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Simple Summary: The weaning period is one of the most stressful periods in a piglet’s life due to
abrupt changes in diet and environment. To mitigate production loss, creep feed is given to piglets
to supplement sow’s milk, but the intake of typical dry creep feed is low. Alternatively, liquid diets
presented as a gruel may have increased positive effects post-weaning. The objective of this study
was to discern whether a gruel pre-weaning supplementation could better prepare piglets to handle
increased stress encountered after weaning. We conclude that piglets fed gruel creep feed had greater
feed intake and body weight than pigs that had no supplementation, and the effects were sustained
through the first week of weaning.

Abstract: To combat the stress of weaning, we utilized novel gruel creep feeders to supplement
suckling pigs with divergent soluble (n = 6 litters) versus insoluble (n = 6) diets compared with
un-supplemented controls (n = 6). Post-weaning, pigs were fed a common phase 1 diet. Average
daily weight gains of pigs fed soluble and insoluble creep diets were 53% and 17% greater than
control pigs, respectively (p < 0.01). Creep intake was higher (82%) for pigs fed the soluble diet, and
the accompanying weight increase was sustained post-weaning (p < 0.02). Villus measures were
prematurely altered in soluble-creep-fed pigs (p < 0.01), with decreases in villi length, crypt depth, and
villus area pre-weaning. No effects of treatment were detected for VFA concentrations and pH in the
cecum. There was an interaction between treatment and age for several pro- and anti-inflammatory
cytokines (p < 0.01), where soluble-creep-fed pigs had increased cytokine levels with age, whereas
cytokine levels in the insoluble and control groups decreased over time. We conclude that a soluble
creep diet fed in a gruel state during the pre-weaning period has a positive impact on weaning
weight that is sustained post-weaning, and is accompanied by alterations in the intestinal health of
young pigs.

Keywords: creep feeding; intestinal health; piglet growth; weaning

1. Introduction

At weaning, piglets exhibit decreased feed intake, leading to stagnation in body weight
gain. The shift from a highly digestible milk diet to a fiber-rich solid feed negatively impacts
intestinal health measures, such as shortening of villi and increase in crypt depth [1,2].
Supplementing with a milk replacer can increase pre-weaning weight gain [3–5], but does
not remedy the post-weaning decline in piglet performance. To help mitigate post-weaning
stressors, creep feeding during the lactation period has been a practice utilized by the
swine industry to provide nutrients to young pigs and to promote their adaptation to solid
feed [6–8]. While there is a dearth of evidence to prove that creep feeding definitively
increases weaning weight, Byrgesen et al. [9] reported effects related to gruel versus dry
creep feeding. Building upon this, and as technology advances, new delivery methods of
creep feed are being developed, varying from behavioral stimulation to easily accessible
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feeder designs [10,11]. Generating a larger percentage of creep feed “eaters” benefits entire
litters, easing overall weaning stress. While most studies are either strictly lactation or
strictly nursery studies, fewer studies span both periods [12]. Even with some experiments
following pigs through long-term creep studies, there are few conclusive agreements on
the long-term effects. Nutritional intervention is important for minimizing weaning stress,
and the development of new creep feed methods is crucial [13]. Furthermore, creep feeding
and how it impacts gut biodiversity, fermentation, and immune response all may influence
how weaning impacts GI tract health [14–16].

The aim of this study was to determine whether novel gruel creep feeders could
adequately deliver two divergent feeds (one highly soluble and one insoluble) to suckling
piglets, and whether this would have a positive effect on weight gain during lactation that
would carry forward into the nursery post-weaning. Additionally, we wanted to determine
whether either creep diet would alter intestinal parameters to better prepare piglets for the
nursery and mitigate post-weaning stress.

2. Materials and Methods
2.1. Animals and Experimental Design

The experiment was conducted at the North Carolina State University Swine Educa-
tional Unit during August–September 2021. All animal procedures were approved by the
Institutional Animal Care and Use Committee.

