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ABSTRACT
This article presents a new numerical method for facial reconstruction. The problem is the following:
given a dry skull, reconstruct a virtual face that would help in the identification of the subject. The
approach combines classical features as the use of a skulls/faces database and more original
aspects: (1) an original shape matching method is used to link the unknown skull to the database
templates; (2) the final face is seen as an elastic 3D mask that is deformed and adapted onto the
unknown skull. In this method, the skull is considered as a whole surface and not restricted to some
anatomical landmarks, allowing a dense description of the skull/face relationship. Also, the
approach is fully automated. Various results are presented to show its efficiency.
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Introduction

Facial reconstruction aims at recovering the facial
appearance of an individual from the sole datum of the
underlying skull. The facial reconstruction problem
arises in various application fields like forensics,
anthropology, archeology or history. In forensic sci-
ence, facial reconstruction comes in the process of
identification of deceased people. When all the usual
methods of identification have failed and the skeletal
remains are the sole data available for leading to a
positive identification, facial reconstruction might be
considered as an enhancing tool for “recognition”,
producing a short list of candidates from which the
individual may be identified by other endorsed
methods of identification [1]. In archaeological investi-
gations, facial reconstruction is employed with the
purpose of identifying skeletal remains of famous
people from the past.

The creation of the face from the skull is a proce-
dure of approximation: from the observation of the
cranium, one will not be able to recover a large amount
of face features (eyes, hair, lips and ears). Moreover,
the facial likeness of a given individual changes consid-
erably depending on factors like nutrition or aging.
This flexibility may not be fully reflected on the subja-
cent skull. Any facial reconstruction tool is expected to
account for the uncertainty related to the ill-posedness
of the problem, no matter what method is employed
(artistic, parametric, statistic, mechanical, etc.). From a
mathematical point of view, this issue leads to at least
two important difficulties: on the one hand, it raises
the question of how to correctly characterize the

solution, which might be a continuum spectrum of all
the faces that are “consistent” with a given skull rather
than a single exemplar; on the other hand, it poses the
problem of how to rigorously assess the accuracy of the
result. Despite the intrinsic difficulty of the problem,
the media are full of facial images that have been con-
structed on the basis of a single given skull. A fascinat-
ing survey of such cases can be found in the book [2].
The work presented in this paper is part of the ongoing
multi-disciplinary project FaciLe, grouping together
maxillo-facial surgeons, anthropologists, computer sci-
entists and mathematicians from Sorbonne Universit�es.

The traditional facial reconstruction methods are
based on manual procedures, producing 2D portraits
or 3D sculptures. These methods basically consist of
three common steps: (1) equip (a replica of) the raw
skull with a sparse set of anatomical landmarks; (2)
apply an average soft tissue thickness to each skull
landmark in order to estimate a corresponding land-
mark on the face; (3) draw up or sculpt a face fitting
the estimated landmarks. Most practitioners add a face
muscle model in order to enrich the anatomical accu-
racy of the reconstruction, leading to the so-called
Manchester method described in [1]. The results
obtained from forensic art are often quite plausible, as
the medical artists may take anatomical, historical,
archaeological or other types of expertise into account,
giving the observer a feeling of coherence. However,
the final result of a manual reconstruction depends on
the subjectivity of the artist. Additionally, one single
reconstruction requires several days of work of a well-
experienced forensic artist, making impracticable the
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realization of multiple instances and feature variations.
In order to alleviate these difficulties, several computer
graphic software packages have been developed. These
animation software packages use the same methodol-
ogy as manual methods, allowing the expert to tune
some modelling parameters and combine the human
expertise with the flexibility of the software [3]. How-
ever, this approach does not eliminate the subjectivity
in the reconstruction. During the last 30 years, a large
amount of work has been devoted to the conception of
objective fully automated methods. The common pipe-
line of modern facial reconstruction software is
described [4]. First, an expert examines the unknown
skull in order to determine anthropological parameters
like age, gender and ethnicity. Then, a virtual replica of
the dry skull is produced and represented according to
the modelling parameters. A craniofacial template
encoding face, skull and soft tissue information are
derived from a head database. Then, an admissible
geometric transformation drives the adaptation of the
craniofacial template onto the unknown skull, accord-
ing to the “proximity” between the skulls. As a result,
the template face is deformed onto the predicted face
associated with the unknown skull, linking together
information coming from both the database and the
examination of the unknown skull. Finally, a skin tex-
ture and hairiness are added to the reconstructed face.

