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Abstract: Foodborne safety has become a global public health problem in both developed and
developing countries. The rapid and precise monitoring and detection of foodborne pathogens has
generated a strong interest by researchers in order to control and prevent human foodborne infections.
Traditional methods for the detection of foodborne pathogens are often time-consuming, laborious,
expensive, and unable to satisfy the demands of rapid food testing. Owing to the advantages of
simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost,
electrochemical biosensing technology is more and more widely used in determination of foodborne
pathogens. Here, we summarize recent developments in electrochemical biosensing technologies
used to detect common foodborne pathogens. Additionally, we discuss research challenges and
future prospects for this field of study.
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1. Introduction

In the 21st century, foodborne diseases are particularly problematic. The development of science
and technology and economic progress has been unable to effectively control the spread of foodborne
diseases, which are instead showing an upward trend [1,2]. Food safety-related poisoning incidents
occur frequently around the world and the incidence of foodborne diseases is high, regardless of
country. The diseases caused by foodborne pathogens can be divided into four categories. The first is
food poisoning, which refers to acute or sub-acute diseases that occur after eating food contaminated
with toxic or hazardous substances [3,4]; the second is allergic diseases associated with food [5–8];
the third kind includes infectious diseases (dysentery) [9,10], zoonotic diseases (foot-and-mouth
disease) [11,12] and so on; the last is disease characterized by chronic toxicity, caused by long-term
ingestion of a large amount of certain toxic and harmful substances [13,14]. There is no doubt that
foodborne diseases have become a global public health problem affecting everyone. It is difficult to
evaluate the global incidence of foodborne disease, however, according to CDC 2011 estimates, one in
six Americans get foodborne disease, 128,000 are hospitalized, and 3000 die of foodborne diseases
annually [15,16]. A great proportion of these cases are due to the contamination of food and drinking
water [17]. There are many kinds of pathogens that are capable of producing toxins causing foodborne
diseases [18,19], among them Escherichia coli, Vibrio cholerae, Bacillus cereus, Staphylococcus aureus and
Clostridium perfringens are common [20,21].

Routine detection process of pathogens includes non-selective and selective enrichment culture,
plate separation, pure steps, biochemical reaction and serological identification, which are cumbersome,
time-consuming and laborious [22–25]. The traditional technique is unable to meet the need of food
safety supervision and rapid diagnosis of food pathogens [26–28]. In recent years, some rapid detection
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techniques were established with the development of biotechnology, such as detecting certain bacteria,
bacterial automatic identification system and point-of-care technologies [29,30]. However, these
methods also still have some limitations. Most of these techniques still require such steps as purifying
cultures of bacteria and enriching bacteria. Furthermore, there may be more than one pathogen and
microorganism in the food [31–33], hence, how to detect multi-target microorganisms at the same time
by separating and enriching the pathogens in the food samples has increasingly become the focus of
food microbial testing [34,35]. Therefore, the development of rapid detection of foodborne diseases
has no time to delay.

At present, biosensing technology has more applications due to its advantages of unique sensitivity,
low detection limit, and simple operation. Compared with traditional analytical methods, biological
sensing technology has irreplaceable advantages: the first one is real-time, which can make mutual
interactions with biological macromolecules and analysis using the changes that occur every moment of
the process; the second is speediness, as the process takes only 5–15 min, and a large number of samples
can be measured in a short time; the third is specificity and detection of other non-specific molecules in
the sample; the last is simplicity, such that large molecules do not need to be labeled. The emerging
electrochemical biosensing technique has been developed and applied to the microbial analysis
of foodborne pathogens in a much shorter time, with high sensitivity and selectivity comparable
to the conventional methods, which makes the idea of rapid detection of foodborne pathogens
possible [36–38].