A soluble creep diet was formulated using mostly soluble ingredients, while the
insoluble diet contained ingredients typical of a phase 1 nursery diet (Table 1). The diets
contained no antibiotics or growth promoting minerals, and represented extremes in
formulation to investigate a full range of piglet responses and to compare feeder delivery
of such divergent diets. The diets were not formulated as complete feeds for suckling
pigs, but rather as supplements to sow’s milk. Both introduced the pigs to non-milk
ingredients in advance of weaning, with the soluble diet containing 20% oatmeal and
10% soy protein isolate. As such, they were designed practically and intentionally to
vary not only in solubility but also in nutrient composition and digestibility. Gruel creep
feeders (Supplementary Figure S1. Mini transition feeders GE Baker Company, Bury Saint
Edmunds UK) were utilized, and they employed an auger that metered the dry diets down
into a holding pan where it was mixed with water. Roughly 1.2 kg of feed could be held
in the feeder hopper at once, being manually refilled when levels were low. A sensor 80
mm above the plate detected when gruel reached maximum level, upon which it would
turn the flow of gruel off. Two dials controlled the water output and time lapse between
feeding cycles. The former was set to the highest output, where water was mixed with
each creep diet so that there were 18% solids delivered. The latter dial was set for gruel to
refill immediately if the sensor detected low levels (ad libitum). Feeders were cleaned and
serviced twice a day. Each diet was fed to six litters, and an additional six control litters did
not receive any creep feed (n = 18 litters total). Multiparous sows (≥parity 2; Smithfield
Premium Genetics; Yorkshire × Landrace × Duroc) were randomly assigned to treatment
as they were placed into farrowing crates on D109 of gestation. Farrowing was induced
with PGF2α injected on gestation D112. Cross-fostering of piglets was minimized but was
used to ensure at least 10 pigs/litter by day three of age. On D7, a total of 196 pigs (average
of 10.8/litter) began the study with an average weight of 2.48 ± 0.39 kg, receiving one of
the three treatments. Treatments continued until pigs were weaned at 23 days of age. At
weaning, littermates remained intact, with each occupying one nursery pen (1.8 × 1.6 m).
All pigs received a common pelleted phase 1 nursery diet of identical composition to the
insoluble creep diet (Table 1), and their post-weaning growth was recorded until D31.
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Table 1. Divergent diets given to suckling pigs using gruel creep feeders.

Ingredient (%) Insoluble 1 Soluble 2

Whey Permeate 24.00 38.82
Corn, yellow dent 29.34 −
Soybean Meal 12.00 −
Cookie Meal 10.00 −
Poultry Meal 10.00 −
Fish Meal 4.00 −
Blood Plasma 3 4.00 −
Soy protein concentrate 4 4.00 −
Poultry Fat 1.00 −
Soy protein isolate − 10.00
Nonfat Dried Milk − 26.34
Feeding Oatmeal − 20.00
Dextrose − 2.23
L-Lys 5 0.52 0.57
DL-Met 6 0.25 0.41
L-Thr 5 0.17 0.30
L-Trp 5 0.02 0.12
Limestone 0.30 0.40
Salt 0.22 1.0
Mineral Premix 7 0.15 −
Vitamin Premix 8 0.03 −
Other 9 − 0.80

Calculated composition
DM, % 91.4 95.1
ME, kcal/kg 3465 3132
CP, % 25.17 23.13
Lactose, % 19.2 46.5
SID Lys, % 1.51 1.70
Ca, % 0.85 0.67
p, % 0.73 0.68

1 The insoluble creep diet was also pelleted and used as the phase 1 nursery diet. 2 The soluble diet was formulated
and manufactured by TechMix Global (Steward, MN). 3 American Protein Corporation (Ankeny, IA). 4 CJ Selecta
(Araguari, Brazil). 5 CJ Bio (Fort Dodge, IA) provided supplemental amino acids. 6 Evonik (Essen, Germany).
7 Mineral premix included per kg of diet: 33 mg Mn as manganous oxide, 100 mg Fe as ferrous sulfate, 110 mg
Zn as zinc sulfate, 16.5 mg Cu as copper sulfate, 0.30 mg of I as ethylenediamine dihydroiodide, and 0.30 mg
of Se as sodium selenite. 8 Vitamin premix included per kg of diet: 6614 IU of vitamin A as vitamin A acetate,
992 IU vitamin D3, 19.8 IU vitamin E, 2.64 mg vitamin K as menadione sodium bisulfate, 0.03 mg vitamin B12,
4.63 mg riboflavin, 18.52 mg D-pantothenic acid as calcium pantothenate, 24.96 mg niacin, and 0.07 mg biotin.
9 Provided as percentage of complete diet: 0.25, sodium aluminosilicate; 0.20, Flav/Strawberry; 0.10, Sucram
C-150 sweetener; 0.06, L-isoleucine; 0.03, vitamin E 50% spray dried, 0.0025, vitamin A 1,000,000 IU/GM; 0.0025,
vitamin D 1.25%.

