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Abstract: In the history of human medicine, antibiotics represent epochal examples of medical
progress. However, with an approaching antibiotic crisis due to the emergence and extensive spread
of antimicrobial resistance among bacterial agents, as well as to increasing number of patients with
chronic and recalcitrant bacterial biofilm-associated infections, the naturally occurring molecules may
become new sources of antibacterial and antibiofilm drugs for clinical usage. Polyphenols represent a
class of plant natural products which are important in plant defense against microbial pathogens.
The main focus of the review is on the antibiofilm activities of phenolic compounds against bacteria
which play an essential role in medical device biofilm-associated infections. The other, not negligible
part of the review is devoted to polyphenols’ activity against bacterial agents that cause dental caries
and periodontal disease.
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1. Introduction

The introduction of antibiotics to clinical practice represents one of the most outstanding
contributions to the treatment of life-threatening infectious diseases. However, due to the extensive
use of these valuable therapeutics, numerous resistance mechanisms have emerged and rapidly
spread among bacterial disease-causative agents. Modern medicine is nowadays facing the threat of
returning to the pre-antibiotic era, at least for some types of infectious diseases. The rapid spread
of multidrug-resistant (MDR) or extremely drug-resistant (XDR) bacterial strains seems to be the
most frightening development. Along with some community strains of Mycobacterium tuberculosis,
Streptococcus pneumoniae, or Neisseria gonorrhoeae, these MDR and XDR bacterial strains are represented
mainly by nosocomial opportunistic bacterial infectious agents, such as methicillin resistant
staphylococci (Staphylococcus aureus and coagulase-negative staphylococci), vancomycin-resistant
enterococci, and the Gram-negative XDR strains. Great concern has arisen due to the appearance and
spread of MDR and XDR strains of Pseudomonas aeruginosa, Acinetobacter spp., and carbapenem-resistant
Enterobacteriaceae (mostly contributed by Klebsiella pneumoniae) [1,2].

In addition the abovementioned resistance caused by mutations or resistance gene acquisition,
the second large challenge is represented by the phenomenon of recalcitrant infections in patients
with bacteria or fungi growing in biofilms on implanted or inserted medical devices, or in the tissue
damaged by various prior pathological processes [3]. A distinct subset of such infections is represented
by dental caries and periodontal diseases, caused by members of the normal oral microbiota [4,5].
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A biofilm is a sessile form of bacterial existence on solid surfaces or air-liquid interfaces, in which
bacteria multiply covered by a self-produced biofilm matrix, composed of bacterial intercellular
polysaccharides, proteins, and extracellularly released nucleic acids [6]. The protective effect of
bacterial biofilm phenotypes is multifactorial. It includes decreased penetration of antimicrobial
agents into the deep layers of biofilms, the capture of positively charged molecules by the extracellular
polymeric biofilm matrix, or the ability of biofilm matrices to concentrate bacterial enzymes which
inactivate antibiotics [7]. Gradients of nutrients, metabolites, oxygen, pH, redox potential, or antibiotics
penetrating to the biofilm produce an environmental stress in the bacteria, resulting in the expression
of inducible resistance mechanisms, increased mutability rate, and bacterial adaptive phenotype
changes. These changes lead to metabolic suppression in bacteria, which cause increased ability to
survive exposure to antibiotics and an increasing rate of persister cell formation. Bacterial persisters
survive antimicrobial therapy and may reseed the patient’s infectious focus after discontinuation of
antimicrobial therapy, resulting in disease relapse [7,8]. Mechanisms of bacterial adherence, biofilm
accumulation, and bacterial dispersion from the mature biofilm, coordinated by quorum-sensing (QS)
chemical signals of inter-bacterial communication, reflecting the bacterial population cell density play
a vitally important role in the process of biofilm development [9].

Therefore, together with the steps taken to reduce the threat of an antibiotic resistance crisis and the
search for new antimicrobial agents [10], research on agents able to modulate some important virulence
factors of bacteria, such as adhesivity, biofilm formation and the phenomenon of bacterial persistence,
has an exceptional importance for the development of new therapeutics for medical practice.