2. The Principle of Electrochemical Biosensors

The bio-recognition element is the core component of the electrochemical biosensor which was
fixed on the surface of the electrode by physical or chemical method. The biosensor can selectively
identify the target molecule and capture it onto the electrode surface, owing to the specific recognition
function of bio-recognition element with the substance to be tested. As the main body of the signal
converter, the electrode can derive the identification signal generated on the surface of the electrode
and convert it into an electrical signal, including current, voltage, and resistance, which can be
measured and analyzed in order to achieve qualitative or quantitative analysis of the analysis target.
The operating principle of electrochemical biosensor is shown in Figure 1.
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Figure 1. A schematic representation of the electrochemical biosensor. After the analyte contacts a
recognition element on the surface of the biosensor, physical or chemical changes yield a reaction that
is transformed into an electrochemical signal. This information can be further processed to determine
the concentration of the pathogen and changes in the composition of the analyte.
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Electrochemical biosensors can be classified into amperometric, impedimetric, potentiometric
and conductometric biosensors according to the observed data type, such as current, impedance,
potential and conductance, respectively [37,38]. Electrochemical biosensors were the first reported
type of commercialized biosensors in the history of biosensor development. The preparation of
electrochemical-active interference is the crux for the superior reported biosensors developed to
date [39]. However, electrochemical biosensors certainly possess disadvantages similar to other
biosensors. Among the limits of electrochemical biosensor, the immobilization of bio-recognition
element without denaturation or random orientation is the most insurmountable. Hence, most of
the biosensors take advantage of self-assembled monolayer (SAM) modified gold electrode surfaces
because they could supply favorable substrates and binding sites for bio-recognition element via the
chemical groups (such as salines, thiols, acid, disulphides, or amines) in the surface of electrode [40].
According to the number of publications about electrochemical biosensors over the recent years, we
can also declare that electrochemical biosensing technology is one of the most promising techniques
within the field of foodborne pathogen detection.

3. Detection of Foodborne Pathogens Using Electrochemical Biosensing Techniques

In recent years, an increasing number of researchers focused on the detection of foodborne
pathogens using electrochemical biosensing techniques. Therefore, in this review we summarize
recent developments of electrochemical biosensors used to detect common foodborne pathogens.
The detection methods, materials used and performance of electrochemical biosensors for foodborne
pathogens are shown in Table 1.

3.1. Escherichia coli

Escherichia coli (E. coli) was discovered by Escherich in 1885, and had been considered a
non-pathogenic bacterium and a normal part of gut flora for a long period of time [41]. Around the
middle of the 20th century, it was recognized that some special serotypes of E. coli were pathogenic to
humans and animals, especially to infants and young animals, and often cause severe diarrhea and
sepsis [42]. Human are likely to be infected with E. coli by drinking contaminated water or eating
unripe foods (especially beef, burgers and roast beef). In addition, a person whose hygiene is poor
may be infected by human transmission, or by eating food contaminated with feces [43,44]. Therefore,
detection of E. coli in our diet is vital for our health.

The reports of electrochemical biosensors for detection of E. coli are plentiful in foodborne
pathogens [45]. As early as 2003, R. Mikkelsen et al. [46] have published screen-printed sensor arrays for
the rapid determination of four E. coli subspecies (E. coli B, E. coli Neotype, E. coli JM105 and E. coli HB101).
DNA biosensors are an effective means for detection of E. coli. For example, DNA nanopyramids were
used by Leong et al. [47] to anchor E. coli lipopolysaccharides, lysate, and whole bacteria. Huang et al.
constructed a simple, label-free, and low-cost electrochemical biosensor for highly sensitive detection
of E. coli, based on rolling circle amplification (RCA) coupled with peroxidase-mimicking DNA enzyme
amplification. The E. coli could specifically bind to the G-quadruplex units in an aptamer-primer probe,
which leads to the formation of numerous G-quadruplex oligomers on electrode. Owing to the K+ and
hemin on the electrode, the G-quadruplex/hemin complexes were able to generate extremely strong
catalytic activity toward H2O2, and then strong electrochemical response could be detected. Recently,
Ranjbar et al. prepared polyanilinated amino-functionalized metal–organic frameworks (MOFs) to
link amine-modified DNA aptamer by glutaraldehyde (GA). The fabricated biocomposite was used to
capture E. coli O157:H7 and methylene blue (MB) as electrochemical indicators in differential pulse
voltammetry detection.

Label-free electrochemical biosensors also were developed for detection of E. coli. Using graphene
wrapped copper(II)-assisted cysteine hierarchical structure (rGO-CysCu), Malhotra et al. [48] fabricated
an immune-electrode which realized that E. coli O157: H7 cells could be differentiated from the
non-pathogenic E. coli and other bacterial cells. Another label-free electrochemical biosensor was
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developed by Wang et al. [49] based on a novel 3D Ag nanoflower. The [Fe(CN)6]3−/4− was used as the
redox probe to detect the resistance changes when E. coli O157:H7 was captured by the biosensor.

Furthermore, as shown in Figure 2, Nugen et al. [50] tactfully used T7 bacteriophages engineered
with lacZ operon to infect E. coli and trigger the overexpression of beta-galactosidase (β-gal). The β-gal
would catalyze the 4-aminophenyl-β-galactopyranoside (PAPG) as a substrate and release the
electroactive species paminophenol, which could be detected by electrochemical method. Tan et al. [51]
introduced amino groups by decorating the surfaces of CdS@ZIF-8 muti-core-shell particles through
polyethyleneimine, in order to absorb the anti-E. coli O157:H7 antibody. The Cd(II) ions would release
from CdS@ZIF-8 after the target was captured, and then the current could be detected by differential
pulse voltammetry.
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Figure 2. Scheme representation of electrochemical detection of E. coli using engineered phage. (a) The
designed construct of genome of T7lacZ phage. (b) Specific capture and infection of E. coli by T7lacZ
phage resulted in the release and overexpression of enzyme β-gal. PAPG was catalyzed by β-gal into an
electroactive species PAP that can be quantified by electrochemical device. Reprinted with permission
from [50]. Copyright (2017) American Chemical Society.