Twelve video cameras (four GoPro HERO 8, eight AKASO Brave 7) were mounted
above each feeder, capturing timelapse video at one frame per second at a resolution of
1920 × 1080 pixels. On the first day of treatment, selected pigs were marked with livestock
paint colors and patterns to allow for individual pig identification in the videos. Amount
of time at feeders from 09:00 to 14:00 on the observation days was measured in seconds. A
piglet was labeled as feeding in a video frame when their nose or head was observed to
be partially or completely in, above, or touching the creep feeder. Piglets that met these
criteria but were clearly lying down were not counted as feeding. Feeders and creep feed
were visible in videos, therefore, observers were not blinded to treatment, although they
were blinded to pen number. At four days prior to weaning, chromic oxide also was added
to the creep diets (3 g/kg) to serve as a qualitative fecal marker of creep intake along with
camera footage [17].

At one day prior to weaning (D22 of age) and one week post-weaning (D31 of age),
one pig per litter (n = 36 total) was euthanized by AVMA-approved electrocution for
measurement of intestinal parameters. Pigs of median weight were selected, and pre-
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weaning pigs displaying green fecal swabs and/or video “high time at feeder” were chosen.
Immediately prior to euthanasia, blood was collected via jugular venipuncture (K2-EDTA
Vacutainers) and centrifuged, and plasma was frozen for subsequent analysis.

Following exsanguination, a midline incision was made to remove the intestinal tract.
Weights of small (duodenum–ileum) and large bowels (cecum–anus) were measured and
expressed as a relative percentages of body weight. Additional sampling included ileal
contents, ileal mucosa, ileal subsection fixed in 10% formalin for histology, fresh cecal pH,
and colon digesta. All samples except for formalin-fixed subsections were frozen in liquid
nitrogen and stored at −80 ◦C.

2.2. Cytokine Analysis

Plasma was analyzed on a Porcine Cytokine/Chemokine 13-Plex Discovery Assay®

Array (PD13, Eve Technologies, Calgary, CA, USA). Specific cytokines measured (pg/mL)
included GM-CSF, IFNγ, IL-1α, IL-1RA, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18,
and TNFα.

2.3. Histology

Ileal subsections were fixed in 10% formalin for 24 h, before a 70% ethanol wash, and
then stored in 70% ethanol. Samples were then dehydrated, embedded in paraffin, cut into
5 µm-thick cross-sections, and mounted on polylysine-coated slides. Slides were stained
with hematoxylin and eosin and sealed. Ten images per slide were captured at both 4x and
10x magnification on an Olympus CX31 Light Microscope (Lumenera Corporation, Ottawa,
Canada) with an Infinity 2-2 digital CCD camera to measure villi length, crypt depth, and
villus area. Measurements of villi and crypt depth were calculated as described by Moita
et al. [18], while villus surface area was calculated as described by Hess et al. [19].

2.4. Gas Chromatography

Frozen cecal contents were thawed on ice, and 1 mL of 0.5 N HCL was added to
the tube. Samples were vortexed and incubated at room temperature for 24 h. Samples
were then centrifuged at 900× g for 10 min to separate the supernatant. One mL of the
supernatant and 200 µL of metaphosphoric acid (MIS) were transferred into an Eppendorf
tube and centrifuged at 32,000× g for 10 min. As an internal standard, MIS was prepared by
weighing 25 g of metaphosphoric acid into a beaker and dissolving in 50 mL of deionized
water. Subsequently, 0.2 g of 2-ethylbutyric acid and another 25 mL of water was mixed in
the beaker, bringing the final solution to 100 mL. This “cleaned” supernatant was pipetted
into a GC vial for analysis on a Varian gas–liquid chromatograph (model CP 3380/3800).
The column (NUKOL Fuser Silica Capillary Column) measured 30 m in length × 0.25 mm
i.d., and 0.25 µm film thickness, reaching a maximum temperature of 300 ◦C [20].

2.5. Statistics

Creep treatment effects on growth performance data were analyzed using the general
linear model procedure of SAS (Cary, NC, USA) appropriate for a completely randomized
design, with litter as the experimental unit. Intestinal data were analyzed according to
a 2 × 2 factorial design with creep treatment and piglet age (d22 versus d31) as main
effects. Least square means were separated using a protected least significant difference
test. Differences were noted when p < 0.05 and trends identified when 0.05 < p ≤ 0.1.