Many reports on antibacterial activity associated with extracts from an enormous range of plants
can be found in the literature. The discovery of novel antibacterial agents in plant extracts most
frequently begins with leaves or roots from healthy specimens, even though there is ample evidence
that many key components of plant defenses against phytopathogens are induced by infection.
Plants respond to microbial attack through a highly coordinated repertoire of molecular, cellular
and tissue-based defensive barriers to colonisation and invasion [11–13]. Plant secondary metabolites,
among them many polyphenols, such as flavonoids, phenolic acids, and tannins, show antibacterial
and/or antibiofilm activities. This review focuses on the antibiofilm activities of the abovementioned
plant products.

2. Main Antibiofilm Phenolic Compounds

Plant polyphenols represent a large class of biologically active secondary metabolites of plants.
They include flavonoids, tannins, anthocyanins, phenolic acids, stilbenes, coumarins, lignans, and
lignins [14]. These substances play an important role in resistance against various microbial
pathogens and protect against free radicals and toxins [15,16]. Nowadays, plant polyphenols enjoy
an ever-increasing recognition not only by the scientific community but also, and most remarkably,
by the general public because of their presence and abundance in fruits, seeds, vegetables, and derived
foodstuffs and beverages, whose regular consumption has been claimed to be beneficial for human
health. They have often been highlighted due to their capacity to scavenge oxidatively generated free
radicals that underlies their utility in reducing the risk of certain age-related degenerative processes
and diseases [16].

In phenolics, multiple mechanisms of antibacterial activity have been described: they interact with
bacterial proteins and cell wall structures, they may cause damage to cytoplasmic membranes, reduce
membrane fluidity, inhibit nucleic acid synthesis, cell wall synthesis, or energy metabolism [15,17,18].
On the other hand, antibiofilm activity research on plant phenolics has revealed, besides their
destructive activity on bacteria, also “softer” activities leading to biofilm suppression by affecting the
bacterial regulatory mechanisms such as quorum sensing or other global regulator systems, without
an effect on bacterial growth [19]. A survey of recently published antibiofilm activities of flavonoids,
phenolic acids and tannins is provided in Table 1.
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Table 1. Antibiofilm activities of flavonoids, phenolic acids and tannins contained in plant extracts.

Phenolic Compound Name of Bacteria Antibiofilm Activity * References

ANTHOCYANINS

Malvidin, Petunidin, Cyanidin K. pneumoniae a,b [20]

COUMARINS

Coumarin E. coli a [21,22]
S. aureus a

V. anguillarum a
E. tarda a

Umbelliferone E. coli c [21]
Esculetin S. aureus a [23,24]

P. aeruginosa a
Esculin P. aeruginosa a [23]

Psoralen P. aeruginosa a [23]
Nodakenetin P. aeruginosa a [25]

Coladonin E. coli c [21]

FLAVONOIDS

Chalcone S. mutans d [26]
2′,4′-Dihydroxychalcone S. aureus a [27]

2,2′,4′-Trihydroxychalcone S. aureus a [27]
2′,4′-Dihydroxy-2-methoxychalcone S. aureus a [27]

Xanthohumol S. aureus a [28]
Naringenin E. coli a [29]
Hesperidin E. coli a [29]

Neohesperidin E. coli a [29]
V. harvey a

Neoeriocitrin E. coli a [29]
V. harvey a

8-Prenylnaringenin S. aureus a [27,28]
Apigenin E. coli a [27,30–32]

S. aureus a
V. harvey a
S. mutans a

Fisetin S. aureus a [24]
Chrysin E. coli a [30,31]

S. aureus a
Luteolin E. coli (UPEC) a [30,33]

S. aureus a
Nobiletin E. coli a, e [34]
Sinensitin E. coli a, e [29,34]

V. harvey a, e
Quercitrin S. mutans a [35]
Quercetin E. coli a [29,30,36,37]

S. aureus a
V. harvey a
S. mutans a

Kaempferol E. coli a [29,30,36]
S. aureus a
V. harvey a

Morin L. monocytogenes f [38]
Phloretin E. coli g [31]

Rutin E. coli, V. harvey a [29]
Daidzein E. coli (UPEC) a [31]
Genistein S. aureus a [31,39]

E. coli (UPEC) a
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Table 1. Cont.

Phenolic Compound Name of Bacteria Antibiofilm Activity * References

TANNINS

Catechin P. aeruginosa a [40]
Gallic acid E. coli a [41,42]

