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ABSTRACT
State space truncation methods are widely used to approximate solutions of the chemical master equation. While most methods of this kind
focus on truncating the state space directly, in this work, we propose modifying the underlying chemical reaction network by introducing
slack reactants that indirectly truncate the state space. More specifically, slack reactants introduce an expanded chemical reaction network and
impose a truncation scheme based on desired mass conservation laws. This network structure also allows us to prove inheritance of special
properties of the original model, such as irreducibility and complex balancing. We use the network structure imposed by slack reactants
to prove the convergence of the stationary distribution and first arrival times. We then provide examples comparing our method with the
stationary finite state projection and finite buffer methods. Our slack reactant system appears to be more robust than some competing methods
with respect to calculating first arrival times.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013457., s

I. INTRODUCTION
Chemical reaction networks (CRNs) are a fundamental tool in

the modeling of biological systems, providing a concise representa-
tion of known chemical or biological dynamics. A CRN is defined by
a family of chemical reactions of the form

n

∑

i=1
αiXi →

n

∑

i=1
βiXi,

where αi and βi are the number of species Xi consumed and pro-
duced in this reaction, respectively. The classical approach to model-
ing this CRN is to consider the concentrations
c(t) = (c1(t), c2(t), . . . , cn(t))⊺, where ci(t) is the concentration of
species Xi at time t, and to use a system of nonlinear differential
equations to describe the evolution of the concentrations.

Suppose we are interested in studying the typical enzyme–
substrate system1 given by the CRN

S + E ⇌ C → P + E, (1)

where the species S, E, C, and P stand for a substrate, an enzyme,
an enzyme–substrate complex, and a product, respectively. The sub-
strate and enzyme bind reversibly to form a substrate–enzyme com-
plex, and the enzyme then acts upon the substrate forming the
product. Given an initial condition where the molecular numbers
of both C and P are 0, a natural question to ask is how long the
system takes to produce the first copy of P. Similarly, there exists
a time in the future where S and C are fully depleted, resulting in a
chemically inactive system, and one can ask when this occurs. These
are both quantities that the classical deterministic modeling leaves
unanswered—by considering only continuous concentrations, there
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is no well-defined way to address modeling questions at the level
of single molecules as the model assumes that all the reactions
simultaneously occur within infinitesimally small time intervals.

Instead, by explicitly considering each individual copy of a
molecule, we may formulate a continuous-time Markov chain.
This stochastic modeling is especially important when the sys-
tem consists of low copies of species, in which case the influence
of intrinsic noise is magnified.2–4 Rather than deterministic con-
centrations c(t), we consider the continuous-time Markov chain
X(t) = (X1(t), X2(t), . . . , Xd(t))⊺ describing the molecular number
of each species Xi at time t.

The questions regarding the enzyme–substrate system (1), such
as the time of the first production of P, simply correspond to the first
passage times of various combinations of states. For a continuous-
time Markov process X, the first passage time to visit a set K of
system states is formally defined as τ = inf{t ≥ 0 : X(t) ∈ K}.

One can directly compute E(τ) by using the transition rate
matrix A. With few exceptions (such as CRNs with only zero-
or first-order reactions5), most chemical reaction networks of any
notable complexity will have an intractably large or infinite state-
space, i.e., they exhibit the curse of dimensionality. This direct
approach can, therefore, suffer from the high dimensionality of the
transition rate matrix.

An alternative approach is to estimate the mean first pas-
sage time by generating sample trajectories with stochastic sim-
ulation algorithms such as the Gillespie algorithm.6 This over-
comes the curse of dimensionality since a single trajectory needs
only to keep track of its current population numbers. Neverthe-
less, there still remain circumstances under which it is more effi-
cient to numerically evaluate the exact solution of the chemical
master equation (CME)—in particular, when the Markov process
rarely visits K so that significantly long simulations may be required
to sample enough trajectories to estimate the mean first passage
time.7

Fortunately, a broad class of state space reduction meth-
ods have recently been developed that allow for direct treatment
of the transition rate matrix. These methods are based on the
truncation-and-augmentation of the state space,8–11 the finite buffer
method,12,13 and linear programming.14,15 A recent review summa-
rizes truncation-based methods.16 The stationary finite state pro-
jection (sFSP)11 and the finite buffer method12,13 are examples of
such truncation-based methods, which we will describe in detail
below. They all satisfy provable error estimates on the probabil-
ity distributions when compared with the original distribution. On
the other hand, each of these methods has potential limitations
for estimating mean first passage times and other quantitative fea-
tures. For instance, using sFSP depends on the choice of a desig-
nated state, which can significantly alter the estimate for first passage
times.

In this paper, we provide a new algorithm of state space reduc-
tion, the slack reactant method, for stochastically modeled CRNs. In
this algorithm, we generate a new CRN from an existing CRN by
adding one or multiple new species so that the associated stochas-
tic system satisfies mass conservation relations and is confined to a
finite number of states. For instance, we convert a simple birth and
death model 0/ ⇌ X admitting an infinite state space to Y ⇌ X with
the “slack reactant” Y to confine it on a finite state space. In order to
ensure equivalent dynamics to the original system, we define a mild

form of non-mass action kinetics for the new system. Since the state
space reduction is implemented using a fully determined CRN, we
can study the CRN using well-known tools of CRN theory such as
deficiency zero and Lyapunov functions as long as they extend to
this form of kinetics.

In Sec. III B, we provide an algorithm to produce a slack vari-
able network, given a desired set of mass conservation relations. In
addition to its theoretical uses, this algorithm allows us to implement
existing software packages such as CERENA,17 StochDynTools,18

and FEEDME19 for chemical reaction networks to generate quan-
tities such as the moment dynamics of the associated stochastic
processes using the network structures as input.

We employ classical truncation Markov chain approaches to
prove convergence theorems for slack networks. For fixed time t, if a
probability density of each slack system under conservation quantity
N converges to its stationary distribution uniformly in N, then the
stationary distribution of the slack system converges to the original
stationary distribution as N tends to infinity. We further prove that
under a uniform tail condition of first passage times, the mean first
passage time of the original system can be approximated with slack
systems confined on a sufficiently large truncated state space. Finally,
we show that the existence of the Lyapunov function for the origi-
nal system guarantees that all the sufficient conditions for the first
passage time convergence are satisfied. We also show that this trun-
cation method is natural in the sense that a slack system admits the
same stationary distribution up to a constant multiplication as the
stationary distribution of the original system if the original system is
complex balanced.

This paper is outlined as follows: In Sec. III, we introduce the
slack reactant method and include several illustrative examples. In
Sec. IV, we demonstrate that the slack method compares favorably
with other state space truncation methods (sFSP and finite buffer
method) when calculating mean first passage times. We prove con-
vergence in the mean first passage time, and other properties, in
Sec. V. In Sec. VII, we use slack reactants to estimate the mean first
passage times for practical CRN models such as a Lotka–Volterra
population model and a system of protein synthesis with a slow
toggle switch.

II. STOCHASTIC CHEMICAL REACTION NETWORKS
A chemical reaction network (CRN) is a graph that describes

the evolution of a biochemical system governed by a number of
species (S ) and reactions (R). Each node in the graph represents
a possible state of the system, and nodes are connected by directed
edges when a single reaction transforms one state into another.
Each reaction consists of complexes and a reaction rate constant. For
example, the reaction representing the transformation of complex ν
to complex ν′ at rate κ is written as follows:

ν κ
Ð→ ν′. (2)

A complex, such as ν, is defined as a number of each species Si ∈ S.
That is, ν = (ν1, ν2, . . ., νd) representing a complex ∑d

i=1 νiSi, where
νi ≥ 0 are the stoichiometric coefficients indicating how many copies
of each species Si ∈ S belong in complex ν. The full CRN is
thus defined by (S, C, R,Λ), where C and Λ represent the set of
complexes and reaction propensities, respectively.

J. Chem. Phys. 153, 054117 (2020); doi: 10.1063/5.0013457 153, 054117-2

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

When intrinsic noise plays a significant role for system dynam-
ics, we use a continuous-time Markov chain X(t) = (X1(t), X(2), . . .,
Xd(t)) to model the copy numbers of species Si of a reaction network.
The stochastic system treats individual reactions as discrete transi-
tions between integer-valued states of the system. The probability
density for X(t) is denoted as

px0(x, t) = P(X(t) = x ∣ X(0) = x0),

where X(0) is the initial state. We occasionally denote by p(x, t) or
P(X(t) = x) the probability omitting the initial state x0 when the con-
texts allow. For each state x, the probability density p(x) obeys the
chemical master equation (CME), which gives the time-evolution of
p(t) with a linear system of ordinary differential equations (ODEs),20

d
dt
p⊺(t) = p⊺A. (3)

Here, the entry Aij (i ≠ j) is the transition rate at which the ith state
transitions to the jth state. Letting x and x′ be the ith and jth states,
the transition rate from x to x′ is

Aij = ∑

ν→ν′
x+ν′−ν=x′

λν→ν′(x),

where λν→ν ′ is the reaction intensity for a reaction ν→ ν′.
The diagonal elements of A are defined as

Ajj = −∑
i≠j

Aij.

Regarding the reaction intensities, we will assume that

λν→ν′(x) > 0 if and only if xi ≥ νi for each i. (4)

This is a slightly stronger condition than the so-called stoi-
chiometric compatibility21 of the intensity function, namely, that
λν→ν ′ (x) can only be positive if xi ≥ νi for each i.

A typical choice for λν→ν ′ is mass-action, which defines for
x = (x1, x2, . . ., xd) and ν = (α1, α2, . . ., αd),

λν→ν′(x) = κν→ν′
d

∏

k=1
x(αi)

i ,

where κν→ν ′ is the rate constant. Here, we used the notation
m(n) = m(m− 1)(m− 2)⋯(m−n + 1)𝟙{n≥m} for positive integers m
and n.

A state x is called an absorbing state if λν→ν ′ = 0 for all reactions
ν → ν′. This means that if the Markov chain enters this state, it will
remain there for all time. A Markov chain X(t) with X(0) = x0 is
accessible to a state xT if P(X(t) = xT for some t | X(0) = x0) = 1.

III. CONSTRUCTION OF SLACK NETWORKS
In this section, we introduce the method of slack reactants,

which adds new species to an existing CRN so that the state space
of the associated stochastic process is truncated to a finite subset
of states. This model reduction accurately approximates the orig-
inal system as the size of the truncated state space increases. We
begin with a simple example to demonstrate the main idea of the
method.

A. Slack reactants for a simple birth-death model
Consider a mass-action birth-death model of a single species,

(5)

For the associated stochastic process X, the mass-action assumption
defines reaction intensities as λ0/→X(x) = κ1 and λX→0/(x) = κ2x for
each reaction in (5). Note that the count of species X could be any
positive integer value as the birth reaction 0/→X can occur unlimited
times. Therefore, the state space for this system consists of infinitely
many states. Consider instead the CRN

, (6)

where we have introduced the slack reactant Y. This new network
admits X + Y = N as a conservation law for some N since for each
reaction, either one species is degraded by one, while the other is
produced by one.