3. Results
3.1. ADG and Feed Intake

During the first week of creep feeding (D7–14), pigs receiving the soluble creep diet
grew 44% faster (p < 0.01) than controls and pigs fed the insoluble creep diet (Table 2).
During the second week (D14–23), both insoluble- and soluble-creep-fed groups grew faster
than control litters (p < 0.01) by 32 and 62%, respectively, with performance of soluble-
creep-fed pigs remaining greatest. The accelerated growth of litters fed soluble versus
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insoluble creep feed were associated with 200% (D7–14) and 175% (D14–23) increases in
creep feed consumption (p < 0.01) on a per litter basis. Similar differences were observed
when expressed on a per pig basis. Soluble-creep-fed pigs were observed at the feeders an
average of eight times higher than insoluble-creep-fed pigs at D14 (p < 0.033; Supplemental
Figure S2), but no difference was detected between groups at D23. The accumulative effects
by the end of lactation (D23) were that average piglet body weights increased progressively
(p < 0.003) from control (5.51 kg/pig) to insoluble-creep-fed (6.33) to soluble-creep-fed pigs
(7.65). During the first week post-weaning (D23–31), no differences were detected (p > 0.1)
in growth or feed intake on a per litter basis, with noted larger variation (Table 2). The
gain:feed ratio was only calculated during the first week of nursery because piglet milk
consumption was not measured during lactation. Post-weaning, control pigs had higher
efficiency (p < 0.045) than pigs fed the soluble creep diet. Despite this, bodyweights of pigs
fed soluble creep feed during lactation remained 21% greater (p < 0.017) than control and
insoluble-creep-fed groups at one week post-weaning (D31).

Table 2. Growth of litters fed either insoluble or soluble gruel creep diets versus non-creep-fed controls 1.

—————————Treatment—————————
Control Insoluble Soluble SEM p > F

Number of litters 6 6 6
Initial Body Weight (kg/pig)

Day 7 2 2.27 2.51 2.68 0.153 0.213
Day 14 3.63 a 3.85 a 4.62 b 0.262 0.043
Day 23 5.51 a 6.33 a 7.65 b 0.369 0.003
Day 31 6.58 a 7.03 a 8.21 b 0.362 0.017

Average Daily Gain (g/pig)
Day 7–14 193 a 192 a 278 b 20 0.010
Day 14–23 208 a 275 b 337 c 18 0.001
Day 23–31 153 100 79 25 0.134
Day 7–31 187 a 197 a 240 b 11 0.006

Average daily feed intake (g/litter)
Day 7–14 0.00 a 143 b 294 c 27 0.001
Day 14–23 0.00 a 533 b 935 c 81 0.001
Day 23–31 1891 1686 1911 216 0.723

Average daily feed intake (g/pig)
Day 7–14 0.00 a 13 b 28 c 2.5 0.001
Day 14–23 0.00 a 50 b 91 c 7.6 0.001
Day 23–31 186 185 210 15.6 0.460

Gain:Feed
Day 23–31 0.82 a 0.57 a,b 0.35 b 0.12 0.045

1 Litters were fed diets from D7 to D23 of age and compared to control litters receiving no creep feed. After
weaning (D23), pigs were fed a common phase 1 nursery diet (Table 1) for one week (until D31 of age). 2 Piglet
age. a,b,c Means within a row lacking a common superscript differ (p < 0.05).

3.2. Intestinal Measures

Cecal pH was on average 0.5 units lower (p < 0.01) in pigs after weaning (5.69) than
before weaning (6.20), and tended (p = 0.055, treatment main effect) to be lower in pigs fed
the insoluble creep diet (Table 3). The relative weight of the small intestine expressed as
a percentage of body weight increased with age (p < 0.01), and the increase was greatest
for pigs fed the insoluble creep diet (Treatment x Age interaction, p < 0.01). The relative
weight of the large intestine also increased with age (p < 0.01), but no differences among
treatments were detected (p > 0.1).
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Table 3. Intestinal characteristics in piglets fed insoluble or soluble gruel creep diets, measured before
(D22) and after weaning (D31), compared with non-creep-fed controls 1.

————————–Treatment———————— ————–p > F—————–
Items Control Insoluble Soluble SEM Trt 2 Age T × A 3

D22 D31 D22 D31 D22 D31
Cecal pH 6.33 b 6.01 a,b 6.00 a,b 5.65 a 6.28 b 5.77 a 0.13 0.06 0.01 0.78

Small Intestine (%) 4 4.04 a 6.55 c 4.40 a 8.86 d 4.79 a,b 6.06 b,c 0.45 0.01 0.01 0.01
Large Intestine (%) 2.22 a,b 3.75 d 2.38 a,b,c 3.44 c,d 1.85 a 3.57 d 0.61 0.61 0.01 0.50

1 One pig per litter was sampled at weaning (D22) or at one week post-weaning (D31). Data are means and SEM,
n = 6. 2 Treatment. 3 Treatment × Age. 4 Intestinal weights are expressed as % of body weight. a,b,c Means within
a row lacking a common superscript differ (p < 0.05).