S. mutans a
Methyl gallate S. aureus h [41,43]

S. mutans a
(−)-Epigallocatechin gallate S. aureus a [44–47]

S. epidermidis a
S. mutans a

P. gingivalis a
E. faecalis a

Ellagic acid E. coli a [48]
Tannic acid E. coli a [48]

Rosmarinic acid S. aureus a [49,50]
1,2,3,4,6-Penta-O-galloyl-b-D-glucopyranose S. aureus a [51]

* a—inhibited biofilm formation; b—inhibited EPS production; c—reductions in biofilm formation;
d—sortase-specific oral biofilm inhibition; e—inhibited motility; f—in vitro and in vivo antibiofilm efficacy;
g—reduced pathogenic biofilm; no harm to commensal E. coli K-12 biofilm formation; h—inactivated bacteria
in biofilm.

To the most extensively studied bacteria from the point of view of biofilm production
belong Staphylococcus aureus and coagulase-negative staphylococci, which play a crucial role
in medical device-associated infections [52], and one of the most important dental caries
agents—Streptococcus mutans [4].

Tannins represent one of the biggest groups of plant polyphenols. They are subclassified into
condensed tannins (proanthocyanidins or catechins) and hydrolysable tannins (gallotannins and
ellagitannins) [53]. Gallotannins and ellagitannins derived from the metabolism of the
shikimate-derived gallic acid (3,4,5-trihydroxybenzoic acid) result through various esterification and
phenolic oxidative coupling reactions in yield numerous monomeric, oligomeric and polyphenolic
galloyl ester derivatives of sugar, mainly D-glucose [54].

Tannins possess antibacterial activity both against Gram-positive and Gram-negative bacteria.
For example, the catechins are able to penetrate and interact with lipid bilayers [55]. Alternatively,
they may cause membrane fusion, a process that results in leakage of intramembranous materials and
aggregation [56]. Green tea (Camellia sinensis) rich in catechins has the capacity to reverse methicillin
resistance in MRSA isolates at concentrations much lower than those needed to produce inhibition
of bacterial growth [57]. Roccaro et al. referred to the modulation effect of catechin gallates to
bacterial drug resistance. It has been shown that epigallocatechin gallate (EGCg) (Figure 1) had
several antibacterial activities, limiting bacterial growth and invasion and acting in synergy with
some antibiotics. Sub-inhibitory concentrations of EGCg were able to reverse tetracycline resistance
in staphylococci by inhibition of the Tet(K) efflux pump, in addition to further sensitizing of the
susceptible staphylococcal isolates to this antibiotic [58]. Concerning S. aureus biofilm formation, EGCg
at subinhibitory concentrations has shown to decrease slime production, therefore inhibiting biofilm
formation by this bacterial species [44].

Tannic acid from black tea (Camellia sinensis) inhibited S. aureus biofilm formation without
inhibiting bacterial growth via a mechanism dependent upon the putative transglycosylase IsaA,
and this acid also inhibited pharyngeal colonization with S. aureus in an in vivo rodent model [59].
Extract of Alnus japonica, with quercetin and tannic acid as the major anti-S. aureus biofilm compounds,
was the most active from 498 screened plant extracts. It inhibited biofilm formation by influencing the
expression of genes linked to biofilm production, most markedly icaA and icaD [60].
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The 60% methanol extract showed bactericidal activity against all tested S. aureus strains, including 
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Ellagic acid and its derivatives from Rubus ulmifolius can limit S. aureus biofilm formation to a 
degree that can be correlated with increased antibiotic susceptibility [64]. Ellagic acid (Figure 3) and 
tannic acid were also tested for their ability to inhibit biofilm formation by Escherichia coli. Both 
compounds reduced biofilm formation significantly. However, no synergistic effect of these two 
compounds was observed [48]. Methanol extract of pomegranate, rich in ellagic acid, was also shown 
to inhibit the formation of biofilms of S. aureus, methicillin resistant S. aureus and E. coli as a result of 
possible damage to the cell membrane [62]. 
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Figure 1. Chemical structure of (−)-epigallocatechin gallate.