The approach proposed in this article combines
classical features – as the anthropological expertise for
classifying the unknown skull and the use of a head
database – with mathematical and computational skills
as 3D geometric modelling. The contribution of this
work is threefold. First, a method for generating a
closed surface mesh model of the skull template is
introduced. The method relies on an original mesh
evolution technique. A template shape is iteratively
deformed, producing a sequence of shapes that get
“closer and closer” to the source skull. Second, the elas-
tic shape matching method first introduced is used [5].
This technique is used to link skulls (or faces) with
each other and learn about their similarities. This pro-
cedure is the heart of the reconstruction method and
its most original feature. In particular, it allows the
method to be fully automated by removing the need of
landmarks. Third, the shape matching tool is com-
bined with soft tissue deformation techniques from
computational surgery for transporting the skull/face
templates onto the unknown skull. The common
denominator of the three parts is the use of elasticity
equations for driving the shape deformation.

The paper is organized as follows: the first section
deals with the acquisition and the construction of the
database; the second section describes the representa-
tion of the skull templates; the third section presents
the method for matching skull and face templates; the
fourth section describes the process of reconstruction
of the unknown face. Eventually some facial

reconstructions are presented to prove the efficiency of
the approach. Figure 1 summarizes the various steps of
the procedure.

Data acquisition

Some recent numerical facial reconstruction methods
rely on the a-priori information contained in a data-
base of coupled skull and face templates. The acquisi-
tion of both skull and face is accomplished by head CT
scans of living subjects, allowing a good visualization
of hard tissues. Standard segmentation tools and 3D
reconstruction algorithms lead to the definition of
dense surfaces of both skull and face from CT data.
Unfortunately the invasiveness of this technique
causes serious legal and ethical problems, preventing
the constitution of a large database of healthy sub-
jects. Due to this difficulty, several studies have pro-
posed to exploit the relationship between soft and
hard tissues by means of average soft tissue thickness
measurements [6–8].

Soft tissue depth tables are usually used in combina-
tion with a large database of face templates [4]. Facial
templates can be acquired by non-invasive techniques
such as stereophotogrammetry [9], making the consti-
tution of a large database painless and easy. However,
despite the acquisition of dense surface templates for
describing the outer face, the average values of soft tis-
sue thickness are systematically measured on a sparse
set (<53) of (manually positioned) anatomical land-
marks. See [10] for a review of recent 3D landmark-
based facial reconstruction methods. Since the manual
measurement is time consuming and requires expertise
in correctly identifying the landmarks, it is actually
infeasible to extend these measurements to a dense dis-
tribution of points. See [11] for a discussion about the
use of sparse soft tissue measurements for facial recon-
struction purposes. Several authors have claimed the
importance of using a dense representation of the soft
tissue information, for example by describing the
intra-subject correlation in terms of the volume
between the two boundary surfaces representing the
face and the underlying skull [12,13]. The results pre-
sented in this study are based on a collection of 26
head CT scans of female healthy subjects aged between
20 and 40 years. The CT images used have been pro-
vided by the statistical facial reconstruction project of
Paris Descartes University presented in [14]. The 3D
reconstruction from tomographic data described in
this section, combined with an original wrapping
method, allows to define closed surface models of both
face and skull.

Image segmentation

Data segmentation consists in identifying the bone and
soft tissues on stacked 2D grey-level images. This
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procedure has been carried out in a semi-automated
way with the help of the software Amira [15]. First, the
CT slices are automatically pre-segmented using a
multi-threshold technique. This step consists in parti-
tioning the original images into subdomains whose
boundaries are identified by given intensity values. The
bone and soft tissues threshold values used are
described [14]. From the pre-segmentation step, two
sets of binary images – respectively, for bone and soft
tissues – are obtained. By stacking these slices one can
essentially detect the 3D structures. However, the
intensity-based segmentation is not enough to ensure a
correct separation of the tissues of interest, due to the
presence of noise on the data and artefacts occurring
during the acquisition process. The binary images are
then cleaned by removing the so-called islands (very
small structures whose contours are defined by only a
few pixels). These structures can be external to the tis-
sues of interest (noise added during the acquisition
process) or very thin internal structures (small bones
inside the cranium). This action helps denoising the

images. Moreover in most of the subjects, large arte-
facts due to dental filling are observed on the images.
These defects need to be manually removed on each
affected slice (Figure 2).