Villi length was 38% (p < 0.01) and 23% (p < 0.01) longer on D22 for control and
insoluble creep diet pigs (respectively) than in pigs fed the soluble diet (Table 4). At D31,
villi in the pigs fed the insoluble creep remained 27% (p < 0.01) longer than in pigs fed the
soluble creep diet. There was an effect of age (p < 0.03) on the length of villi, increasing
by 12% from D22 to D31. At D22, there were no effects detected on crypt depth, but at
D31, crypt depth increased in pigs fed the control and insoluble diets by 26% and 38%,
respectively (p < 0.001), compared to pigs fed the soluble diet. Crypt depth also increased
by 33% from D22 to D31 (p < 0.01). The villi:crypt ratio on D22 was different (p < 0.01)
between the pigs fed the control versus the soluble creep diets (3.01 and 2.34), but no
difference was detected in ratio in pigs fed the insoluble diet compared with those fed the
other diets. At D31, there were no effects detected in terms of treatment on villi:crypt ratio,
but there was an overall effect of age (p < 0.02) and an interaction trend between treatment
and age (p < 0.08). The villus area on D22 was significantly different (p < 0.001) in pigs fed
the control and soluble creep diets, but pigs fed the insoluble diet were again not found
to be different than the other treatment groups. At D31 the villus area in pigs fed both
the control and insoluble diets were 15% and 14% greater than in pigs fed the soluble diet
(p < 0.03). There was a positive trend with the effect of age, with villus area increasing by
25% and 35% for both insoluble and soluble diets, respectively (p < 0.09).

Table 4. Intestinal morphology in pigs fed insoluble or soluble gruel creep diets, measured before
(D22) and after (D31) weaning, compared with non-creep-fed controls 1.

————————Treatment———————— ————– p > F ————–
Items Control Insoluble Soluble SEM Trt 2 Age T × A 3

D22 D31 D22 D31 D22 D31
Villi (µm) 268 a,b 262 a,b 238 a,b 291 a 193 c 230 b 14.8 0.01 0.03 0.15
Crypt (µm) 90.8 b 123.2 a 90.6 b 134.4 a 84.6 b 97.3 b 6.36 0.01 0.01 0.06
Villi:Crypt ratio 3.0 a 2.16 b 2.65 a,b 2.40 b 2.34 b 2.40 b 0.19 0.54 0.02 0.08
Villus area (µm2 × 10−2) 776 a 753 a 592 b,c 743 a 482 c 654 b 69.6 0.03 0.09 0.34

1 One pig per litter was sampled at weaning (D22) or at one week post-weaning (D31). Data are means and SEM,
n = 6. 2 Treatment. 3 Treatment × Age. a,b,c Means within a row lacking a common superscript differ (p < 0.05).

3.3. VFA

Volatile fatty acid (VFA) analysis (Table 5) revealed no detectable interactions be-
tween treatment and age (p > 0.1). However, the molar proportion of acetate increased
with age (p < 0.01), with the biggest increase (27%) observed in pigs fed the soluble diet
(p < 0.01). Branched-chain acids decreased with age (p < 0.01) and differed among treatments
(p < 0.03). There were no effects detected among propionate, butyrate, and valerate (p > 0.1)
for either treatment or age. For total VFA concentration (mM), there was a trend (p < 0.09)
in terms of increasing amounts of VFAs in the cecum with age, but no effects of treatment
were detected.



Animals 2022, 12, 2408 7 of 12

Table 5. Volatile fatty acid (VFA) concentrations (mol%) in the cecum of pigs fed insoluble or soluble
gruel creep diets, measured before (D22) or after (D31) weaning, compared with non-creep-fed controls 1.