S. aureus antibiofilm activity was described in several phenolic acids, including gallic [61],
ellagic [62], ginkgolic [63] and rosmarinic acid [49] at subinhibitory concentrations.

Recent research on Cotinus coggygria leaves rich in gallotannins such as gallic acid and methyl
gallate (Figure 2), showed a good activity against S. aureus in planktonic and biofilm growth forms.
The 60% methanol extract showed bactericidal activity against all tested S. aureus strains, including
polyresistant strains, and eradicated bacteria in already established 24-h biofilm [43].
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Figure 2. Chemical structures of gallic acid (left) and methyl gallate (right).

Ellagic acid and its derivatives from Rubus ulmifolius can limit S. aureus biofilm formation to a
degree that can be correlated with increased antibiotic susceptibility [64]. Ellagic acid (Figure 3)
and tannic acid were also tested for their ability to inhibit biofilm formation by Escherichia coli.
Both compounds reduced biofilm formation significantly. However, no synergistic effect of these two
compounds was observed [48]. Methanol extract of pomegranate, rich in ellagic acid, was also shown
to inhibit the formation of biofilms of S. aureus, methicillin resistant S. aureus and E. coli as a result of
possible damage to the cell membrane [62].
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Inhibition of biofilm formation on surfaces covered by plant products may be significant in the
future techniques which prevent medical device biofilm-associated infections. Such activity was
described in several studies on the antibiofilm activity of plant polyphenols.

Tannic acid (syn. gallotanin) from Eustigma oblongifolium inhibited biofilm formation by S. aureus
independently of growth mechanisms. It prevented the initial attachment to solid surfaces and the
synthesis of polysaccharide intercellular adhesion compounds. The antibiofilm activity of gallotanin
was expressed after application in solution, as well as after coating of the tested surfaces [51]. Similar
effect had medical device implant surface coating with hamamelitannin (2′,5-di-O-galloyl-hamamelose,
Figure 4) isolated from the bark and leaves of Hamamelis virginiana. Medical device-associated
infection in rat model was completely prevented, when sterile collagen-sealed double velour-knitted
polyethylene terephthalate (Dacron) grafts were coated with hamamelitannin. No activity of
hamamelitanin on bacterial growth was observed and the antibiofilm activity was attributed to
the staphylococcal quorum-sensing regulator RNAIII inhibition [65].
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Trentin et al. reported that B-type linked proanthocyanidin-coated surfaces reduced S. aureus
and E. faecalis adhesion. The proposed mechanism of bacterial attachment inhibition is based on
electrostatic repulsion, high hydrophilicity and the steric hindrance provided by the coating that blocks
bacterium-substratum interactions [66].