Since the purpose of this new network is to approximate the
qualitative behavior of the original system (5), we minimize the con-
tribution of the slack reactant Y for modeling the associated stochas-
tic system. Hence, we assign Y a special reaction intensity—instead
of λY→X(x, y) = κ1y using mass-action, we choose

λY→X(x, y) = κ1𝟙{y≥0}, (7)

and we use the same intensity λX→Y (x, y) = κ2x for the reaction
X → Y. By forcing Y to have “zero-order kinetics,” we ensure that
the computed rates remain the same throughout the chemical net-
work except for on the imposed boundary. This choice of reaction
intensities not only preserves the conservation lawX(t) +Y(t) =X(0)
+ Y(0) but also prevents the slack reactant Y from having negative
counts with the characteristic term 𝟙{y≥0}.

B. Algorithm for constructing a network
with slack reactants

In general, by using slack reactants, any conservation law can
be deduced in a similar fashion to encode the desired truncation
directly in the CRN. We have found this perspective to be advanta-
geous with respect to studying complex CRNs. Rather than thinking
about the software implementation of the truncation, it is often eas-
ier to design the truncation in terms of slack reactants and then
implement the already-truncated system exactly.

We now provide an algorithm to automatically determine the
slack reactants required for a specified truncation. It is often the
case that a “natural” formulation arises (typically by replacing zero-
order complexes with slack reactants), but when that is not the case,
one can still systematically find a slack network by following our
algorithm.

Consider any CRN (S, C, R,Λ) such that S = {X1, X2, . . . , Xd}

and C = {ν j
∣ j = 1, 2, . . . , ∣C ∣}. Then, we define matrices associated

with the given CRN.

1. Let S be the ∣C ∣ × ∣R∣ connectivity matrix such that for each r,

−Sir = Sjr =

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if rth reaction is νi
→ ν j

0 otherwise.
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2. Let C be the ∣S∣ × ∣C ∣ complex matrix such that Cij = ν j
i .

Suppose we wish to apply a number of conservation bounds
to reduce the state-space of the associated chemical master
equation, e.g., many equations of the form

wi,1X1 + wi,2X2 +⋯ + wi,dXd ≤ Ni, (8)

for i = 1, 2, . . ., m. Then, we define additional matrices
associated with the conservation bounds (8).

3. Let W be the m × d matrix of the conservation bounds in (8)
such that W ij = wi ,j, and let N = (N1, N2, . . . , Nm)

⊺.
4. For arbitrary positive integers ui, let U be an m × |C| matrix

with each row of the form ui1⊺ = ui(1, 1, . . ., 1)⊺.
5. Define m × ∣C ∣matrix D = U −WC.

Finally, we use these matrices to define the slack network
(S̃, C̃, R̃).

6. Let S̃ = {X1, . . . , Xd, Y1, . . . , Ym}.
7. Let C̃ = {ν̃ j

∣ j = 1, 2, . . . , ∣C ∣}, where ν̃ j is the jth column of

C̃ = (
C

D
).

8. Let R̃ = {ν̃i
→ ν̃ j

∣ − Sir = Sij = 1 for some r}.

We next verify that the newly generated network (S̃, C̃, R̃)
with the slack reactants Y i admits conservation laws

wi,1X1 + wi,2X2 +⋯ + wi,dXd + Yi = Ni (9)

for each i = 1, 2, . . ., m so that the state space is truncated onto a
finite set and the conservation bounds (8) hold. Note that for a given
CRN with the matrices S and C, conservation laws ri

⋅X = N i hold
with conservation vectors r1, r2, . . ., rm if and only if each reaction
vector is orthogonal to rj. This is equivalent to RΓ = 0, where R is a
matrix with rows rj⊺ and Γ = CS is the stoichiometric matrix whose
columns indicate the reaction vector ν′ − ν associated with a reaction
ν→ ν′ ∈R.

Note that the network (S̃, C̃, R̃) is generated with the connec-
tivity matrix S and the new complex matrix C̃. Thus, the stoichio-
metric matrix of (S̃, C̃, R̃) is Γ̃ = C̃S. Then, since (1, 1, . . ., 1)S = 0,
we have

(W I)Γ̃ = (W I)C̃S = 0.

Therefore, (9) holds.
We model the stochastic system associated with the slack net-

work by XN
(t) = (XN

1 (t), XN
2 (t), . . . , XN

d (t)), where each of the
entries represents the count of species in the new network. Note that
the count of each slack reactant Y i is fully determined by species
counts XN

i ’s because of the conservation law(s). As such, we do not
explicitly model Y i’s.

The intensity function λNν̃→ν̃ of XN for a reaction ν̃ → ν̃′ is
defined as

λNν̃→ν̃′(x) = λν→ν′(x)
m

∏

i=1
𝟙{yi≥ν̃d+1}, (10)

where yi = N i − (wi1x1 + wi1x1 +⋯+ widxd) and ν→ ν′ is the reaction
in R. Then, we denote by (S̃, C̃, R̃,ΛN

) a new system with slack
reactants obtained from the algorithm, where KN is the collection

of kinetic rates {λN
ν̃→ν̃′ : ν̃→ ν̃′ ∈ R̃}. We refer this system with slack

reactants to a slack system.
Here, we highlight that the connectivity matrix S and the com-

plex matrix C of the original network are preserved for a new net-
work with slack reactants. Thus, the original network and the new
network obtained from the algorithm have the same connectivity.
This identical connectivity allows the qualitative behavior of the
original network, which solely depends on S and C, to be inher-
ited to the new network with slack reactants. We particularly exploit
the inheritance of accessibility and the inheritance of Poissonian
stationary distribution in Sec. VI.

Remark III.1. A single conservation relation, such as w ⋅X + y
= N with a non-negative vector w, is sufficient to truncate the
given state space into a finite state space. Hence, in this manuscript,
we mainly consider a slack network that is obtained with a single
conservation vector w and a single slack reactant Y.

Remark III.2. Although we primarily think about bounding our
species counts from above, we could also bound species counts from
below by choosing negative integers for wi ,j. For instance, suppose that
the stochastic process X associated with the birth-death model (5) sat-
isfies X(0) = 100. If we are interested in computing the first hitting
time to state 50, then by adding a slack reactant Y, we can truncate
the state space of X from below with a conservation law −X(t) + Y(t)
= −X(0) + Y(0) = −40 so that X(t) ≥ 40 for each t. In this case, a slack
network is X + Y ⇌ 0 with Y(0) = 60.

Example III.1. We illustrate our slack algorithm with an exam-
ple CRN consisting of two species and five reactions indicated by
edge labels on the following network:

. (11)

We enumerate the complexes in the order of 0/, A, and B. We
order the reactions according to their labels on the network. Thus,
the connectivity matrix S and complex matrix C are defined as
follows:

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 −1

1 −1 −1 1 0

0 0 1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [
0 1 0

0 0 1
].

Suppose we set a conservation bound A + B ≤ N for some N > 0.
Then, the matrix W = [1 1] and D = [u u u] − [0 1 1] for an
arbitrary positive integer u.
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When u = 1, the network with the slack reactant Y is

(12)

where we have the conservation relation A + B + Y = N, where
N = A(0) + B(0) + Y(0).

When u = 2, the network with the slack reactant Y is

(13)

where we have the same conservation relation A + B + Y = N.
Here, we explain why network (12) is preferred to (13) because

it is less intrusive. Let X = (XA, XB, XY ) and X′ = (X′A, X′B, X′Y ) be the
stochastic process associated with networks (12) and (13), respec-
tively. Suppose that the initial state of both X and X′ is (0, 0, N). X
can reach the state (0, N, 0) by transitioning N times with the reac-
tion Y → B. This state corresponds to the state (0, N) in the original
network (11). On the other hand, X′ cannot reach the state (0, N, 0).
This is because the states (0, 0, N) and (0, N − 1, 1) are the only states
from which X′ jumps to (0, 0, N). However, no reaction in (13) can
be fired at the states since no species Y presents at those states.

Consequently, one state, which is accessible in the original net-
work (11), is lost in the system associated with network (13). How-
ever, it can be shown that the stochastic process associated with
network (12) preserves all the states of the original network. This
occurs mainly because the matrix D for network (12) is sparser than
the matrix D for network (13). We discuss how to minimize the
effect of slack reactants in Sec. III C.

C. Optimal slack CRNs for effective approximation
of the original systems

The algorithm we introduced to construct a network with slack
reactants is valid and unique up to any user-defined conservation
bounds (8), and the outcome is the matrix D that indicates the
stoichiometric coefficient of slack reactants at each complex.

As we showed in Example III.1, to minimize the “intrusive-
ness” of a slack network, we can simplify a slack network by setting
as many Dij = 0 as possible. To do that, we choose the entries of u
such that ui is the maximum entry of the ith row of AC. We further
optimize the effect of the slack reactants by removing the “redun-
dant” stoichiometric coefficient of slack reactants. For example, for
a CRN,

0/⇌ A→ 2A, (14)

the algorithm generates the following new CRN with a single slack
reactant Y :

2Y ⇌ A + Y → 2A. (15)

However, by breaking up the connectivity, we can also generate
another network

Y ⇌ A, A + Y → 2A. (16)

FIG. 1. The dotted arrows correspond to the reaction vectors that are turned off
(i.e., the associated reaction intensity is zero) at the boundary of the state space
for a slack system, as described in Sec. III C.

The network in (15) is more intrusive than the network in (16) in
the sense of accessibility. At any state where Y = 0, the system asso-
ciated with (15) will remain unchanged because no reaction can take
place. However, the reaction A→ Y in (16) can always occur despite
Y = 0. Hence, (16) preserves the accessibility of the original system
associated with (14) as any state for A is accessible from any other
state in the original reaction system (14). We refer such a system with
slack reactants generated by canceling redundant slack reactants to
an optimized slack system. In Sec. VI, we explore the accessibility of
an optimized reaction network with slack reactants in a more general
setting.

Finally, we can make a network with slack reactants admit a
better approximation of a given CRN by choosing an optimized
conservation relation in (8). First, we assume that only a single con-
servation law and a single slack reactant are added to a given CRN.
For the purpose of state space truncation onto finitely many states, a
single conservation law is enough as all species could be bounded by
N, as shown in (8). Let this single conservation law be

w1X1 + w2X2 +⋯wdXd + Y = N.

Then, the matrix W defined in Sec. III B is a vector (w1, w2, . . . , wd)
⊺,

and we denote this by w. By the definition of the intensities (10) for
a network with slack reactants, some reactions are turned off when
Y = 0, i.e., w1X1 +⋯+ wdXd = N. Geometrically, a reaction outgoing
from the hyperplane w1X1 +⋯+ wdXd = N is turned off (Fig. 1).