——————————–Treatment—————————– ——————p > F—————
Items Control Insoluble Soluble SEM Trt 2 Age T × A 3

D22 D31 D22 D31 D22 D31
Acetate 62.7 a,b 64.8 b 60.4 a,b 68.3 b 52.8 a 67.0 b 3.6 0.41 0.01 0.27
Propionate 15.7 21.4 22.6 24.3 19.8 22.0 2.9 0.26 0.18 0.77
Butyrate 5.4 6.7 5.5 5.7 11.3 5.7 1.8 0.26 0.37 0.16
Valerate 3.0 1.1 1.6 1.1 4.1 2.4 1.1 0.26 0.17 0.80
BCA 4 13.2 a 5.9 b 10.0 a 0.55 c 12.1 a 3.0 b,c 1.5 0.03 0.01 0.74
Total 5 77.5 117.3 91.3 80.5 81.9 127.0 16.9 0.55 0.09 0.21

1 One pig per litter was sampled at weaning (D22) or at one week post-weaning (D31). Data are means and
SEM, n = 6. 2 Treatment. 3 Treatment × Age. 4 Branched-chain acids are isobutyrate and isovalerate. 5 Totals are
concentrations in units of mM. a,b,c Means within a row lacking a common superscript differ (p < 0.05).

3.4. Cytokines

There were no main effects of treatment or age detected on plasma cytokine concentra-
tions (Supplemental Table S1), but several cytokines displayed interactions with treatment
and age (Figure 1). Both the insoluble and soluble diets had significantly lower levels of
IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-18 compared to the control pigs pre-weaning.
However, post-weaning, only pigs fed the soluble diet had increased cytokine levels com-
pared to pigs fed the insoluble and control diets, with interaction p-values of 0.015, 0.002,
0.038, 0.026, 0.049, 0.056, and 0.02 for each cytokine, respectively.
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Figure 1. Plasma IL- 2 and IL-10 concentrations (pg/mL) in pigs fed insoluble or soluble gruel
creep diets, measured before (D22) or after (D31) weaning, compared with non-creep-fed controls.
Significant effects of diet and age were not detected (p > 0.1). Treatment by age interaction (p < 0.05).
Similar interactions were observed for IL-1α, IL-1β, IL-4, IL-6, and IL-18 (see Supplemental Table S1).

4. Discussion

Litters were kept intact after weaning, contrary to common commercial practices, to
minimize social stress caused by fighting among pigs when litters are mixed. This allowed
us to better discern whether creep feeding could better prepare the pigs to adapt to the
dietary stressors faced during the first week of weaning.

When employed, intake of typical creep feed is generally low, leading to minimal
improvements in weaning weights. Fraser et al. [21] tested low-complexity versus high-
complexity creep diets and reported pre-weaning ADGs of 263 g/d and 232 g/d. By
comparison, pigs fed our insoluble and soluble gruel creep diets gained 275 and 337 g/d,



Animals 2022, 12, 2408 8 of 12

respectively, inferring that addition of water to the gruel could entice greater consump-
tion and growth. Another case of low creep intake was reported by Cabrera et al. [22],
where their creep diets with differing levels of glutamine had intake levels ranging from
45–50 g/pig over the last week of lactation. Our findings show markedly higher creep
intake in soluble-creep-fed pigs (106 g/pig) and slightly higher levels in insoluble creep
pigs (52 g/pig). Toplis et al. [23] reported weaning weights where gruel-supplemented
pigs weighed 6.7 kg compared to our soluble-diet-fed piglets, weighing 7.7 kg. Compared
to these previous studies, we observed markedly accelerated intake and growth in pigs
supplemented with the soluble creep diet. This response likely stems from greater creep
intakes associated with gruel delivery from the novel creep feeders. In both Middelkoop
et al. [10] and Sulabo et al. [11] studies, the design of the feeders had measurable effects
on post-weaning feed consumption and proportion of eaters, respectively. Middelkoop
used “play feeders”, where piglets ate from a foraging-stimulating feeder in comparison
to a conventional round plate. Using piglets’ natural curiosity and foraging instincts is
a creative way to stimulate intake of non-milk feed at an early age. While there were no
effects detected of feed intake in lactation, there was increased post-weaning feed intake
and reduced diarrhea. In the Sulabo et al. study, a creep feeder was used in which a rotary
hopper dispensed feed ad libitum and minimized waste. They found that the rotary feeder
with the hopper had significantly less feed disappearance relative to a rotary feeder without
a hopper and a pan feeder. On the other hand, the proportion of eaters was higher for
the rotary feeder with the hopper. While the previous studies involved dry creep feed,
our study tested gruel feed, providing superior feed physical state (gruel) paired with an
innovative feeder design.