Geometric mesh processing

From the segmented 2D slices, 3D mesh models of the
skull and the face are generated by a marching cube
algorithm [15]. These initial meshes contain, in gen-
eral, a prohibitive number of elements that are redun-
dant and oversampled to correctly describe the
geometry of the model. These dense meshes are simpli-
fied thanks to the surface remeshing tool mmgs [16],
using a local modification approach. The remeshing
procedure aims at providing (1) a correct and accurate
geometric approximation of the underlying 3D model
(geometric mesh) and (2) a computational mesh of
high quality elements suitable for finite element simu-
lations (computational mesh). To ensure vicinity
between the original and the remeshed triangulations,

Figure 1. From CT scans to densely matched surface templates.
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the remesher controls the discrete Hausdorff distance
between the two sets of triangles. The element size of
the simplified mesh is locally adapted to the surface
curvatures, ensuring a correct approximation of the
surface geometry. As illustrated in Figures 3 and 4, this
procedure also removes the “staircase” artefacts due to
the spatial discretization and connectivity.

Generation of surface model of the skull

The human skull is characterized by a complex struc-
ture, showing small details that are difficult to both

acquire and handle numerically. Due to these difficul-
ties, several authors opt for describing the skull
through underlying anatomical or geometrical substruc-
tures. The most popular choice leads to the definition
of a sparse set of anatomical landmarks, possibly cou-
pled with a dense representation of the skull [17–19].
Some authors use automatically detected continuous
crest-lines [13]. The process of matching skull tem-
plates is then driven by the outlined feature structures,
by requiring their best alignment.

The purpose of this section is to characterize the
skull template in terms of a bounded domain,
known by a closed mesh of its boundary. This issue
is related to the more general problem of surface
reconstruction from sample points. Surface recon-
struction methods have been extensively investi-
gated in the context of interface evolution via level
set methods [20] or via deformable surfaces [21,22].
The specific task, already evoked [6,23], is to define
a closed surface of the skull. In order to achieve
this goal an original wrapping algorithm based on
mesh deformation techniques is proposed. First, a
(possibly invalid) source triangulation T S of the
skull geometry is generated by standard segmentation
and 3D reconstruction tools. Then, a closed surface,
for example a sphere, is iteratively deformed, produc-
ing a sequence of surfaces that are “closer and closer”
to the source triangulation T S. The final deformed
surface partitions the ambient space into two sub-
regions defining unambiguously an interior (respec-
tively, exterior) domain. This preliminary step is of
crucial importance for matching shapes among the
head database.

Presentation of the method

Let G0 (respectively, G0) be the sphere of radius
r > 0 (respectively, R > r) and let V0 be the
volume between G0 and G0. Suppose that V0

encircles T S and is filled with a linear elastic material
whose deformation is driven by the Elasticity equa-
tions recalled as follows:

Figure 3. Example of surface remeshing. (A) 3D mesh of the
skull after segmentation (2 179 332 triangles); (B) 3D mesh of
the skull after geometric remeshing (156 301 triangles).

Figure 4. Example of surface remeshing. (A) 3D mesh of the
face after segmentation (1 286 542 triangles); (B) 3D mesh of
the face after geometric remeshing (90 949 triangles).

Figure 2. General procedure for image segmentation. (A) Reference grey-level image; (B) pre-segmentation of the bone using a
threshold technique (red); (C) segmentation of the bone after denoising and artefact removal (red).
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Elasticity equations: The displacement field of a shape
V clamped at a part GD of its boundary G and deflated
under the effect of internal pressure p 2 H¡1/2(GN) on
GN = G\GD is achieved as the unique solution u 2 H1

GD

Vð Þ3 :¼ fw 2 H1 Vð Þ3;w ¼ 0 on GDg of the following
variational problem:

Z
V

s uð Þ : ε vð Þ dx ¼
Z
GN

pv ¢n ds; (1)

for all v 2 H1
GD

Vð Þ3, where the stress tensor s follows
the Hooke’s law:

s uð Þ ¼ 2mε uð Þ þ λ trε uð Þð ÞI; (2)

with λ, m the Lam�e coefficients and ε uð Þ ¼ 1
2r uþ r uTð Þ the linearized strain tensor.