Hence, we optimize the estimation with slack reactants by
minimizing such intrusiveness of turned off reactions. To do that,
we choose v, which minimizes the number of the reactions in
{ν→ ν′ ∈R : (ν′ − ν) ⋅w > 0}.

IV. COMPARISON TO OTHER TRUNCATION-BASED
METHODS

In this section, we demonstrate that our method can potentially
resolve limitations in calculating mean first passage times observed
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in other methods of state space truncation, namely, sFSP and the
finite-buffer method. Both methods require the user to make deci-
sions about the state-space truncation that may introduce variability
in the results. While all methods will converge to the true result as
the size of the state space increases, we show that our method is less
dependent on user-defined quantities. This minimizes additional
decision-making on the part of the user that can lead to subopti-
mal results, especially in a context where the solution of the original
system is not known.

A. Comparison to the sFSP method
A well-known state truncation algorithm is known as the

Finite State Projection (FSP) method.10 For a given continuous-time
Markov chain, the associated FSP model is restricted to a finite state
space. If the process escapes this truncated space, the state is sent to
a designated absorbing state [see Fig. 2(b)]. For a fixed time t, the
probability density function of the original system can be approx-
imated by using the associated FSP model with sufficiently many
states. The long-term dynamics of the original system, however, is
not well approximated because the probability flow of the FSP model
leaks to the designated absorbing state in the long run.

To fix this limitation of FSP, Gupta et al. proposed the sta-
tionary Finite State Projection (sFSP) method.11 This method also
projects the original state space onto a finite state space as the FSP
method intended to. However, sFSP does not create a designated
absorbing state as all outgoing transitions from the projected finite
state space are merged to a single state x∗ “inside” the finite state
space [Fig. 2(c)]. The sFSP has been frequently used to estimate
the long-term distribution of discrete stochastic models. However,
if the size of the truncated state space is not sufficiently large, this
method could fail to provide accurate estimation for the first passage
time. To demonstrate this case, we consider the following simple
2-dimensional model. In the network shown in Fig. 3(a), two X1 pro-
teins are dimerized into protein X2, while X1 is being produced at a
relatively high rate. The state space of the original model is the full
2-dimensional positive integer grid. We estimate the time until the
system reaches one of the two states indicated in red in Fig. 3(c), and
we use alternative methods to do this.

For the sFSP, we project the original state space onto the rect-
angle by restricting X1 ≤N and X2 ≤N for some N > 0, and we fix the

origin (0, 0) as the designated state x∗ [Fig. 3(c)]. If the process asso-
ciated with the sFSP model escapes the rectangle, it transports to the
designated state immediately. On the other hand, we also consider a
slack network shown in Fig. 3(b), where we introduce the conserva-
tion law X1 + 2X2 + Y = N for some N > 0. Let τ = inf{t ≥ 0:X1 = 1
and X2 ∈ {1, 2}} be the first passage time we want to estimate.

For a Markov chain defined on a finite state space, the mean
first passage time is computable with the inverse of an absorbing
transition matrix, as detailed in Ref. 22 (see Appendix A for details).
Hence, by using the inverse absorbing matrix for each truncation
method, we obtain the mean of τ by using different values of N. We
also obtain an “almost” true mean of τ by using 105 Gillespie simula-
tions of the original process. As shown in Fig. 3(b), the slack network
model provides a more accurate mean first passage time estimation
for the size of truncation in between 100 and 400 if the designated
return state of sFSP is (0, 0).

The inaccurate estimate from the sFSP is due to the choice of
a return state. The sFSP model escapes the confined space often
because the production rate of X1 is relatively high. When it returns
back to the origin, it is more likely to visit the target states {X1 = 1
and X2 ∈ {1, 2}} than the original process.

Figure 3 shows that the mean first passage time of this sys-
tem using sFSP depends significantly on the location of the chosen
designated state. One of the two states is a particularly poor choice
for sFSP, but it illustrates the idea that without previous knowledge
of the system, it can be difficult to know which states will perform
well.

We display the behavior of individual solutions of the original
model, the slack network, and the sFSP model in Fig. 3(d). The tra-
jectory plots show that within the time interval [0, 500], almost half
of the 100 samples from both the original model and the slack net-
work model stay far away from the target states, while all 100 sample
trajectories from the sFSP model stay close to the target states. We
also illustrate this point in Fig. 3(e) with heat maps of the three mod-
els at t = 500. Note that only in the case of the sFSP, the probability
densities are concentrated at the target states.

B. Comparison to the finite buffer method
The finite buffer method was proposed to estimate the station-

ary probability landscape with state space truncation and a novel

FIG. 2. Schematic images of various state-space truncation methods for a CRN with two species: (a) slack network (this paper), (b) Finite State Projection (FSP),10 (c)
stationary Finite State Projection (sFSP),11 and (d) finite buffer method.12,13
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FIG. 3. Comparison between an sFSP model and a slack network for the same reaction system. (a) Original 2-dimensional system and its slack network. (b) Mean first
passage time as a function of the truncated state size, comparing sFSP and the slack reactant method. (c) The state space truncation corresponding to the sFSP method
and the slack method for this model. Target states for the first passage time are indicated in red. (d) Mean of 100 sample trajectories obtained by Gillespie simulations for
the original system, the slack system, and the sFSP system. The red lines indicate the mean of the trajectories that have touched the target states within [0, 500], while the
black lines are the mean of the trajectories that did not touch the target space during this time. (e) Probability density heat maps of the stochastic processes modeled under
the original system, the slack system, and the sFSP model, respectively, at t = 500 (see Sec. IV A for more information).

state space enumeration algorithm.12,13 For a given stochastic model
associated with a CRN, the finite buffer method sets inequalities
among species such as (8), so-called buffer capacities. Then, at each
state x, the transition rate of a reaction ν → ν′ is set to be zero if at

least one of the inequalities does not hold at x + ν′ − ν. We note
that the algorithm, described in Sec. III B, for generating a slack net-
work uses the same inequalities. Thus, the finite buffer method and
the slack reactant method truncate the state space in the same way.

J. Chem. Phys. 153, 054117 (2020); doi: 10.1063/5.0013457 153, 054117-7

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

We have shown, in Sec. III C, that this type of truncation can cre-
ate “additional” absorbing states. These additional absorbing states
change the accessibility between the states, which means the mean
first passage times cannot be accurately estimated. However, the
regular slack systems preserve the network structure of the original
network. Hence, we are able to prove, as we already noted, that regu-
lar slack networks inherit the accessibility of the original network as
long as the original network is “weakly reversible,” as we will define
below.

We demonstrate this disparity between the finite buffer and
slack methods with the following network. Consider the mass-action
system (11) with a fixed initial state x0 = (a0, b0). We are interested in
estimating the mean first passage time to a target state xT = (10, 10).
Note that the state space is irreducible (i.e., every state is accessible
from any other state) as the network consists of unions of cycles. This
condition, the union of cycles, is precisely what is meant by weakly
reversible.23,24 Thus, the original stochastic system has no absorbing
state and is accessible to the target state xT . Therefore, it is critical for
a state space truncation method not to create an additional absorb-
ing state so that the reduced system still can reach the target state
with probability 1.

To use the finite buffer method on this network, we set 2XA
+ XB ≤ N as the buffer capacity, where X = (XA, XB) is the associ-
ated stochastic process. (Here, we choose N > 30, so the state space
contains the target state xT .) Hence, when X satisfies 2XA + XB
= N, the reactions 0/ → A, B → A, and 0/ → B cannot be fired
as 2XA + XB exceeds the buffer capacity. We now demonstrate
that the system has a new absorbing state. By first using reaction
A → B, to deplete all A, and then 0/ → B, every state can reach the
state (0, N) in finite time with positive probability. The state (0, N) is
the absorbing state because no other reactions can occur. Reactions
A→ 0/ and A→ B require at least one A species, and any other reac-
tions lead to states exceeding the buffer capacity. Therefore, the finite
buffer method has introduced a new absorbing state not present in
the original model so that the system can be trapped at (0, N) with
positive probability, and in turn, it is not accessible to xT . Therefore,
the mean first passage time to xT is infinite under the finite buffer
method.

Now, we show that the explicit network structure of our slack
network formulation will preserve the accessibility of the original
system. We consider the same inequality 2XA + XB ≤ N as above
with N > 30. We generate the slack network by using the algorithm
shown in Sec. III B,

. (17)

Note that the associated stochastic process X = (XA, XB, Y) admits
the conservation relation 2XA + XB + Y = N, implying that
2XA + XB ≤ N. The state (0, N, 0) cannot be reached as the only
state that is accessible to (0, N, 0) is (0, N − 1, 2), but it violates the
conservation law.

As we highlighted in Sec. III C, slack networks preserve the
connectivity of the original network (11); hence, network (17) is
also weakly reversible. Thus, the state space of the stochastic process

associated with the slack network is irreducible by Corollary VI.1.
This implies that there is no absorbing state and the system is acces-
sible to xT , unlike the stochastic process associated with the finite
buffer relation. See Sec. VI for more details about the accessibility of
slack systems.

V. CONVERGENCE THEOREMS FOR SLACK
NETWORKS

In this section, we establish theoretical results on the con-
vergence of properties of a slack network to the original network.
(Proofs of the theorems below are provided in Appendix B.) Many of
these results rely on theorems from Hart and Tweedie25 who studied
when the probability density function of a truncated Markov process
converges to that of the original Markov process. We employ the
same idea of their proof to show the convergence of a slack network
to the original network.

By assuming “uniform mixing,” we show the convergence of
the stationary distribution of the slack system to the stationary distri-
bution of the original system as the conservation quantity N grows.
Furthermore, we show the convergence of mean first passage times
for the slack network to the true mean first passage times. In partic-
ular, all these conditions hold when there is a Lyapunov function for
the original system.

In this section, assume that a given CRN (S, C, R,Λ) is well
defined for all time t and let (S̃, C̃, R̃,ΛN

) be an associated slack
network obtained with a single conservation quantity w ⋅X ≤ N. We
denote by X and XN the associated stochastic processes of the origi-
nal CRN and the slack network, respectively. We fix the initial state
for both systems, i.e., X(0) = XN (0) = x0 for some x0 and for each N.
[This means that we can only consider slack systems where N is large
enough so that w ⋅ x(0) <N.] Assume that both the original and slack
systems are irreducible, and we denote by S and SN the state spaces
for each, respectively. (In Sec. VI, we prove accessibility properties
that the slack system can inherit from the original system.)