Rosmarinic acid (Figure 5), also known as Lamiaceae tanning compound, was identified as a
major phenolic compound in many antimicrobially active plants, e.g., in the genera Mentha, Melissa,
Lycopus, Origanum, Thymus, Salvia [67]. According to the latest research, rosmarinic acid could be a
candidate topical antimicrobial agent with killing activity on planktonic forms of clinical S. aureus
strains and suppressing activity in the early stages of biofilm development [49,50]. At subinhibitory
concentrations near to MIC this compound suppressed S. aureus biofilm production; however,
with further decreases of the rosmarinic acid concentration an increase of biofilm production was
observed, which reached its peak at 100-times lower concentrations than MIC [49]. A similar
phenomenon of concentration-dependent response in biofilm production was observed in the case
of many other antimicrobial agents, as an expression of bacterial stress response modulated by
low concentrations of chemical compounds, such as ethanol or antibiotics [68–70]. Therefore,
the phenomenon described above should be tested and considered when determining the therapeutic
concentrations of the potential drugs of plant origin, as underdosing might have counterproductive
effects on biofilm-related infections.
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Flavonoids are widely distributed phenolics characterized by a phenylbenzopyran chemical
structure. In plants, flavonoids have long been known to be synthesized in specific sites and are
responsible for the colour and aroma of flowers and fruits to attract pollinators, and consequently
fruit dispersion animals; they help in seeding, germination, growth and development of seedlings.
Flavonoids protect plants from different biotic and abiotic stresses and act as unique UV-filters.
Flavonoids have roles against frost hardiness, drought resistance and may play a functional role in plant
heat acclimation and freezing tolerance. They function as signal molecules, allelopathic compounds,
phytoalexins, detoxifying agents, and antimicrobial defensive compounds [54,71]. Three different
modes of antibacterial activity of flavonoids were described in the literature. The first corresponds to
nucleic acid synthesis inhibition [72]. The second way involves damage of the cytoplasmic membrane
by a perforation mechanism [73] and a decrease in membrane fluidity [74], and the third, the inhibition
of energy metabolism [75]. Flavonoids also exhibit antibiofilm activities. Red wine (from Vitis vinifera)
contains, besides tannic acid and trans-resveratrol, plenty of flavonoids such as quercetin, fisetin,
kaempeferol, apigenin, chrysin, luteolin (Figure 6) and their derivatives. These red wine compounds
were found to be effective in the inhibition of S. aureus biofilm formation, where quercetin was
remarkably the most active flavonoid [30]. The seeds of muscadine grape (Vitis rotundifolia) are
rich in gallic acid, (+)-catechin and epicatechin, while the skin contains ellagic acid, myricetin,
quercetin, kaempferol, and trans-resveratrol. [76]. Polyphenol extract from muscadine grape pomace
had antibacterial activity against S. aureus, and at subinhibitory concentrations inhibited its biofilm
formation, and at 16 ×MIC it eradicated biofilms [77].
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According to the results of a study by Vikram et al. flavonoids found in citrus fruit can
modulate bacterial cell–cell communication, E. coli O157:H7 biofilm formation and V. harveyi virulence.
Naringenin, quercetin, sinensetin and apigenin were the most active. Among the tested flavonoids,
naringenin emerged as potent and possibly nonspecific inhibitor of autoinducer-mediated cell–cell
signalling [29].

Sivaranjani et al. explored the in vitro and in vivo antibiofilm efficacy of the flavonol morin
(Figure 7) against Listeria monocytogenes, one of the leading foodborne pathogens. They found that
morin not only inhibited biofilm production, but also reduced the virulence of L. monocytogenes [38].
Chalcone derivatives can also inhibit biofilm formation. This activity has been demonstrated
in 2′,4′-dihydroxychalcone, 2,2′,4′-trihydroxychalcone and 2′,4′-dihydroxy-2-methoxychalcone,
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which inhibit S. aureus biofilm production [27]. Phloretin (Figure 7), an apple flavonoid, inhibited
E. coli O157:H7 biofilm formation without inhibiting the growth of planktonic cells [31].Molecules 2016, 21, 1717 8 of 14 
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Xantohumol (Figure 8), a prenylated chalconoid from Humulus lupulus was found to inhibit
S. aureus adhesion and biofilm formation. It also inactivated bacteria in already formed biofilm,
most likely by damaging the stability of the bacterial cytoplasmic membrane after inhibition of lipid
metabolism [28].

Molecules 2016, 21, 1717 8 of 14 

 

O

O

OH

OH

OH

OH

OH OH

OH

O

OH

OH
 

Figure 7. Chemical structures of morin (left) and phloretin (right). 

Xantohumol (Figure 8), a prenylated chalconoid from Humulus lupulus was found to inhibit S. aureus 
adhesion and biofilm formation. It also inactivated bacteria in already formed biofilm, most likely by 
damaging the stability of the bacterial cytoplasmic membrane after inhibition of lipid metabolism [28]. 

OH

OH

O

OH

CH3CH3

OMe
 

Figure 8. Chemical structure of xanthohumol. 

Naturally-occurring coumarins, derivatives of 5,6-benzo-2-pyrone, display several biological 
activities, from photosensitizing, vasodilatating, or analgesic properties to excellent anti-inflammatory 
and antimicrobial activities [78]. Lee et al. examined the antibiofilm abilities of different coumarins, 
such as coumarin (Figure 9), coumarin-3-carboxylic acid, esculetin, 4-hydroxycoumarin, scopoletin, 
umbelliferone (Figure 9) and coladonin. They reported that coumarin and umbelliferone exhibited 
antibiofilm formation activity against enterohaemorrhagic E. coli O157:H7 without inhibiting planktonic 
cell growth. Furthermore, the biofilm of E. coli was inhibited by coladonin [21]. Inhibition of biofilm 
formation of P. aeruginosa was detected for esculetin, esculin, psoralen and nodakenetin [23–25]. 