Litters supplemented with soluble creep feed during the second and third weeks
of lactation displayed substantially accelerated growth over non-creep-fed control litters
during both weeks of supplementation. In contrast, litters given insoluble creep feed only
showed improved performance during the third week of lactation. The difference between
the diets was driven by greater intake of the soluble creep diet. This could potentially be
attributed to the addition of sweeteners to the soluble diet compared to the insoluble diet,
although Figueroa et al. [24] found that there were no differences in feed intake detected
based on flavor preferences. Another reason for high creep intake might also be season
dependence. Azain et al. [25] described a strong seasonal impact on supplemental milk
replacer intake based on winter versus summer lactation periods. The increase in piglet
intake of supplemental milk was driven by heat stress, with sows eating less and producing
less milk during the summer compared to winter. Because our study took place during
late August–September, this would likewise result in high supplemental creep intake, in
agreement with Azain et al. It is important to note that we would need more data to confirm
this seasonal effect, as well as to confirm whether the seasonal effect would be the same for
gruel creep feed. We can thus infer that it is composition of the creep diet that drove the
differences in feed intake.

The insoluble diet had less of an impact on body weight and weight gain potentially
due to an inability to mix uniformly with water. We observed that the soluble diet mixed
better with the water compared to the insoluble diet, leading to the increase in feed intake
described above. Studies by Kim et al. [26] and Price et al. [27] reported an increase in
the consumption of liquid diets compared to a post-weaning dry nursery diet. Price et al.
found that pigs exhibited higher consumption of liquid diets through the first two weeks
of weaning compared to dry-diet-fed pigs. Kim et al. studied piglets from 14 days of
age to market weight, and found that pigs fed liquid feed in early life reached market
weight four days sooner. Both studies support liquid feeding in comparison to dry feeds,
congruent with the idea that young pigs are behaviorally inclined to consume liquid feed.
Consistent with previous studies, we also detected a sustained nursery feed intake and
increase in weaning weight due to gruel creep feeding. The physical form of diets altering
morphological traits was also observed by Cappai et al. [28,29]. Mandibular glands and
mucosal thickness of the terminal ileum in young pigs were both effected by coarseness of
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feed, both increasing in size and thickness with increased particle size. While solubility
of diets contributed, in part, to higher feed intake and increased weight gain, the stark
difference in composition likely contributed as well. The divergent diets were purposefully
designed to represent extremes in formulation that could be utilized with the gruel feeders.
The soluble diet contained highly digestible ingredients, for example, being higher in whey
permeate, lactose, and SID lysine; whereas the insoluble diet contained less-digestible
ingredients but represented the precise phase 1 diet the pigs were fed post-weaning.

Even though there was a decrease in post-weaning performance exhibited by the
soluble and insoluble groups, the impacts were blurred by the high degree of variability.
We noted high variation in feed intake, especially in pigs that had been fed the soluble creep
diet during lactation. Though not statistically significant, growth was numerically lowest
(79 g/d) for pigs fed the soluble diet during lactation compared to control (153 g/d) or
insoluble (100 g/d) groups. Furthermore, the improved gain:feed ratio of control pigs over
pigs fed soluble creep illustrated compensatory performance. Despite this lower growth
rate, pigs fed the soluble creep retained the greatest body mass at the end of the growth
trial. Results from other studies vary as to whether pre-weaning body weight differences
are sustained over time. Christensen et al. [30] concluded that providing supplemental
nutrition such as creep feed does positively affect weaning weights, but this gain was lost
over time in the nursery. On the other hand, Byrgensen et al. [9] reported a tendency for
dry-creep-fed piglets during lactation to have improved weight gain in the nursery. Further
studies using improved creep feeder designs need to be conducted to determine whether
the weight gain advantage during lactation is sustained throughout the nursery phase.

Our collective observations regarding the insoluble diet are that pigs consumed more
during the third week of lactation than during the second week, leading to improved
weight gain over control litters. While this growth advantage was no longer detected in
the nursery, pigs fed the insoluble creep diet showed slightly lower cecal pH, suggesting
increased fermentation. A greater increase in the relative weight of the small intestine may
also suggest that insoluble diet pigs were responding to diet composition. The increase in
small intestine weight may be an indication of higher feed retention in the digestive tract.
In comparison, the soluble-creep-fed pigs had the smallest intestinal weights.