Note that every state in SN satisfies our conservation inequal-
ity. That is, for every x ∈ SN , we have w ⋅ x ≤ N. It is possible that
SN = SN+1 for some N. For simplicity, we assume that the trun-
cated state space is always enlarged with respect to the conservation
quantity N, that is, SN ⊂ SN+1 for each N. (For the general case, we
could simply consider a subsequence Nk such that Nk < Nk+1 and
SNk ⊂ SNk+1 for each k.)

As defined in Sec. II, λν→ν ′ ∈ Λ is the intensity of a reaction
ν → ν′ for the associated stochastic system X. We also denote by
λN
ν̃→ν̃′ ∈ ΛN the intensity of a reaction ν̃ → ν̃′ for the associated

stochastic system XN . Finally, we let p(x, t) and pN (x, t) be the prob-
ability density function of X and XN , respectively. We begin with the
convergence of the probability density functions of the slack network
to the original network with increasing N.

Theorem V.1. For any x ∈ SN and T ≥ 0, we have

lim
N→∞

sup
t∈[0,T]

∣p(x, t) − pN(x, t)∣ = 0.

A Markov process defined on a finite state space admits a sta-
tionary distribution. Hence, XN admits a stationary distribution πN .
If the slack system satisfies the condition of “uniform mixing, that is,
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the convergence rate of ∥pN (x, t) − πN (x)∥1 is uniform in N, then we
have the following result.

Theorem V.2. Suppose that X admits a stationary distribution
π. Suppose further that there exists a positive function h(t), which is
independent of N, such that ∥pN (⋅, t) − πN∥1 ≤ h(t) and lim

t→∞h(t) = 0.
Then,

lim
N→∞

∥π − πN∥1 = 0.

We now consider the convergence of the mean first passage
time of XN . Recall that we assumed that both stochastic processes
have the same initial state X(0) = XN (0) = x0 and both state spaces
S and SN are irreducible. Hence, for any K ⊆ S, each state in SN is
accessible to K for sufficiently large N.

Theorem V.3. For a subset K of the state space of X, let τ
and τN be the first passage times to K for X and to K ∩ SN for XN ,
respectively. Assume the following conditions:

1. X admits a stationary distribution π.
2. lim

N→∞
∥π − πN∥1 = 0.

Then, for any T ≥ 0,

lim
N→∞

sup
t∈[0,T]

∣P(τ > t) − P(τN > t)∣ = 0.

If we further assume that
3. E(τ) <∞.
4. There exists g(t) such that P(τN > t) ≤ g(t) for all N and
∫
∞
0 g(t)dt <∞.

Then,

lim
N→∞

∣E(τ) − E(τN)∣ = 0.

Remark V.1. To obtain the convergence of higher moments of
the first passage time, we need only replace conditions E(τK ) <∞ and
∫
∞
0 g(t)dt <∞ with

E(τn
K) <∞ and ∫

∞

0
g(t

1
n )dt <∞, (18)

respectively.

We now show that if a Lyapunov function exists for the original
system, the conditions in Theorem V.2 and Theorem V.3 hold. The
Lyapunov function approach was proposed by Meyn and Tweedie,26

and it has been used to study long-term dynamics of Markov pro-
cesses,11,27–29 especially exponential ergodicity. Gupta et al.11 used a
linear Lyapunov function to show that the stationary distribution of
an sFSP model converges to a stationary distribution of the origi-
nal stochastic model and used the Lyapunov function to explicitly
compute the convergence rate. In particular, we show Lyapunov
functions exist for the examples we consider in Sec. VII.

Theorem V.4. Suppose that there exists a function V and posi-
tive constants C and D such that for all x,

1. V(x) ≥ 1 for all x ∈ S,

2. V is an increasing function in the sense that

V(xN+1) ≥ V(xN)

for each xN+1 ∈ SN+1/SN and xN ∈ SN , and

3.
∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x)) ≤ −CV(x) + D.

Then, the conditions in Theorem V.3 hold.

Remark V.2. Conditions (18) hold if a Lyapunov function satis-
fying the conditions in Theorem V.4 exists. Thus, the convergence of
the higher moments of the first passage time also follows.

VI. INHERITANCE OF SLACK NETWORKS
As we showed in Sec. IV B, not all state space truncations pre-

serve accessibility of states in the original system. (For the example
in Sec. IV B, the truncation created a new absorbing state.) Thus, it is
desirable to obtain reduced models that are guaranteed to maintain
the accessibility of the original system to predetermined target states.
In this section, we show that under mild conditions, both a regu-
lar slack system and an optimized slack system preserve the original
accessibility. The proofs of the theorems introduced in this section
are in Appendix C. The key to these results is the condition of weak
reversibility.

Definition VI.1. A reaction network is weakly reversible if each
connected component of the network is strongly connected. That is, if
there is a path of reactions from a complex ν to ν′, then there is a path
of reactions ν′ to ν.

We note that the weakly reversible condition applies to the net-
work graph of the CRN. The network graph consists of complexes
(nodes) and reactions (edges). It is a sufficient condition for irre-
ducibility of the associated mass-action stochastic process. Indeed,
the sufficiency of weak reversibility holds even under general kinet-
ics as long as condition (4) is satisfied.30 Hence, irreducibility of a
regular slack network follows since it preserves weak reversibility
of the original network, and the kinetics modeling the regular slack
system satisfies (4).

Corollary VI.1. Let (S, C, R,Λ) be a weakly reversible CRN
with intensity functions Λ = {λν→ν ′ } satisfying (4). Then, the state
space of the associated stochastic process with a regular slack network
(S̃, C̃, R̃,ΛN

) is a union of closed communication classes for any N.

In case the original network is not weakly reversible, we can still
guarantee that optimized slack systems have the same accessibility
as the original system, provided that all species have a degradation
reaction (Si → 0/).

Theorem VI.1. Let (S, C, R,Λ) be a reaction network such
that {Si → 0/ : Si ∈ S} ⊂ R. Suppose that the stochastic process
X associated with (S, C, R,Λ) and beginning at the point x0 is irre-
ducible. Let XN be the stochastic process associated with an optimized
slack network (S̃, C̃, R̃,ΛN

) such that XN (0) = x0 for every N large
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enough. Then, for any subset K of the state space of X, there exists N0
such that XN reaches K almost surely for N ≥ N0.

This theorem follows from the fact that a slack system only dif-
fers from the original system when it runs out of slack reactants.
However, in an optimized slack system, degradation reactions are
allowable with no slack reactants. Hence, our proof of Theorem VI.1
relies on the presence of all degradation reactions.

A slack network may also inherit its stationary distribution
from the original reaction system. When the original system admits
a stationary distribution of a product form of Poisson distributions
under the complex balance condition, a slack system inherits the
same form of the stationary distribution as well. A reaction system is
complex balanced if the associated deterministic mass-action system
admits a steady state c∗ such that

∑

ν∈C
ν→ν′∈R

fν(c∗) = ∑

ν′∈C
ν→ν′∈R

fν′(c∗),

where fν(x) = κν→ν′xν1
1 ⋯xνd

d is the deterministic mass-action rate31

with a rate constant κν→ν ′ . If a reaction system is complex balanced,
then its associated stochastic mass-action system admits a station-
ary distribution corresponding to a product of Poisson distribu-
tions centered at the complex balance steady state.32 The following
lemma shows that the complex balancing of the original network is
inherited by a regular slack network.

Lemma VI.1. Suppose that (S, C, R,Λ) is a reaction network
whose mass-action deterministic model admits a complex balanced
steady state c∗. Then, any regular slack network (S̃, C̃, R̃,ΛN

) with
slack reactants Y1, . . ., Ym also admits a complex balanced steady
state at c̃ = (c∗, 1, 1, . . . , 1)⊺.

Remark VI.1. Note that a regular slack network also preserves
the deficiency of the original network. Deficiency δ of a reaction
network is an index such that

δ = n − ℓ − s,

where n is the number of the complexes, ℓ is the number of connected
components, and s is the rank of the stoichiometric matrix of the reac-
tion network. Deficiency characterizes the connectivity of the network
structure, and surprisingly, it can also determine the long-term behav-
ior of the system dynamics regardless of the system parameters.31–33 A
regular slack network and original network have the same number of
complexes n and the same connectivity matrix S, which implies they
have the same number of connected components ℓ. Furthermore, using
the notation from Sec. III B, the stoichiometric matrices are Γ = CS for
the original network and

Γ̃ = (
C

U − AC
)S = (

CS

−WCS
)

for a slack network, which means that they have the same rank s.
Together, these imply that the original network and its regular slack
network have the same deficiency.

Since the complex balancing is inherited with the same steady
state values for Xi, we have the following stochastic analog of

inheritance of the Poissonian stationary distribution for regular
slack systems.

Theorem VI.2. Let X be the stochastic mass-action system asso-
ciated with a complex balanced (S, C, R,Λ)with an initial condition
X(0) = x0. Let XN be the stochastic system associated with a regular
slack system (S̃, C̃, R̃,ΛN

) with XN (0) = x0. Then, for the state space
SN of XN , there exists a constant MN > 0 such that

πN(x) =MNπ(x) for x ∈ SN ,

where π and πN are the stationary distributions of X and XN ,
respectively.

We demonstrate Lemma VI.1 and Theorem VI.2 with a simple
example.

Example VI.1. Consider two networks,

(19)

(20)

Let X and XN be systems (19) and (20), respectively, where N is the
conservation quantity XN (t) ≤ N. Under mass-action kinetics, the
complex balance steady state of (19) is c∗ = 2. Under mass-action
kinetics, c̃ = (2, 1) is a complex balance steady state of (20).

Now, let π and πN be the stationary distribution of X and XN ,
respectively. By Theorem 6.4, Ref. 32, π is a product form of Poisson
distributions such that

π(x) = e−2 c∗x

x!
for each state x.

By plugging π into the chemical master equation (3) of XN and
showing that for each x

λN
X→Y(x + 1)π(x + 1) + λN

Y→X(x − 1)π(x − 1)

= (x + 1)𝟙{N−x−1≥0}e−2 2x+1

(x + 1)!
+ 2𝟙{N−x+1≥1}e−2 2x−1

(x − 1)!

= x𝟙{N−x≥0}e−2 2x

x!
+ 2𝟙{N−x≥1}e−2 2x

x!
= λN

X→Y(x)π(x) + λN
Y→X(x)π(x),

we can verify that π is a stationary solution of the chemical master
equation (3) of XN . Since the state space of XN is {x ∈ Z≥0 : x ≤ N},
we choose a constant MN such that

∑

0≤x≤N
MNπ(x) = 1.

Then, πN = MNπ is the stationary distribution of XN .

VII. APPLICATIONS OF SLACK NETWORKS
In this section, we demonstrate the utility of slack reactants

in computing mean first-passage times for two biological examples.
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For both examples, we compute the mean first passage time via the
matrix inversion approach, as shown in Appendix A.