O O O OOH

Figure 9. Chemical structures of coumarin (left) and umbelliferone (right). 

Plants polyphenols could be found also in honeys of floral origin, as a result of their natural 
production. The well characterised Manuka honey contains mainly flavonoids and phenolic acids 
(for a review see [79]). Their content is closely related to the antioxidant and antimicrobial activity of 
honey, and they probably cooperate with the other biologically active compounds on the reported 
antibiofilm activity of Manuka honey [80]. 

3. Polyphenols in Periodontal Diseases and Caries 

Dental biofilm ecological shift contributes to oral diseases affecting a large proportion of the 
human population [5]. Streptococcus mutans is a bacterium participating at the development of caries, 
thanks to its acidogenicity, aciduric properties, and an outstanding ability to produce biofilms [81,82]. 

Figure 8. Chemical structure of xanthohumol.

Naturally-occurring coumarins, derivatives of 5,6-benzo-2-pyrone, display several biological
activities, from photosensitizing, vasodilatating, or analgesic properties to excellent anti-inflammatory
and antimicrobial activities [78]. Lee et al. examined the antibiofilm abilities of different coumarins,
such as coumarin (Figure 9), coumarin-3-carboxylic acid, esculetin, 4-hydroxycoumarin, scopoletin,
umbelliferone (Figure 9) and coladonin. They reported that coumarin and umbelliferone exhibited
antibiofilm formation activity against enterohaemorrhagic E. coli O157:H7 without inhibiting
planktonic cell growth. Furthermore, the biofilm of E. coli was inhibited by coladonin [21]. Inhibition of
biofilm formation of P. aeruginosa was detected for esculetin, esculin, psoralen and nodakenetin [23–25].
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Plants polyphenols could be found also in honeys of floral origin, as a result of their natural
production. The well characterised Manuka honey contains mainly flavonoids and phenolic acids
(for a review see [79]). Their content is closely related to the antioxidant and antimicrobial activity of
honey, and they probably cooperate with the other biologically active compounds on the reported
antibiofilm activity of Manuka honey [80].
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3. Polyphenols in Periodontal Diseases and Caries

Dental biofilm ecological shift contributes to oral diseases affecting a large proportion of the
human population [5]. Streptococcus mutans is a bacterium participating at the development of caries,
thanks to its acidogenicity, aciduric properties, and an outstanding ability to produce biofilms [81,82].
Periodontal diseases, which are the major cause of tooth loss in humans, are chiefly associated with
two anaerobic bacteria—Prevotella spp. and Porphyromonas gingivalis [55].

Numerous studies contain reports on polyphenols’ inhibitory effects on oral biofilm bacteria
and on dental biofilm production and accumulation. Many catechin-based polyphenols,
flavonoids, proanthocyanidin oligomers and some other plant-derived compounds inhibit S. mutans
glycosyltransferase—one of the crucial virulence factors of S. mutans with role in synthesis of glucan
polysaccharide, a major biofilm matrix component [83].

Tea polyphenols, especially EGCg, inhibited biofilm formation by S. mutans and reduced viability
of bacteria in preformed biofilm. At subinhibitory concentrations EGCg inhibited the acidogenic and
aciduric properties of this bacterium, probably by inhibition of the enzymatic activity of F1Fo-ATPase
and lactate dehydrogenase, and expressed inhibition of sucrose-dependent initial attachment of
S. mutans to surfaces [45,84]. EGCg, derived from green tea, was active also against one of the
important periodontal disease agents and destroyed already established P. gingivalis biofilms [46] and
completely inhibited the growth and adherence of P. gingivalis onto the buccal epithelial cells [85].
Lee and Tan observed a similar effect of EGCg also against biofilms (and other virulence factors) of
Enterococcus faecalis [47], an agent of chronic and refractory dental canal infections [86].

Apigenin showed inhibitory activity to both glucosyltransferase and fructosyltransferase of
S. mutans without major impact on bacterial viability and influenced the biomass and polysaccharide
content of S. mutans biofilm [32]. Quercitrin inhibited S. mutans biofilm production by reducing the
synthesis of both water-soluble and insoluble glucans and several virulence genes suppression [35].