Hence, starting from V0 deflated on its interior
boundary G0, a sequence of shapes Vk – with interior
boundaries Gk – is produced. Points of Vk are advected
according to equation (1) until they intercept the trian-
gulation T S. Doing so, at each step k the intersection
between the vector displacement and the triangulation
T S is checked. In case of multiple intersection points,
the closest point is retained. Whenever a contact
between the advecting shape and the source triangula-
tion occurs, the first is clamped and forced not to cross
the boundary of the latter.

The advecting sequence of internal boundaries Gk

gets closer and closer to the source mesh T S thanks to
the strict inequality:

dH Gkþ1; T Sð Þ< dH Gk; T Sð Þ; (3)

where dH( ¢, ¢) is the Hausdorff distance between the two
surfaces. Finally, for k sufficiently large, Gk defines a
closed boundary that wraps the source triangulation T S.

Numerical issues

From the numerical point of view, the solution of the
Elasticity equation (1) is computed by the finite

elements method on a volume mesh, that is V0 is filled
with tetrahedra. For its part the boundary G0 is discre-
tized as a surface mesh T 0. The iterative algorithm is
performed in order to get a sequence T k of meshes
with decreasing values of dH T k; T Sð Þ. Given a fixed
integer N, the procedure ends if all the points in T k

have reached T S or if N iterations of the process occur
without registering a new intersection. The latter con-
dition deals with the potential presence of holes in T S.

Figures 5 and 6 depict the wrapping of a skull trian-
gulation. The parameters used for equation (1) corre-
spond to a very soft and compressible material. The
procedure ends after 35 iterations with N = 5, running
in a few minutes on a standard laptop computer.
About 85% of points on the triangulation T 35 are
clamped on the surface mesh T S.

Inter-subject shape matching

Shape morphing or matching arises in a wide variety of
situations in areas ranging from biomedical engineer-
ing to computer graphics. Beyond the specific stakes to
each particular application, the general issue is to find
one transformation from a given “template” shape V0

into a “target” VT (Figure 7). Such a transformation
may be used as a means to appraise how much V0 and
VT differ from one another – for instance in shape
retrieval, classification or recognition – or to achieve
physically the transformation from V0 to VT (in shape
registration, reconstruction or shape simplification).
See for instance [24] and references therein for an
overview of several related applications. In the facial
reconstruction context, shape matching is a key ingre-
dient for studying the shape database, making possible
the generation of average shapes – possibly weighted
according to their “similarity” – as well as for driving
the registration of the craniofacial template onto the
unknown skull.

The problem is stated as follows: given a “template”
shape V0 and a “target” shape VT, the aim is to
deforme the mesh of V0 onto a computational mesh
of VT.

Figure 5. Deformation of a template model onto the skull. (A) Initial surface G0; (B) advecting surface G10; (C) final surface G35.
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To achieve this purpose, a method that has much in
common with that of [25] is proposed, borrowing
techniques from shape optimization, and more gener-
ally optimal control. Under the assumption that V0

and VT share the same topology, the desired transfor-
mation from V0 to VT is obtained through a sequence
of elastic displacements, which are obtained by mini-
mizing an energy functional based on the distance
between V0 and VT. In this section, the mathematical
framework and some numerical issues related to the
method are briefly presented. Refer to [5] for more
details and for 2D and 3D numerical examples.

Presentation of the method

The discrepancy between a reference shape V and a
target shape VT is measured by the following func-

tional J(V) of the domain:

J Vð Þ ¼
Z
V

dVT xð Þdx; (4)

which involves the Euclidean signed distance function
dVT to VT, defined as

dVT xð Þ ¼
�d x; @VTð Þ if x 2 VT ;

0 if x 2 @VT ;

d x; @VTð Þ if x 2 cVT :

8<
: (5)

In the above formula, d(¢, @VT) denotes the usual
Euclidean distance function to the boundary @VT.