A. A Lotka–Volterra model with migration
Consider a Lotka–Volterra model with migration shown in

Fig. 4(a). In this model, species A is the prey, and species B is the
predator. Clearly, the state space of this model is infinite (A, B)
such that A ≥ 0, B ≥ 0. We will use slack reactants to determine the
expected time to extinction of either species. More specifically, let
K = {(A, B) : A = 0 or B = 0}. We will calculate the mean first arrival
time to K from an initial condition [A(0), B(0)]. [In our simulations
in Fig. 4, we chose (A(0), B(0)) = (3, 3).]

To generate our slack network, we choose a conservation bound
w ⋅ (A, B)⊺ ≤ N with w = (1, 1). As we discussed in Sec. III C, this w
minimizes the intrusiveness of slack reactants because the number
of reactions ν → ν′ such that (ν′ − ν) ⋅w > 0 is minimized. By using
the algorithm introduced in Sec. III B, we generate a regular slack
network (21) with a slack reactant Y,

(21)

As the slack reactant Y in reactions B + Y ⇌ 2Y ⇌ A + Y can be
canceled, we further generate the optimized slack network shown in
Fig. 4(a). We let A(0) + B(0) + Y(0) = N, which is the conservation
quantity of the new network.

Let τ be the first passage time from our initial condition to
K. First, we examine the accessibility of the set K. Because our
reaction network contains creation and destruction of all species
(i.e., B ⇌ 0/ ⇌ A), the original model is irreducible and any state
is accessible to K. Furthermore, Theorem VI.1 guarantees that the
stochastic model associated with the optimized slack network is also
accessible to K from any state.

Next, by showing there exists a Lyapunov function satisfying
the condition of Theorem V.4 for the original model, we are guaran-
teed that the first passage times from our slack network will converge
to the true first passage times (see Appendix E 1 for more details).
Therefore, as the plot shows in Fig. 4(b), the mean first extinction
time of the slack network converges to that of the original model
as N increases. The mean first passage time of the original model
was obtained by averaging 109 sample trajectories. These trajecto-
ries were computed serially on a commodity machine and took 4.6 h
to run. In contrast, the mean first passage times of the slack systems
were computed analytically on the same computer and took at most
13 s. Figure 4 also shows that using only 103 samples is misleading
as the simulation average has not yet converged to the true mean
first passage time. Finally, as expected from Theorem V.1, the prob-
ability density of the slack network converges to that of the original
network [see Fig. 4(c)].

B. Protein synthesis with a slow toggle switch
We now consider a protein synthesis model with a toggle switch

[see Fig. 5(a)]. Protein species X and Z may be created but only when

FIG. 4. Calculating mean time to extinction of a Lotka–Volterra model with migration using slack reactants. (a) The reaction network for the Lotka–Volterra model with migration
(left). The Lotka–Volterra model with a slack reactant Y (right). The parameters are κ1 = 0.1, κ2 = 0.1, κ3 = 0.2, κ4 = 0.6, κ5 = 0.2, and κ6 = 0.2. (b) Convergence of the mean
time to extinction of the slack network (blue) to the true network (solid red). (c) Heatmaps of the probability density at time 1000 of the original model and the slack system
with various truncation size (see Sec. VII A for details).

J. Chem. Phys. 153, 054117 (2020); doi: 10.1063/5.0013457 153, 054117-11

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Calculating mean first passage
time of a slow toggle switch using
slack reactants. (a) Protein synthesis
with slow toggle switch. (b) The toggle
switch model with a slack reactant Y.
Parameters are α− = 0.1, α = 10, κ =
2000, and κ− = 100. (c) Multimodal long-
term probability distribution of the original
model. (d) Convergence of the first pas-
sage time of the slack system with vari-
ous truncation sizes (see Sec. VII B for
details).

their respective genes DX or DZ are in the active (unoccupied) state,
DX

0 and DZ
0 . Each protein acts as a repressor for the other by binding

at the promoter of the opposite gene and forcing it into the inactive
(occupied) state (DX

1 and DZ
1 ). In this system, we consider only one

copy of each gene so that DX
0 + DX

1 = DZ
0 + DZ

1 = 1 for all time.
Thus, we focus primarily on the state space of protein numbers only
(X, Z).

The deterministic form of such systems is often referred to as
a “bi-stable switch” as it is characterized by steady states (X∗, 0)
(X “on” and Z “off”) and (0, Z∗) (X “off” and Z “on”). This stochas-
tic form of toggle switch has been shown to exhibit a multi-modal
long-term probability density due to switches between these two
deterministic states due to rapid significant changes in the num-
bers of proteins X and Z by synthesis or degradation (depending
on the state of promoters).34 Figure 5(c) shows that the associated
stochastic system admits a tri-modal long-term probability density.
Thus, the system transitions from one mode to other modes and,
for the kinetic parameters chosen in Fig. 5, rarely leaves the region
R = {(X, Z)|0 ≤ X ≤ 30 or 0 ≤ Z ≤ 30}. Significant departures from a
stable region of a genetic switch may be associated with irregular and
diseased cell fates. As such, the first passage time of this system out-
side of R may indicate the appearance of an unexpected phenotype
in a population. Because this event is rare, estimating first passage
times with direct stochastic simulations, such as with the Gillespie
algorithm,6 will be complicated by the long time taken to exit the
region.

As in the previous example, slack systems provide a valu-
able tool for direct calculation of mean first passage times. In
this example, we consider the time a trajectory beginning at state
(X, Z, DX

0 , DZ
0 ) = (0, 0, 1, 1) enters the target set K = {(X, Z)|X > 30

and Z > 30} = Rc and compute τ, the first passage time to K.
Since the species corresponding to the status of promoters

(DX
0 , DX

1 , DZ
0 and DZ

1 ) are already bounded, we use the conservation
bound X + Z ≤N to generate a regular slack network in Fig. 5(b) with
the algorithm introduced in Sec. III B. The original toggle switch
model is irreducible (because of the degradation X → 0, Z → 0 and
protein synthesis Z + DX

0 ← DX
1 , X + DZ

0 ← DZ
1 reactions). Moreover,

by Theorem VI.1, the degradation reactions guarantee that the slack
system is also accessible to K from any state.

As shown in Fig. 5(d), the mean first passage time of the slack
system appears to be converging to approximately 3.171 × 109. To
prove that the limit of the slack system is actually the original mean
first passage time, we construct a Lyapunov function satisfying the
conditions of Theorem V.4. See Appendix E 2 for more details about
the construction of the Lyapunov function.

C. The exclusive mutual inhibition,
self-activation model

The exclusive Mutual Inhibition, Self-Activation (ExMISA)
model is a cell-fate decision model that contains two genes A and
B, each of which produces transcription factors X and Z.35,36 The
transcription factors each bind to their own gene, promoting their
own production, as well as binding to the other gene, inhibit the pro-
duction of the other transcription factor. We consider the ExMISA
model described by the following reaction network:

(22)

where g0 < g1 so that the rate of production of X and Z is highest
when genes A and B are in the “on-state,” A10 and B10, respectively.
The transcription factor binding/unbinding rates f a, ha, f r , and hr
are much smaller than the rates of protein production/degradation.
(In our simulations, we follow the previous paper36 and set f a = 10−5,
f r = 1, ha = 10−5, hr = 10−1, g0 = 4, g1 = 18, and k = 1.) Hence, the
gene state switching reactions are operating in the slow-time scale,
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while the protein production/degradation reactions are operating in
the fast-time scale.

Similar to the toggle switch model we introduced in
Sec. VII B,35 these distinct scales create multiple modes in the
long-term system behavior. However, because X and Z can still be
produced when A and B are in the “off-state,” the behavior of the
ExMISA model is more complicated. The system admits four modes
in the long-term probability landscape, each of which corresponds
to a phenotype of cell [see Fig. 6(b)]. Once the system settles down
at one mode, it is extremely rare to transition to other mode because
of the slow-time scale.36,37

Margaret et al.36 used a rare-event based simulation method to
study metastable gene regulatory systems, including ExMISA, and
approximated the long-time probability landscape and time between
phenotype-transitions.

In this section, we study the ExMISA model with slack reac-
tants. First, we construct the slack network in (23) with the slack
reactant Y. We then use the new network to estimate long-term
probability distribution and approximate the mean first transition
time between two phenotype modes of the original ExMISA model.
Note that the probability density can be explicitly derived for a
Markov chain with a finite-state space as p(t) = μeQt , where Q is
the transition rate matrix and μ is the initial distribution. Hence,
we compute the long-time probability density function for the slack
network (23) [Fig. 6(b)]. The four peaks in the probability den-
sity correspond to high/high, high/low, low/high, and low/low sta-
tuses of X/Z. Then, we estimate the mean transition time from the
low/high status to high/low status and show the convergence of the
mean transition time in Fig. 6(c). (More specifically, we begin a
trajectory at the state X = 5, Z = 15, A00 = 0, A01 = 1, A10 = 0,
B00 = 0, B01 = 0, B10 = 1 and calculate the time it reaches the
unit ball centered at X = 15, Z = 5.) The mean first passage time
of the original ExMISA was estimated by averaging 5 × 103 sam-
ple trajectories obtained using the Gillespie algorithm. A com-
modity machine was used to simulate these trajectories in parallel
(parfor in Matlab with six workers) and took 3.52 h to run. In
contrast, on the same computer, our slack system (23) took only
6 min to compute the mean first passage time for each conservation

quantity N,

(23)

VIII. DISCUSSION AND CONCLUSIONS
We propose a new state space truncation method for stochas-

tic reaction networks (see Sec. III). In contrast to other methods,
such as FSP, sFSP, and finite buffer methods, we truncate the state
space indirectly by expanding the original chemical reaction net-
work to include slack reactants. The truncation is imposed through
user-defined conservation relations among species. The explicit net-
work structure of slack reactants facilitates proofs of convergence
(Sec. V) and allows the use of existing software packages to study the
slack network itself.17 Indeed, any user-defined choices for conser-
vation laws, conservation amounts, and stoichiometric structure can
be used to construct a slack network with our algorithm. We provide
guidelines for optimal user choices that can increase the similarity
between the slack system and the original model (see Sec. III C).

Slack systems can be used to estimate the dynamical behavior
of the original stochastic model. In Sec. IV, we used a simple exam-
ple to show that the slack method can lead to a better approximation
for the mean first passage time than the sFSP method and the finite
buffer method. In particular, in Sec. V, we provide theorems that
show that the slack system approximates the probability density and
the mean first passage time of the original system. Because slack net-
works preserve network properties, such as weak reversibility, the
slack system is also likely to have the same accessibility to a tar-
get state as the original model (see Sec. VI). In particular, we note

FIG. 6. Calculating mean first passage time of ExMISA. (a) Schematic description of ExMISA. (b) Multimodal long-term probability distribution of the ExMISA model
with the slack network (23). The modes are labeled by status (H = high, L = low). (c) Approximating the mean transition time from the low/high mode to the high/low
mode under a slack system with different truncation size (blue curve) and by time averages from 5000 direct Gillespie simulations (red line) (see Sec. VII C for more
details).
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that weak reversibility guarantees that our slack truncation does not
introduce absorbing states.