S. mutans saccharide metabolism inhibition by several phenolic acids was detected as well. Gallic
acid (and methyl gallate) had inhibitory effects on the growth of cariogenic and periodontopathic
bacteria and significantly inhibited the in vitro formation of S. mutans biofilms [41]. Gallic acid and
tannic acid at subinhibitory concentrations showed suppressive effect on S. mutans biofilm formation
by inhibition of glucosyltransferase and fructosyltransferase [87]. However, the effect of gallic acid on
biofilm formation was affected by nutrient levels, temperature, and treatment time [42].

Oligomeric proanthocyanidins, the major secondary metabolites of Vaccinium macrocarpon
(cranberry), are further potential anticaries agents that inhibit the production of organic acids and
the formation of biofilms by cariogenic bacteria [88]. Cranberry proanthocyanidins, comprised of
mostly A-type oligomers of epicatechin, and flavonols (mostly quercetin glycosides) inhibited the
activities of glucosyltransferases and F-ATPase, and the acid production by S. mutans cells. Biofilm
development and acidogenicity were significantly affected by their topical application [89]. Topical
applications of cranberry proanthocyanidins during biofilm formation resulted in less biomass and
fewer insoluble polysaccharide formation by S. mutans in vitro and a significant reduction of caries
incidence and less severe carious lesions in a rat dental caries model. A-type proanthocyanidin dimers
and oligomers effectively diminished the synthesis of insoluble polysaccharides, and also affected
bacterial glycolysis [90,91].

Several studies have evaluated the activity of grape, grape wine, grape pomace or grape seeds
polyphenol extracts on biofilms produced by oral bacteria. Red wine grape (Vitis vinifera and Vitis
interspecies hybrids) and its pomace phenolic extracts remarkably inhibited glucosyltransferase
of S. mutans, as well as the glycolytic pH drop without affecting the bacterial viability, even if
the anthocyanins and flavan-3-ols content were highly variable [92]. In two studies published
by Furiga et al., polyphenols from red wine, grape pomace and grape seed inhibited both the
formation of multi-species biofilms composed of oral bacteria (S. mutans, Streptococcus sobrinus,
Lactobacillus rhamnosus, Actinomyces viscosus, Porphyromonas gingivalis, and Fusobacterium nucleatum),
and the synthesis of insoluble glucan. The most effective was the grape seed extract, containing
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mainly catechin and epicatechin. Except to a significant antiplaque activity, the extract had synergistic
effect with amine fluoride mouthwash, and showed also an important antioxidant capacity in vitro,
without any bactericidal effects [93,94]. Antibacterial effect of red wine polyphenols on bacteria in the
5-species biofilm model consisting of Actinomyces oris, F. nucleatum, Streptococcus oralis, S. mutans and
Veillonella dispar was detected by Muñoz-Gonzales et al. [95]. The powdered extract of phenolics from
the pomace of Japanese wild grape (Vitis coignetiae) with high phenolics and flavanol content reduced
adhesion of S. mutans to saliva-coated hydroxyapatite and biofilm formation in a dose-dependent
manner, and inhibited water-soluble and water-insoluble glucans synthesis [96].

4. Conclusions

This review is an overview of research articles about antibiofilm activity of selected plant
phenolics listed in scientific databases such as SciFinder, Science Direct, PubMed, Scopus, Web of
Science, etc. Numerous plant phenolic compounds have already revealed their antimicrobial and
antibiofilm activities, but the road to a clinical application form may still be long. It requires
further testing—besides antimicrobial and antibiofilm effectivity—the toxicity, pharmacokinetics,
pharmacodynamics, drug interactions, including classical antibiotics, and any kind of side-effects
should be defined. The most feasible seems to be approval of topical application forms, which are much
safer in the case of drugs with higher toxicity, and allow higher, but still safe dosages in comparison
with systemic antibiotic therapy, so in the form of solutions, lotions, ointments, tinctures, gels, creams,
lozenges, or suppositories, the active phenolics may come relatively soon into the practice. Inhibition
of bacterial adherence to skin, mucosal and dental surfaces facilitated by topical application may
also have beneficial effects in the prevention of infectious diseases, dental caries and periodontal
disease. Plant phenolics-covered medical device surfaces may help in prevention of device-associated
biofilm infections.
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