM-related gene expression for the top and bottom CAF-enriched 

DCIS tumors.
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Figure 5. Identifying DCIS features correlated with risk of invasive progression
(A) Schematic of the outcome groups of primary DCIS: “progressors,” who recurred with 

ipsilateral IBC, and “non-progressors,” who showed no recurrence within 11 years of 

follow-up. MIBI features (N = 433) of numerous feature classes were used to train a random 

forest classifier to differentiate progressor and non-progressor samples. Classifier specificity 

was then tested on a withheld set of 20% of patients in a test group.

(B) AUC plot of classifier sensitivity and specificity.

(C) Classifier accuracy is compared for 10 runs with known progressor/non-progressor 

labels and 10 runs with randomly permuted progressor/non-progressor labels. p = 0.02, 

Wilcoxon signed rank test.

(D) Bar plot of features with top classifier importance ranked by average Gini importance 

across the unpermuted 10 runs. Orange, enriched for progressors; green, enriched for non-

progressors. The parent feature class for each feature is shown and whether that class 

leveraged spatial information.

(E) Column plot of the sum of Gini importance of features separated by their corresponding 

cellular compartment.
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Figure 6. Myoepithelial breakdown and phenotypic change between progressors and non-
progressors
(A) Representative MIBI image overlay of a DCIS progressor tumor with ECAD 

coexpression in the SMA+ myoepithelium; scale bar: 100 μm.

(B) Boxplot comparing the frequency of ECAD+/SMA+ myoepithelial coexpression cluster 

in progressor (P) and non-progressor (NP) tumors. ***p < 0.001, *p < 0.05, Mann-Whitney 

test.

(C) Boxplot comparing the frequency of the ECAD+ myoepithelium in immunofluorescence 

analysis between P and NP tumors.

(D) Heatmap of select myoepithelial feature prominence in NP tumors, P tumors, and 

normal breast tissue.

(E) Representative images of myoepithelial integrity in normal breast tissue, a P DCIS 

tumor, and a NP tumor.

(F) Violin plot of the distribution of linear discriminate analysis-derived “myoepithelial 

character” values in NP and P tumors as well as normal breast tissue; Kruskal-Wallis test.

(G) Gene set enrichment analysis of all measured features was used to determine which 

tissue feature ontologies were enriched in tumors with high or low myoepithelial character 

scores. Normalized enrichment score is given for each feature ontology; points are colored 

by significance (false discovery rate Q value).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

A full list of antibodies is provided in Table S2 N/A N/A

Biological samples

The Resource of Archival Breast Tissue (RAHBT) cohort TMAs were compiled at 
Washington University in St. Louis, all patient information is included in Table S1

N/A N/A

Chemicals, peptides, and recombinant proteins

TBS IHC Wash Buffer with Tween 20 Cell Marque Cat#935B-09

PBS IHC Wash Buffer with Tween 20 Cell Marque Cat#934B-09

Target Retrieval Solution, pH 9, (3:1) Agilent (Dako) Cat#S2375

Avidin/Biotin Blocking Kit Biolegend Cat#927301

Gelatin (cold water fish skin) Sigma-Aldrich Cat#G7765–250

Xylene Histological grade Sigma-Aldrich Cat#534056–500

Glutaraldehyde 8% Aqueous Solution EM Grade EMS Cat#16020

Normal Donkey serum Sigma-Aldrich Cat#D9663–10ML

Bovine Albumin (BSA) Fisher Cat#BP1600–100

Centrifugal filters (0.1 μm) Millipore Cat#UFC30VV00

Critical commercial assays

MIBItag Conjugation Kit IONpath Cat#600XXX

ImmPRESS UNIVERSAL (Anti-Mouse/Anti-Rabbit) IgG KIT (HRP) Vector Laboratories Cat#MP-7500–15

ImmPACT DAB (For HRP Substrate) Vector Laboratories Cat#SK-4105

Deposited data

All image data, single cell data, and tissue feature data, is located in a public 
Mendeley data repository: https://data.mendeley.com/datasets/d87vg86zd8

Mendeley Data https://data.mendeley.com/
datasets/d87vg86zd8

Software and algorithms

Data analysis was done using MATLAB 2016 Mathworks N/A

Data analysis was done using R 3.6.1 R N/A

Data analysis was done using Python Python N/A

Analysis code for MATLAB, R, and Python is available at the Mendeley data and 
code repository: https://data.mendeley.com/datasets/d87vg86zd8

Mendeley Data https://data.mendeley.com/
datasets/d87vg86zd8
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