In Sec. VI, we show that this truncation method is natural in
the sense that the stationary distributions of the original and slack
systems are identical up to multiplication by a constant when the
original system is complex balanced. Finally, in Sec. VII, we use slack
networks to calculate first passage times for two biological examples.
Our method can be useful to study various biological systems for
which we estimate rare event probabilities and mean first passage
times. We expect that this new theoretical framework for state space
truncation will be useful in the study of other biologically motivated
stochastic chemical reaction systems.
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APPENDIX A: FIRST PASSAGE TIME FOR MARKOV
PROCESSES WITH FINITELY MANY STATES

The Markov chain associated with a slack network has always
a finite state space. There are many different methods to analyti-
cally derive the mean first passage time of a Markov chain with a
finite state space.22,38,39 In this paper, we use the method of Laplace
transform, which is also used in Ref. 39.

For a continuous time Markov process defined on a finite state
space S, let Q be the transition rate matrix, i.e., Qij is the transition
rate from state i to state j if i ≠ j and Qii = −∑j≠iQij.

For a subset K = {i1, i2, . . . , ik} ⊂ S, we define an absorbing
transition matrix QK that is obtained by removing the ijth row and
column from Q for j = 1, 2, . . ., k. Then, the mean first passage time
to the set K starting from the ith state is the ith entry of−Q−1

K 1, where
1 is a column vector with each entry 1.

APPENDIX B: PROOFS OF CONVERGENCE THEOREMS
In this section, we provide the proofs of the theorems intro-

duced in Sec. V. We use the same notations and the same assump-
tions as we used in Sec. V. We also use a projection function q such
that

q(x1, . . . , xd, y1, . . . , yr) = (x1, . . . , xd). (B1)

This linear function q projects a complex in a slack network onto
a complex in the original network as q(ν̃) = ν if ν̃ is obtained by
adding slack reactants to ν. In the same sense, q(ν̃′ − ν̃) = ν′ − ν if a
reaction ν̃ → ν̃′ is obtained from a reaction ν → ν′ by adding slack
reactants.

Proof of Theorem V.1. We employ the main idea shown in
the proof of Theorem 2.1 in Ref. 25. Let a state x and time t be fixed.
We consider large enough N so that x ∈ SN−1.

We use an FSP model on SN−1 of the original system X with
the designated absorbing state x∗ ∈ Sc

N−1. Let pFSP
N−1 be the probability

density function of this FSP model.
Let TN be the first time for XN to hit SN/SN−1. We generate

a coupling of XN and the FSP model restricted on SN−1 as they
move together by TN and they move independently after TN . Then,
pFSP

N−1(x, t) = P(XN
(t) = x, TN > t) for x ∈ SN−1 because the

FSP model has stayed in SN−1 if and only if XN has never touched
SN/SN−1. Thus,

pN(x, t) = P(XN
(t) = x, t < TN) + P(XN

(t) = x, t ≥ TN)

= pFSP
N−1(x, t) + P(XN

(t) = x, t ≥ TN)

≥ pFSP
N−1(x, t). (B2)

Furthermore,

P(XN
(t) = x, t ≥ TN) ≤ P(t ≥ TN)

= pFSP
N−1(x

∗, t) = 1 − pFSP
N−1(SN−1, t),

where we used the fact that after TN , the FSP process is absorbed at
x∗. Thus,

pFSP
N−1(x, t) ≤ pN(x, t) ≤ pFSP

N−1(x, t) + 1 − pFSP
N−1(SN−1, t),

and hence,

∣pN(x, t) − pFSP
N−1(x, t)∣ ≤ 1 − pFSP

N−1(SN−1, t). (B3)

Note that

pFSP
N−1(x, t) = P(X(t) = x, t < TN) ≤ p(x, t).

Since TN increases to ∞ almost surely as N increases, pFSP
N−1(x, t)

monotonically increases in N and converges to p(x, t) as N →∞ for
each x ∈ SN . Then, by using the monotone convergence theorem, the
term

pFSP
N−1(SN−1, t) =∑

x∈S
pFSP

N−1(x, t)𝟙{x∈SN−1}

converges to p(S, t) = 1. Since for any t ∈ [0, T]

pFSP
N−1(SN−1, T) = P(XN

(t) ∈ SN−1, T < TN)

≤ P(XN
(t) ∈ SN−1, t < TN) = pFSP

N−1(SN−1, t),

therefore, by taking lim
N→∞

sup
t∈[0,T]

in both sides of (B3), the result

follows. ◻

Proof of Theorem V.2. This proof is a slight generalization of
the proof of Theorem 3.3 of Ref. 25. Since the convergence of ∥pN (⋅,
t) − πN∥1 is independent of N, for any ε > 0, we choose sufficiently
large t0 such that

∥p(⋅, t0) − π(t0)∥1 ≤ ε and ∥pN(⋅, t0) − πN(t0)∥1 ≤ ε
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for all N. Then, by using the triangle inequalities,

∥π−πN∥1 ≤ ∥p(⋅, t0)−π∥1 + ∥pN(⋅, t0)−πN∥1 + ∥p(⋅, t0)− pN(⋅, t0)∥1

≤ ∥p(⋅, t0) − π∥1 + ∥pN(⋅, t0) − πN∥1

+ ∥p(⋅, t0) − pFSP
N−1(⋅, t0)∥1 + ∥pFSP

N−1(⋅, t0) − pN(⋅, t0)∥1

≤ 2ε +∑
x∈S
∣p(x, t0) − pFSP

N−1(x, t0)∣

+ ∑
x∈S
∣pFSP

N−1(x, t0) − pN(x, t0)∣. (B4)

Note that as we mentioned in the proof of Theorem V.1, we have
monotone convergence of pFSP

N−1(x, t0) to p(x, t0) for each x ∈ SN−1
as N →∞. Hence, by the monotone convergence theorem, the first
summation in (B4) goes to zero as N →∞. Note further that from
(B2), we have

∣pFSP
N−1(x, t0) − pN(x, t0)∣ = P(XN

(t) = x, TN ≤ t0).

Hence, the second summation in (B4) satisfies

∑

x∈S
∣pFSP

N−1(x, t0) − pN(x, t0)∣ ≤ ∑
x∈SN−1

∣pFSP
N−1(x, t0) − pN(x, t0)∣

+ pFSP
N−1(x

∗, t0)

+ P(XN
(t) ∈ SN/SN−1).

Note that by (B2),

∑

x∈SN−1

∣pFSP
N−1(x, t0) − pN(x, t0)∣

= ∑

x∈SN−1

P(XN
(t0) = x, t0 ≥ TN) = P(t0 ≥ TN).

Furthermore, pFSP
N−1(x∗, t0) = P(t0 ≥ TN) and P(XN

(t) ∈ SN/

SN−1) = P(TN < t0). Hence, ∑x∈S ∣p
FSP
N−1(x, t0) − pN(x, t0)∣ → 0 as

N →∞ because TN →∞ almost surely as N →∞.
Consequently, we have

lim
N→∞

∥π − πN∥1 ≤ 2ε.

Since we choose an arbitrary ε, this completes the proof.
In order to prove Theorem V.3, we consider an “absorbing”

Markov process associated with X and XN . Let X̄ and X̄N be Markov
processes such that

X̄(t) = {
X(t) if t < τ
X(τ) if t ≥ τ,

X̄N
(t) = {

XN
(t) if t < τN

XN
(τN) if t ≥ τN .

That is, X̄ and X̄N are coupled processes to X and XN , respectively.
Furthermore, they are absorbed to K once the coupled process (X
for X̄ and XN for X̄N ) visits the set K. These coupled processes have
the following relation.

Lemma B.1. Let t ≥ 0 be fixed and ε > 0 be arbitrary. Suppose
X admits a stationary distribution π. Suppose further that lim

N→∞
∥π

− πN∥1 = 0. Then, there exists a finite subset K̄ such that P(X̄(t)
∈ K̄c
) < ε and P(X̄N

(t) ∈ K̄c
) < ε for sufficiently large N.

Proof. Since the probabilities of X̄ and X̄N are leaking to K, we
have for each t and for each x ∈ Kc

P(X̄(t) = x) ≤ P(X(t) = x) and P(X̄N
(t) = x) < P(XN

(t) = x).
(B5)

This can be formally proved as for each x ∈ Kc,

P(X(t) = x) = P(X(t) = x, τ > t) + P(X(t) = x, τ ≤ t)

= P(X̄(t) = x) + P(X(t) = x, τK
≤ t)

≥ P(X̄(t) = x).

In the same way, we can prove that P(X̄N
(t) = x) < P(XN

(t) = x)
for each x ∈ Kc.

Let ε′ > 0 be arbitrary. Then, lim
N→∞

∥π − πN∥1 = 0 implies that
for any subset U, we have

π(U) − ε′ ≤ πN(U) ≤ π(U) + ε′ (B6)

for sufficiently large N. We use this property and (B5) combined with
the stationarity of the systems.

First, note that we are assuming X(0) = XN (0) = x0 for a fixed
x0. Then, by the definition of the stationary distribution π,

Px0(X(t) = x)π(x0) ≤∑
z∈S

P(X(t) = x∣X(t) = z)π(z) = π(x)

for each t ≥ 0. Then, it follows that

Px0(X(t) = x) ≤
π(x)
π(x0)

= γ1π(x) for any x and t, (B7)

where γ1 = 1/π(x0). In the same way, for any N, it follows that

Px0(X
N
(t) = x) ≤

πN(x)
πN(x0)

≤ γ2πN(x) for any x and t, (B8)

where γ2 = 1/(π(x0) − ε′) ≥ 1/πN (x0) by (B6) with sufficiently
small ε′.

Second, there exists a finite set K̄ such that π(K̄c
) < ε′ because

π is a probability distribution. Furthermore, by (B6), πN(K̄c
)

≤ π(K̄c
) + ε′ < 2ε′ for any sufficiently large N.

Finally, we choose ε′ = ε
2γ , where γ = max{γ1, γ2}. Then, by

summing up (B5), (B7), and (B8) over x ∈ K̄c, the result follows.

We prove Theorem V.3 by using the “absorbing” Markov
processes X̄ and X̄N coupled to X and XN , respectively.