In order to decrease the value of J(V), the domain V

must expand in the regions of the ambient space where
dVT is negative (that is, in the regions comprised in VT),
and to retract in those where it is positive. Note that the
functional J(V) has a unique, global minimizer V = VT,
and no extra local minimum point provided VT is con-
nected. It is then expected that an iterative algorithm
for minimizing J(V), starting from V0, will lead to an
interesting way to transform V0 into VT. This paves the
way for an iterative algorithm, producing a sequence
(Vk)k = 0, ... of shapes, which are “closer and closer” to
VT: at each step,Vk is updated according to

Vkþ1 ¼ I þ uð Þ Vkð Þ; (6)

where u is a suitable descent direction for J(V).

Figure 6. Generation of a closed model of the skull. (A) 3D model of the skull: profile view; (B) 3D model of the skull: surface
clipping; (C) 3D model of the skull: base of the skull view; (D) wrapped skull: profile view; (E) wrapped skull: surface clipping;
(F) wrapped skull: base of the skull view.

Figure 7. Elastic shape matching allowing to deform a shape
onto another.
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Now, imagine that all the considered shapes V are
filled with a linear elastic material. One can compute
the unique solution u of the elasticity equation (1)
where the pressure p is taken equal to �dVT . This vec-
tor field u is naturally a descent direction for J(V)
since, by a classical calculation, the shape derivative of
the function J(V) satisfies

J
0
Vð Þ uð Þ�0: (7)

Numerical issues

For numerical implementation, on the one hand, the
template shape V0 is filled with tetrahedra and the
Elasticity equations are solved on this volume mesh by
the finite element method. On the other hand, the tar-
get shape VT is only supplied through its signed dis-
tance function, e.g. as a piecewise affine function on a
large computational box (Figure 8).

Starting from the template shape V0, a gradient
descent algorithm with adaptive step size is performed
in order to get a sequence (Vk)k = 0, ... of domains with
decreasing values of J(Vk). The algorithm stops when
the step size is smaller than a fixed tolerance. The
global mapping from V0 to VT is easily recovered by
the composition of the local displacements between
each iteration.

In the proposed examples, the calculation of the
signed distance function to VT is performed using the
algorithm described in Dapogny and Frey [26]. The
error is computed as the L2-norm of the distance dVT

calculated on the boundary of the final shape.
Figure 9 depicts the matching of two skull shapes.

The convergence of the gradient descent procedure is
obtained in 300 iterations and the final error equals
0.1 mm (much smaller than the minimal mesh size),
revealing an excellent matching of V300 with VT.

Next, a face example is considered. Fourhundred
iterations of the gradient descent algorithm have been
performed to achieve convergence, running in a few
minutes on a standard laptop computer (Figure 10).
The error calculated on the boundary of the final shape
V400 is 0.2 mm (again, much smaller than the minimal
mesh size).

Remark: The ears are not included in the face-match-
ing process, since these structures are not linked with
the underlying skull morphology. This procedure is
simply done by defining patches on the face template
and including only the interesting patches in the mini-
mization of J(V).

Registration of the craniofacial template onto
the unknown skull

The parametrization of skull, face and soft tissue infor-
mation depends strongly on the nature of the database.
Using CT scans of living subjects allows a dense repre-
sentation of the craniofacial information. If closed sur-
face models of both skull and face are available, then
the craniofacial template may be described in terms of
the 3D domain delimitated by the outer face and the
inner skull boundaries, generating a 3D “mask” that
incorporates the soft tissue information. A single cra-
niofacial template may be used for producing tem-
plates of all individuals in the database. The procedure
relies on the shape matching technique, generating a
set of vector fields, one for each individual, each of
them allowing to deform the template shape onto a
specific shape of the database.

Various methods have been proposed for deforming
the craniofacial template onto the unknown skull. On
the one hand, template deformation methods use generic
mathematical transformations such as radial basis

Figure 8. Implicit description of shapes. (A) Target shapeVT as the zero-level set of the signed distance function; (B) adaptive remesh-
ing of the computational box.
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Figure 9. Example of skull matching. (A) Template shape V0 and discrepancy with respect to the target shape; (B) deformed shape
Vk for k = 300 and discrepancy with respect to the target shape; (C) target shape.