Villi height and crypt depth of the control pigs were hypothesized to be the highest,
since they only had highly soluble sow’s milk to digest. Piglets have the longest villi at
pre-weaning compared to the post-weaning phase due to multiple stressors encountered
including the abrupt diet change [31–33]. Increased crypt depth is known to be indicative
of increased cell proliferation. This is generally higher when there is more cell regeneration
and maturation of the intestinal lining, which occurs when eating a more complex diet. It
is not surprising, then, that all diets had increased crypt depth one week post-weaning
due to stressors of the change from lactation to the nursery. The soluble diet displaying
the shortest villi length of any treatment post-weaning was surprising, but this may be
explained by the significantly increased creep feed consumption. Compared to the sow’s
milk control treatment or the low-intake insoluble diet, the soluble diet was consumed
readily, and the non-milk ingredients may have challenged villi morphology at an earlier
stage prior to weaning. Van Beers-Schreurs et al. [1] found that villus atrophy was more
due to increased levels of feed intake than to the composition of the diet, which supports
our findings. Their findings also supported the increased villi height of a milk-predominant
diet, hence the longest villi being measured in the control piglets. Both villi:crypt ratios
and villus area are consistent with the literature [2]. A 3:1 ratio of villi to crypt depth is
common, but the decreased ratio is due to post-weaning decreases in villus length and
increase in crypt depth.

Concentrations of VFAs reflect microbial fermentation, and both our insoluble and
soluble creep diets provided fermentable ingredients. Early studies, such as that by Holtug
et al. [34], examined VFA concentrations in different regions of the digestive tract. They
found that VFA concentrations tended to be higher in the large intestine; thus, we obtained
digesta samples from the cecum for analysis. We observed that the majority of VFAs were
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not affected by treatment or age (p > 0.1), but acetate and BCAs tended to increase and
decrease in percentage, respectively. The decrease in pH in the cecum across all treatments
over time was consistent with the increase in VFA production. The review by den Besten
et al. [35] proposed that an increase in fiber in pig diets may increase VFA concentrations
in the cecum. The increase in fiber reported in our study could be from either corn or
oatmeal in the insoluble and soluble diet, respectively. Alternatively, stressors of weaning
along with the change in diet possibly altered the microbial environment, significantly
changing the percentage of VFA concentrations. Wang et al. [36] found that probiotics
altered concentrations of VFAs in the colon, in turn, effecting species richness of microbiota
alpha diversity. While there were no specific bioactive ingredients in our diets, changes in
diet composition may have altered microbiota concentrations. Further microbiota analyses
need to be conducted to verify these results.

Immune responses may be closely tied to microbial communities within the intestine.
Duarte et al. [37] reported that microbiota–host interactions modulated the immune system,
while the immune system also helped modulate microbiota. Both are closely tied to the
other, with changes in either having a downstream effect. Zhang et al. [16] studied immune
parameters in the small intestine and how they reacted to differing levels of protein. They
found that lower crude protein (CP) levels changed specific bacterial communities and
modified mucosal immune parameters. In addition to CP, differing levels of whey permeate
for insoluble and soluble diets may have impacted the bacterial communities. This may
explain the interaction of treatment and age that we found in soluble-creep-fed pigs and
controls. Whether an increased or decreased immune response post-weaning is detrimental
to piglets is controversial. More analyses of immune pathways and how they affect weight
gain or feed intake of weaned pigs are needed.

5. Conclusions

The soluble creep diet formulation provided superior growth performance of suckling
pigs, and their heavier weaning weights were maintained through the first week of the
subsequent nursery period, despite high variability of intake and growth post-weaning.
The insoluble creep diet provided a mild indication of potentially increased fermentation,
which could improve weaning transition. High gruel creep feed intake in soluble-diet-fed
pigs led to pre-weaning changes in intestinal morphology. Overall effects of diet solubility
are tied to composition and digestibility, which also play an important role in the observed
increased weight gain and feed intake. For future diet considerations, perhaps slightly
more insoluble (fibrous) ingredients could be added to a largely soluble base of ingredients,
yielding a formulation intermediate between the soluble and insoluble formulations used
in the present study. Alternatively, the inclusion of soluble fiber sources into the soluble
formulation may yield desirable results for post-weaning gut health and growth.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani12182408/s1. Supplementary Table S1: Cytokine levels in piglets
fed insoluble or soluble insoluble gruel creep feed diets, measured before (D22) and after weaning
(D31), compared with non-creep-fed controls. One pig per litter was sampled at weaning (D22) or
at one week post-weaning (D31). Supplementary Figure S1: Mini transition feeder. Supplementary
Figure S2: Video-recorded feeding behavior of suckling pigs supplemented with insoluble or soluble
gruel creep feed observed at 14 and 23 days of age. Means represent the time that piglets occupied
feeder space, n = 6 litters/diet.
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