Proof of Theorem V.3. We first break the term P(τ > t)
− P(τN > t) to show that

lim
N→∞

sup
t∈[0,T]

∣P(τ > t) − P(τN > t)∣ = 0.
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Let ε > 0 be an arbitrarily small number. Let K̄ be a finite set we
found in Lemma B.1. Then, by using triangular inequalities,

∣P(τ > t) − P(τN > t)∣ = ∣P(X̄(t) ∈ Kc
) − P(X̄N

(t) ∈ Kc
)∣

≤ ∑

x∈Kc∩K̄
∣P(X̄(t) = x) − P(X̄N

(t) = x)∣

+ ∑

x∈Kc∩K̄c

∣P(X̄(t) = x) − P(X̄N
(t) = x)∣

≤ ∑

x∈Kc∩K̄
∣P(X̄(t) = x) − P(X̄N

(t) = x)∣

+ P(X̄(t) ∈ K̄c
) + P(X̄N

(t) ∈ K̄c
)

≤ ∑

x∈Kc∩K̄
∣P(X̄(t) = x) − P(X̄N

(t) = x)∣ + 2ε.

(B9)

Note that by the same proof of Theorem V.1, we have the
convergence

lim
N→∞

sup
t∈[0,T]

∣P(X̄(t) = x) − P(X̄N
(t) = x)∣ = 0 for each x ∈ S.

Since the summation ∑x∈Kc∩K̄ is finite, we have that by taking
N →∞ in (B9),

lim
N→∞

sup
t∈[0,T]

∣P(τK
> t) − P(τK

N > t)∣ = 0 + 2ε. (B10)

Now, to show the convergence of the mean first passage times,
note that

∣E(τ) − E(τN)∣ ≤ ∫

∞

0
∣P(τ > t) − P(τN > t)∣dt,

where the integrand is bounded by P(τK > t) + g(t).
Condition (iii) in Theorem V.3 implies that E(τk) < ∞ and

∫
∞
0 g(t)dt < ∞. Hence, the dominant convergence theorem and

(B10) imply that

lim
N→∞

∣E(τ) − E(τN)∣ = 0.

◻

The existence of a special Lyapunov function ensures that the
conditions in Theorem V.3 hold. In order to use the absorbing
Markov processes, as we did in the previous proof, we define a Lya-
punov function for X̄ based on a given Lyapunov function V. Let
λ̄ν→ν′ and λ̄N

ν→ν′ denote the intensity of a reaction ν → ν′ for X̄ and
X̄N , respectively. For a given function V such that V(x) ≥ 1 for any
x ∈ S, we define V such that

V(x) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

V(x) if x ∈ Kc

1 if x ∈ K

so that V(x) ≥ V(x) for any x.
Note that λ̄ν→ν′(x) = λν→ν′(x) if x ∈ Kc. Hence, for each x ∈ Kc,

∑

ν→ν′∈R
λ̄ν→ν′(x)(V(x + ν′ − ν) − V(x))

≤ ∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x)) (B11)

because V(x) = V(x) and V(x + ν′ − ν) ≥ V(x + ν′ − ν) for every
reaction x + ν′ − ν. Moreover, λ̄ν→ν′(x) = 0 ≤ λν→ν′(x) if x ∈ K by
the definition of X̄ for each reaction ν→ ν′. Hence, for each x ∈ K,

∑

ν→ν′∈R
λ̄ν→ν′(x)(V(x + ν′ − ν) − V(x)) = 0. (B12)

From (B11) and (B12), therefore, we conclude that for any x,

∑

ν→ν′∈R
λ̄ν→ν′(x)(V(x + ν′ − ν) − V(x))

≤ {
−CV(x) + D if x ∈ Kc

0 if x ∈ K

≤ −C′V(x) + D′, (B13)

where C′ = C and D′ = max{C + 1, D}.

Proof of Theorem V.4. In this proof, we show that all the con-
ditions in Theorem V.3 are met by using the given function V.
First, we show that X admits a stationary distribution. This follows
straightforwardly by Theorem 3.2 of Ref. 25 because condition 3 in
Theorem V.4 means that V is a Lyapunov function for X.

The condition basically means that every outward reaction
ν→ ν′ (i.e., x+ν′−ν ∈ Sc

N and x ∈ SN ) in R gives a non-negative drift
as V(x + ν′ − ν) − V(x) ≥ 0. We use condition 2 in Theorem V.4 to
show that V is also a Lyapunov function for XN for any N.

We denote by λN
ν̃→ν̃′ the intensity of a reaction ν̃ → ν̃′ in

(S̃, C̃, R̃,ΛN
). Suppose that a reaction ν̃ → ν̃′ ∈ R̃ is obtained from

ν → ν′ ∈ R by adding a slack reactant. That is, q(ν̃′ − ν̃) = ν′ − ν,
where q is the projection function defined at (B1). Then, by the defi-
nition (10) of the intensity in a slack network, we have λN

ν̃→ν̃′(x) = 0
when x + q(ν̃′ − ν̃) /∈ SN because the XN is confined in SN . Further-
more, by condition 2 in Theorem V.4, V(x + ν′ − ν) ≥ V(x) when
x + q(ν̃′ − ν̃) /∈ SN because this means that x + ν′ − ν ∈ SM for some
M > N. This implies that if x + ν′ − ν /∈ SN ,

0 = λN
ν̃→ν̃′(x)(V(x + ν′ − ν) − V(x))

≤ λν→ν′(x)(V(x + ν′ − ν) − V(x)). (B14)

In case x + q(ν̃′ − ν̃) ∈ SN ⊆ S, we have that λN
ν̃→ν̃′(x) = λν→ν′(x) by

definition (10). Hence, by condition 3 and (B14), we have for any x

∑

ν̃→ν̃′∈R
λN
ν̃→ν̃′(x)(V(x + ν′ − ν) − V(x))

≤ ∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x))

≤ −CV(x) + D. (B15)

Thus, V is also a Lyapunov function for XN . Hence, Theorem
6.1 (the Foster–Lyapunov criterion for exponential ergodicity) in
Ref. 26 implies that for each N, there exist β > 0 and η > 0, which
are only dependent of C and D, such that

∥pN(⋅, t) − πN∥1 ≤ βV(x0)e−ηt .

This guarantees that the condition in Theorem V.2 holds with
h(t) = βV(x0)e−ηt . Hence, we have lim

N→∞
∥π − πN∥1 = 0 by Theorem

V.2.
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Now, to show that the first passage time τ has the finite mean,
we apply the Foster–Lyapunov criterion to X̄. Since (B13) meets the
conditions of Theorem 6.1 of Ref. 26, the probability of X̄ converges
in time to its stationary distribution exponentially fast. That is, for
any subset U, there exist β̄ > 0 and η̄ > 0 such that

∥P(X̄(t) ∈ U) − π̄(U)∥ ≤ βV(x0)e−ηt ,

where π̄ is the stationary distribution of X. This, in turn, implies that

E(τK) = ∫

∞

0
P(τ > t)dt

= ∫

∞

0
P(X̄(t) ∈ Kc

)dt

≤ ∫

∞

0
∣P(X̄(t) ∈ Kc

) − π̄(Kc
)∣ + π̄(Kc

)dt

≤ ∫

∞

0
βV(x0)e−ηtdt <∞, (B16)

where the second inequality follows as π̄(KC
) = 0, which is because

X̄ is eventually absorbed in K as the original process X is irreducible
and closed.

Finally, we show that for any N, there exists g(t) such that
P(τN < t) < g(t) and ∫∞0 g(t)dt <∞ for the first passage time τK ,N . By
the same reasoning we used to derive (B13), we also derive by using
(B15) that

∑

ν̃→ν̃′∈R
λ̄N
ν̃→ν̃′(x, y)(V(x + ν′ − ν) − V(x)) ≤ −C′V(x) + D′. (B17)

Hence, in the same way as used for (B16), we have the exponential
ergodicity of X̄N by Theorem 6.1 of Ref. 26, and then, we derive that

P(τN > t) = P(X̄N
(t) ∈ Kc

)

≤ ∣P(X̄(t) ∈ Kc
) − π̄N(Kc

)∣ + π̄N(Kc
)

≤ βV(x0)e−ηt ,

where π̄N is the stationary distribution of X̄N , which also has zero
probability in KC as X̄N is eventually absorbed in K. Since β and η
only depend on C′ and D′, we let g(t) = βV(x0)e−ηt that satisfies that
P(τK ,N > t) ≤ g(t) for any N and ∫∞0 g(t)dt <∞. ◻

APPENDIX C: PROOFS OF ACCESSIBILITY THEOREMS
In this section, we prove Theorem VI.1. We begin with a nec-

essary lemma. In the following lemma, for a given reaction system
(S, C, R,Λ), we generate a slack system (̃S, C̃, R̃,ΛN

) admitting a
single slack reactant Y. We denote byw the vector for which the slack
system admits the conservation bound w ⋅ x ≤ N for each state x of
the slack system. We also let c be the maximum stoichiometric coef-
ficient of the slack reactant Y in the slack network. Finally, note that,
as shown in Sec. III B, R̃ and R have the one-to-one correspondence
as every reaction in R̃ is obtained by adding the slack reactant to a
reaction in R. For the proof of Theorem V.4, we use the projection
function q defined at (B1).

Lemma C.1. For a reaction system (S, C, R,Λ), let (̃S, C̃, R̃,ΛN
)

be a slack system with a single slack reactant Y and a conservation

vector w. Let c be the maximum stoichiometric coefficient of the slack
reactant Y in (̃S, C̃, R̃,ΛN

). Then, if c ≤ N − (w ⋅ x) for a state x, then

λN
ν̃→ν̃′(x) > 0 if only if λν→ν′(x) > 0,

where ν̃ → ν̃′ ∈ R̃ and ν → ν′ ∈ R are reactions such that q(ν̃) = ν
and q(ν̃′) = ν′.

Proof. Let ν̃ ∈ C̃ such that ν̃ = (ν, uν) with the stoichiometric
coefficient uν of Y. By the definition of λN

ν̃→ν̃′ shown in (10),

λN
ν̃→ν̃′(x) > 0 if only if λν→ν′(x) > 0,

so long as y = N −w ⋅ x ≥ uν. Since c = maxν∈C{uν}, the result follows.

Proof of Theorem VI.1. We denote by S the irreducible and
closed state space of X such that X(0) = x0. We also denote by SN
the communication class of XN such that x0 ∈ SN for each N. Then,
SN ⊆ S, and the irreducibility of S guarantees that ∪∞i=1Si = S. There-
fore, there exists N1 such that SN,x0 ∩ K ≠ 0/ if N ≥ N1. This implies
that it is enough to show that SN,x0 is closed for N large enough
because SN,x0 is a finite subset. To prove this, we claim that there
exists N0 such that if N ≥ N0; then, SN admits no out-going flow.