Figure 10. Example of face matching. (A) Template shapeV0 and discrepancy with respect to the target shape; (B) deformed shape
Vk for k = 400 and discrepancy with respect to the target shape; (C) target shape.
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functions [13]. Care has to be taken because no knowl-
edge of facial anatomy is incorporated in these transfor-
mations leading sometimes to awkward looking faces.
On the other hand, face-specific methods use principal
component analysis on a facial database to generate a
statistical shape model [19,27–30]. The advantage is that
faces are then deformed in a face-specific manner within
statistical boundaries. The disadvantage is that the defor-
mations are dependent on the database and can be too
restrictive in case of small databases.

Here, the method lies on the “physical” deformation
of the craniofacial template onto the unknown skull.
This approach allows to overcome the drawbacks
which affect existing template deformation methods.
The mask is deformed according to a displacement
field prescribed on the skull boundary, measuring the
deformation of the skull template onto the unknown
skull. Under the effect of boundary changes, the mask
is allowed to deform as an elastic material, resulting in
a deformed face shape that is now adapted to the
unknown skull. The use of elasticity for soft tissue
deformation is largely customized in the field of
computational maxillofacial surgery [31,32].

Craniofacial template generation

Let (Si)i = 0, ���, N and (Fi)i = 0, ���, N be the collection of
skulls and faces of the database. Thanks to the proce-
dure described above, theses shapes can be at this point
considered as closed surfaces. Then, the volume
between Si and Fi can be defined, generating a 3D
maskMi (called craniofacial template).

The craniofacial templates are first roughly aligned
by an iterative closest point algorithm. Then, a refer-
ence craniofacial template, say M0, is chosen and filled
with an elastic material (Figure 11). It is matched onto
all the M1, …, MN (with global displacements u1, …,
uN) thanks to the shape matching process (Figure 12),

that is

Mi ¼ I þ uið Þ M0ð Þ for all i ¼ 1; � � � ;N: (8)

Note that this process generates meshes for all
the craniofacial templates M1, …, MN that share the
same number of elements (vertices and tetrahedra)
and the same connectivity. The computation of
average shapes therefore turns into trivial average
of the vector fields. Any convex combination w of
the form

w ¼
XN
i¼1

aiui; with ai 2 0; 1½ � and
XN
i¼1

ai ¼ 1; (9)

defines a new shapeW through the mapping:

W ¼ I þ wð Þ M0ð Þ: (10)

See Figure 13 for an example of generation of
new shapes as a convex combination of three
templates.

Face-to-skull mapping via skull matching

Now let u0 be the global displacement mapping the ref-
erence skull S0 onto the target skull ST. The 3D mask
Mi is elastically deformed under the effect of the
boundary changes (Figure 14). The deformation of the
template Mi is achieved as the solution Ui of an elastic
problem similar to (1), in which the displacement con-
dition Ui = ¡ui + u0 is imposed on the skull boundary
and zero traction conditions on the face boundary.
The soft tissue deformation step produces N new faces,
each one of them obtained by linking a specific cranio-
facial templateMi with the unknown skull. These facial
items are then combined together to predict the most
plausible face associated to the unknown skull.

Figure 11. Generation of a 3D mask encoding soft tissue information.
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Figure 12. Matching skull and face templates within the database.

Figure 13. The corners of the triangle display three faces in the database. The top template is chosen as reference shape and
matched onto the bottom right template and the bottom left template. The middle of the triangle and the mid-edges display the
“barycenter” faces computed by averaging the displacement fields.
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Results and discussion