To prove the claim by contradiction, we assume that for a
sequence Nk such that limk→∞Nk = ∞, there is an out-going flow
from SNk to a state xk ∈ Sc

Nk
. We find a sequence of reactions with

which XNk returns to SNk from xk for all large enough k.
First of all, note {Xi → Y} ⊂ R̃ because each reaction

Xi → 0/ ∈ R is converted to Xi → Y in any optimized slack net-
work by its definition of an optimized slack network (see Sec. III C).
Hence, for each k, by firing the reactions {Xi → Y}, XNk can reach
0 = (0, 0, . . ., 0) from xk.

The next aim is to show that for any fixed k large enough, there
exist a sequence of reactions {ν̃1 → ν̃′1, . . . ν̃n → ν̃′n} ⊂ R̃ such
that we have (i) λNk

ν̃i→ν̃′i
(xk + ∑i−1

j=1(ν̃
′
j − ν̃j)) > 0 for each i and (ii)

xk +∑n
j=1(q(ν̃

′
j − ν̃j)) ∈ SNk . This means that XNk can reach SNk from

xk along the reactions ν̃i → ν̃i in that order. For this aim, we make use
of the irreducibility of S so that there exists a sequence of reactions
{ν1 → ν′1, . . . , νn → ν′n} ⊂R such that (i) λνi→ν′i (0+∑i−1

j=1(ν
′
j−νj)) > 0

for each i and (ii) 0 +∑n
j=1(ν

′
j − νj) ∈ SN1 . By making N0 ≥ N1 large

enough, we have that if Nk ≥ N0, then

w ⋅
⎛

⎝

0 +
i

∑

j=1
(ν′j − νj)

⎞

⎠

< N − c for each i.

Hence, by Lemma C.1, for each reaction ν̃i → ν̃′i such that q(ν̃i) = νi
and q(ν̃′i) = ν′i , we have

λN
ν̃i→ν̃′i

⎛

⎝

0 +
i−1

∑

j=1
(q(ν̃′j − ν̃j))

⎞

⎠

> 0 for each i. (C1)

Finally, since q(ν̃i) = νi and q(ν̃′i) = ν′i for each i, we have

0 +
i−1

∑

j=1
(q(ν̃′j − ν̃j)) ∈ SN0 ⊆ SN . (C2)

Hence, (C1) and (C2) imply that if Nk ≥ N0, then XNk can re-enter
SNk from 0 with positive probability.
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Consequently, we constructed a sequence of reactions along
which XNk can re-enter SNk from xk for any k such that Nk ≥ N0.
Since each SNk is a communication class, xk ∈ SNk , and in turn, this
contradicts to the assumption that xk ∈ SNk . Hence, the claim holds
so that SN is closed for any N large enough. ◻

APPENDIX D: PROOFS FOR LEMMA VI.1
AND THEOREM VI.2

Proof of Lemma VI.1. In the deterministic model x̃(t)
= (x̃1(t), . . . , x̃d(t), y1(t), . . . , ym(t))⊺ associated with (S̃, C̃, R̃,ΛN

),
if we fix yi(t) ≡ 1 for all i = 1, 2, . . ., m, then x̃(t) follows the same
ODE system as the deterministic model x(t) associated with the orig-
inal network (S, C, R,Λ) does. Therefore, c̃ = (c∗, 1, 1, . . . , 1)⊺ is a
complex balanced steady state for x̃(t). It has been shown that the
existence of a single positive complex balanced steady state implies
that all other positive steady states are complex balanced,31 therefore
completing the proof. ◻

Proof of Theorem VI.2. Let wi and N i be the conserva-
tion vector and the conservation quantity of the slack network
(S̃, C̃, R̃,ΛN

), respectively. Then, π is a stationary solution of the
chemical master equation (3) of X,

∑

ν→ν′∈R
λν→ν′(x − ν′ + ν)π(x − ν′ + ν) = ∑

ν→ν′∈R
λν→ν′(x)π(x).

Especially, as shown in Theorem 6.4, Ref. 32, π satisfies the stochastic
complex balance for X: for each complex ν∗ ∈R and a state x,

∑

ν→ν′∈R
ν′=ν∗

λν→ν′(x − ν′ + ν)π(x − ν′ + ν) = ∑

ν→ν′∈R
ν=ν∗

λν→ν′(x)π(x). (D1)

Let q be the projection function defined at (B1). Note that each
reaction ν̃→ ν̃′ ∈ R̃ is defined as it satisfies the conservation law

wi ⋅ (ν′ − ν) + ν̃′d+i − ν̃d+i = 0, (D2)

where q(ν̃) = ν and q(ν̃′) = ν′. Then, π also satisfies the stochastic
complex balance for XN because (D1) and (D2) imply that for each
complex ν̃∗ ∈ R̃ and a state x,

∑

ν̃→ν̃′∈R̃
ν̃′=ν̃∗

λN
ν̃→ν̃′(x − q(ν′ − ν))π(x − q(ν′ − ν))

= ∑

ν→ν′∈R
ν̃′=ν̃∗

λν̃→ν̃′(x − ν′ + ν)π(x − ν′ + ν)
r

∏

i=1
𝟙{Ni−wi ⋅(x−ν′+ν)≥ν̃d+i}

= ∑

ν→ν′∈R
ν̃′=ν̃∗

λν̃→ν̃′(x − ν′ + ν)π(x − ν′ + ν)
r

∏

i=1
𝟙{Ni−wi ⋅x≥ν̃∗d+i}

= ∑

ν→ν′∈R
ν=ν∗

λν→ν′(x)π(x)𝟙{Ni−wi ⋅x≥ν̃∗d+i}

= ∑

ν̃→ν̃′∈R̃
ν̃=ν̃∗

λN
ν̃→ν̃′(x)π(x).

Then, by summing up for each ν̃∗ ∈ R̃,

∑

ν̃→ν̃′ ;∈R̃
λN
ν̃→ν̃′(x − q(ν′ − ν))π(x − q(ν′ − ν))

= ∑

ν̃→ν̃′∈R̃
λN
ν̃→ν̃′(x)π(x),

and in turn, πN is a stationary solution of the chemical master equa-
tion of XN . Since the state space of X and XN differ, MN is a constant
such that the sum of MNπ(x) over the state space of XN is one. Then,
πN = MNπ.

APPENDIX E: LYAPUNOV FUNCTIONS
FOR EXAMPLE SYSTEMS
1. Lotka–Volterra with migration

We construct a Lyapunov function satisfying the conditions
of Theorem V.4 for the Lotka–Volterra model with migration
[Fig. 4(a)]. First, for both the original model and the slack network,
we assume A(0) = a0, B(0) = b0 that do not depend on N.

Let V(x) = ew ⋅x with w = (1, 1)⊺. The condition in Theorem V.4
holds. Note that the slack network of Fig. 4(a) admits a conserva-
tion law A + B + Y = N and the state space of the system SN is {(a,
b)|a + b ≤ N}. Then, condition 2 in Theorem V.4 also follows by the
definition of V.

Now, to show condition 3 in Theorem V.4, we first note that for
x = (a, b),

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x))

= ew⋅x ∑
ν→ν′∈R

λν→ν′(x)(ew⋅(ν
′−ν)
− 1)

= V(x)(κ1b(e−1
− 1) + κ2(e − 1) + κ3(e−1

− 1)

+ κ4a(e−1
− 1) + κ5a(e − 1)). (E1)

Since we assumed κ4
κ5
= 3 (see the caption of Fig. 4), each coefficient

of a and b is negative. Thus, there exists M > 0 such that for each
x ∈ {(a, b) | a >M or b ≥M}, the left-hand side of (E1) satisfies

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x)) ≤ −CV(x)

for some C > 0. Letting

D = (C + 1) max
a≤M and b≤M

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x)),

condition 3 in Theorem V.4 holds with C and D.

2. Protein synthesis with a slow toggle switch
We also make use of the Lyapunov approach shown in Theo-

rem V.4 to prove that the first passage time of the slack system in
Fig. 5(b) converges to the original first passage time as the trun-
cation size N goes to infinity. Let XN

= (X, Z, DX
0 , DX

1 , DZ
0 , DZ

1 )

be the stochastic system associated with the slack system. Recall
that the slack network admits a conservation relation w ⋅XN

≤ N
with w = (1, 1, 0, 0, 0, 0). Hence, we define a Lyapunov function
V(x) = ex+z , where x = (x, z, dx0, dx1, dz0, dz1). By the definition of
V, it is obvious that condition 1 in Theorem V.4 holds. Furthermore,
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since SN = {x ∣ x + z ≤ N}, condition 2 in Theorem V.4 also holds.
So, we show that condition 3 in Theorem holds.

For a reaction ν → ν′ ∈ RI ∶= {Z + DX
0 → DX

1 , X → 0, X + DZ
0

→ DZ
1 , Z → 0}, it is clear that the term V(x + ν′ − ν) − V(x) is neg-

ative. For each reaction ν → ν′ in Rc
I , it is also clear that the term

V(x + ν′ − ν) − V(x) is positive. However, the reaction intensity for
a reaction in RI is linear in either x or z, while the reaction intensity
for a reaction in Rc

I is constant. Therefore, there exists a constant
M > 0 such that if x >M or z >M, then

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x))

≤ C′ ∑
ν→ν′∈RI

λν→ν′(x)(V(x + ν′ − ν) − V(x))

= −CV(x)

for some constants C′ > 0 and C > 0. Hence, letting

D = (C + 1) max
x≤M and z≤M

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x)),

condition 3 in Theorem V.4 holds with C and D.

3. The exclusive mutual inhibition,
self-activation model

We show that V(x) = ex+z is a Lyapunov function satisfy-
ing the conditions in V.4 for each x in the state space S = {x
= (x, z, a00, a01, a10, b00, b01, b10) ∈ Z8

≥0 ∣ a00 + a01 + a10 = 1, b00
+ b01 + b10 = 1} of ExMISA model (22). Note that every reaction
producing either X or Z in (22) has a constant order reaction inten-
sity because the counts of genes A and B cannot exceed 1. On the
contrary, each reaction consuming either X or Z has either linear
or quadratic reaction intensity. Let RI be a collection of reactions
in the ExMISA model that degrade either X or Z such as A00 + 2X
→ A01. Then, in the same way we showed in Appendix E 2, there
exists a constant M > 0 such that for each x ∈ S, if x > M or z > M,
then

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x))

≤ C′ ∑
ν→ν′∈RI

λν→ν′(x)(V(x + ν′ − ν) − V(x))

= −CV(x)

for some constant C′ > 0 and C > 0. Hence, letting

D = (C + 1) max
x≤M and z≤M

∑

ν→ν′∈R
λν→ν′(x)(V(x + ν′ − ν) − V(x)),

condition 3 in Theorem V.4 holds with C and D. Finally, note that
SN = {x ∣ x + z ≤ N} since the slack system admits a conservation
bound

w ⋅ x ≤ N with w = (1, 1, 0, 0, 0, 0, 0, 0)⊺.

Hence, conditions 1 and 2 in Theorem V.4 hold.
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