Use of facial reconstruction techniques in forensic
science

An essential deal of the work of a forensic scientist
regards the identification of postmortem bodies. In the
special case in which the facial remains are no longer
available, the forensic scientist can resort to various
techniques to achieve a positive identification of the
dead: DNA assessment, dental record analysis, the
identification of a tattoo, the serial number of a pros-
thesis and other accepted methods of identification.
All these techniques are based on a principle of com-
parison (with respect to a sample or to a database) and
can indeed fail in the absence of comparative elements.
For instance, at the Forensic Medicine Institute in
Paris, this situation shows up for 2 up to 5 cases per
year. In this context, a facial reconstruction is then the
last resort for reaching a positive identification. The
key idea is to scan the skeletal remain to generate a vir-
tual replica of the dry skull and to use a facial recon-
struction method to produce a virtual estimation of
the victim’s face. Then, the produced output is com-
pared with a pool of facial photos which contains the
actual target and other individuals of similar age and
ethnicity. Then, a group of volunteers is asked to

choose which face of the pool is the most resemblant
to the reconstruction (face pool assessment). In the
context of a murder investigation, a call for witnesses
can also be demanded. Indeed the reconstructed face
should sufficiently resemble to the original victim’s
face to allow a recognition and enhance a positive
identification. There are some forensic cases
which have employed facial reconstruction techniques
[2,4,33]. Actually in France, forensic facial reconstruc-
tions are produced using 2D reconstruction techniques
and are rarely successful. Since a few years our multi-
disciplinary team works on the conception and devel-
opment of a open-source software, based on the 3D
deformation techniques presented in this paper, which
will be used during criminal investigations in addition
to other endorsed methods. The main concern of this
project is to develop a software fully automatic, usable
even by non trained users, and allowing to produce
with short time consuming a facial output (or a range
of possible outputs) starting from the scan of the
unknown skull.

Validation

The validation of a method for facial reconstruction
is of tremendous importance to legitimate its use

Figure 14. Elastic deformation of the mask under the effect of skull changes. (A) Initial view; (B) final view.
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during a criminal investigation. The natural way to
address this problem is the “leave-one-out scheme”.
One individual is removed from the database and the
method is employed to reconstruct his/her face given
the sole skull. Then, the predicted face is compared
with the available “unknown face”. The discrepancy
between the two shapes can be evaluated mathemati-
cally by computing distances between them. How-
ever, since the final purpose of the method is a
positive identification, a recognition test can be also
employed for revealing the power of prediction of
the method, as it is done in [4]. A recognition test
consists in showing the predicted face together with
a sample of faces that contains the unknown face.
Then, the human volunteer indicates the face (or
faces) that is (are) closest to the predicted one. The
positive outcome will then correspond to the identifi-
cation of the unknown face among the sample. Such
a study for the method proposed in this article is
under process and results will be published in a
forthcoming paper.

Hereafter three examples of reconstruction are
presented. According to the leave-one-out scheme,

one individual is removed from the database and a
prediction of his face is generated. Figures 15–17
show the results obtained by computing the mean
of all the faces transported onto the unknown skull.
Figure 18 shows the distribution of the error
(signed distance function) over the surface for the
three reconstructions. Remark that in the regions of
interest, excluding ears, neck and eyes in particular,
the error is less than 1 mm for most points. Also
notice that in these regions, the thickness of the tis-
sue is underestimated or overestimated. Using the
information coming from the body mass index
(BMI) of the individuals in the database could be a
way to propose different reconstructed faces corre-
sponding to different BMI of the unknown
individual.

The discrepancy D between a surface G and a refer-
ence surface G0 can also be evaluated by the following
mean error:

D ¼ 1
jGj

Z
G

d2 x;G0ð Þdx
� �1

2

: (11)

Figure 15. Test case 1. (A) original face; (B) reconstructed face.
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Figure 16. Test case 2. (A) original face; (B) reconstructed face.

Figure 17. Test case 3. (A) original face; (B) reconstructed face.
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where jGj is the measure of G and d(¢, G0) is the Euclid-
ean distance to G0. This error estimator is used for
evaluating the vicinity between:

(1) the skull templates of the database and the
unknown skull;

(2) the face templates of the database and the
unknown face associated with the unknown skull;

(3) the face templates after deformation onto the
unknown skull and the unknown face associated
with the unknown skull;

(4) the face templates of the database and the recon-
structed average face.

The minimal, maximal and mean values of D for the
25 templates of the database are reported in Tables 1–3

in each of the third cases. In particular, the discrepancy
between a face template and the unknown face is
smaller after deformation for all the individuals. Thus,
the elastic transformation used in the method seems to
be a good tool to transport the faces close to the
unknown face. Moreover, the discrepancy between the
unknown face and the predicted face is smaller than
the discrepancy with any individual in the database, so
this measureD can be used for an automatic numerical
identification.

Comparison with previous works

A comparison with previous facial reconstruction
methods is a quite hard task. The reliability of two
methods should be compared starting from the same

Figure 18. Discrepancy between the reconstructed and the original faces: (A) for the test case 1 of Figure 15; (B) for the test case 2
of Figure 16; (C) for the test case 3 of Figure 17.
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database and the same test cases, to avoid the depen-
dencies of the methods on the data. Such a comparison
is out of the scope of this paper. Here, we limit our-
selves to compare the results of the test cases with the
outcomes of some statistical facial reconstruction
methods [6,17,19]. A statistical method is developed
for the purpose of estimating a facial outcome using
landmarks [19]. The experiment is carried out from a
database of 118 individuals. The mean reconstruction
error registered equals 1.4 mm, with a standard devia-
tion of 1.04 mm. A statistical method based on implicit
surfaces was employed for the facial reconstruction
test using a database of 20 individuals [17]. The mean
error registered equals 1.9 mm with a standard devia-
tion of 1.7 mm. A local technique based on surface
patches is used for statistically predicting some facial
regions [6]. The experiment is carried out using a data-
base of 47 individuals. For both chin region and nasal
region, the mean reconstruction equals 0.99 mm, rang-
ing from 0.58 to 1.83 mm for the nose, and from 0.21
to 2.41 mm for the chin. The mean error registered
with the method proposed in this paper is reported in
Tables 1–3. Note that most of the error is concentrated
on the ears, the neck, the eyes and lips regions. The dis-
tribution map of Figure 18 shows that for the three
studied test cases the mean error over the remaining
regions is smaller than 1 mm. The result is similar to
the one reported in [6] (which only deals with the
reconstruction of two facial regions) and improves the
outcomes of [17,19], at least when considering the
regions of interest. Also, note that all the experiments
were conducted on a smaller database and with no
need of landmarks, resulting in a significant improve-
ment in the fastness and feasibleness of the overall pro-
cess, and avoiding manual intervention.

Conclusion

The proposed reconstruction method lies on the
“physical” deformation of templates of coupled faces
and skulls onto the unknown target skull. In practice,
the acquisition of full head scans of healthy subjects is
still a difficult process. Most of the time one can have
access to clinical data, meaning that the patients pres-
ent morphological anomalies or that the scans are only
partial (in the case of maxillo-facial examination for
surgery purposes). The access to an adequate database
of full heads of healthy subjects would enormously
improve the final product of the method. Even if the
experiments were carried out on a small collection of
26 individuals, the preliminary results produced are
very promising. The proposed method for shape
matching allows an accurate registration. The method
is simple to implement and does not require any a-pri-
ori landmark correspondence, allowing for an auto-
matic processing of the database.
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Table 1. Discrepancy between shapes for the test case of Figure 15. (mm)
Item Min Mean Max

Discrepancy between skulls of the database and the unknown skull 5.44 7.86 13.46
Discrepancy between faces of the database and the unknown face 5.02 8.94 15.69
Discrepancy between faces after deformation and the unknown face 2.93 5.80 10.35
Discrepancy between faces of the database and the predicted face 4.54 7.03 11.28

Table 2. Discrepancy between shapes for the test case of Figure 16. (mm)
Item Min Mean Max

Discrepancy between skulls of the database and the unknown skull 4.01 7.01 11.10
Discrepancy between faces of the database and the unknown face 4.41 7.16 11.40
Discrepancy between faces after deformation and the unknown face 2.60 5.30 8.69
Discrepancy between faces of the database and the predicted face 3.50 7.65 13.39

Table 3. Discrepancy between shapes for the test case of Figure 17. (mm)
Item Min Mean Max

Discrepancy between skulls of the database and the unknown skull 4.46 9.57 17.30
Discrepancy between faces of the database and the unknown face 4.92 7.82 13.50
Discrepancy between faces after deformation and the unknown face 3.04 5.01 10.60
Discrepancy between faces of the database and the predicted face 3.63 8.20 15.15
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