3.2. Vibrio cholerae

Vibrio cholerae is the pathogen of human cholera which is one of the ancient and widespread
epidemic diseases. Vibrio cholerae has caused many pandemics in the world, mainly characterized by
severe vomiting, diarrhea, water loss, and high mortality [52–54]. Therefore, it belongs to international
quarantine classifications of infectious diseases.

The first Vibrio cholerae electrochemical biosensor was developed by Rao et al. [55] based on
disposable screen-printed electrodes (SPE) to adsorb the polyclonal antibodies (PAb) of Vibrio cholerae.
When bacterial cells bound to the surface of electrode, the antibodies conjugated to alkaline phosphatase
(ALP), as the enzyme tracer catalyzed 1-naphtyl phosphate as its substrate, and then gave an electroactive
product which could be detected via an amperometric method. This amperometric biosenor was
further applied to study spiked water samples detecting as few as 8 CFU mL−1 in sea water and
80 CFU mL−1 in tap water through an enrichment step [56]. A similar amperometric biosensor for the
detection of Vibrio cholerae was described by Doblin et al. using a biotinylated PAb, immobilized on
neutravidine modified surface of SPE [57]. A one-step label-free biosensor for V. cholerae detection was
developed using antibodies covalently immobilized on a CeO2 nanowire-modified microelectrode to
capture the targets. The resulting biosensor was detected by impedance analysis with [Fe(CN)6]3−/4−

as the redox probe [58].
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3.3. Bacillus cereus

Bacillus cereus (B. cereus), a species of the genus Bacillus, has close contact with humans and can
cause food poisoning [59]. Many foods, especially leftovers that have been improperly refrigerated,
can cause this type of diarrhea [60,61]. The symptoms caused by Bacillus cereus are abdominal pain,
vomiting and diarrhea which are very similar to that caused by Clostridium perfringens [62,63]. Moreover,
it is more difficult to distinguish from other short-term symptoms caused by deterioration (such
as those caused by Staphylococcus aureus) [64,65]. So, developing an accurate detection method of
Bacillus cereus in our food is quite significant.

A B. cereus electrochemical biosensor based on DNA-based Au nanoparticle modified pencil
graphite electrode (PGE) was developed by Soleimanian-Zad et al. [66]. The target was captured by
the sensing element comprisinggold nano-particles (GNPs) self-assembled with single-stranded DNA
of nheA gene immobilized with thiol linker on the GNPs-modified PGE. The researchers also detected
the bacteria in milk and infant formula, which showed that the biosensor was suitable for food safety
and quality control applications [13]. Liang et al. [67] published a novel B. cereus electrochemical sensor
using monoclonal antibodies of B. cereus immobilized on double-layer gold nanoparticles to capture
the target, and chitosan was used to link the sensing element with GCE. The sensor displayed a fast
detection response, long-term stability and high sensitivity to bacterial contamination. A label-free
electrochemical biosensor for Bacillus anthracis spores was fabricated by Amine et al. [68] using pyrrole
to modify the electrode and [Fe(CN)6]3−/4− as redox probe.

3.4. Staphylococcus aureus

Staphylococcus aureus (S. aureus) is a typical gram-positive bacterium which could lead to serious
purulent infection in human beings, causing pneumonia, pseudomembranous colitis, pericarditis,
and even systemic infections such as sepsis [69–71]. Food poisoning caused by Staphylococcus aureus
enterotoxin accounts for between 33% and 45% of all bacterial food poisoning in the United States and
Canada, respectively [65,72]. There are also numerous poisoning incidents in China [73–76].

M. Pingarro’n et al. [77] developed an amperometric biosensor for the quantification of S. aureus
based on rabbit immunoglobulin (RbIgG) immobilized onto the 3-mercaptopropionic acid (MPA)
modified electrode. Using the competitive effect between protein A-bearing S. aureus cells and
anti-RbIgG labeled with horseradish peroxidase (HRP), the prepared biosensor realized the detection of
S. aureus in semi-skimmed milk. Subsequently, the research group reported other two electrochemical
biosensors for S. aureus detection. One is an improvement of previous work which used covalent
immobilization for anti-RbIgG at SAM modified gold electrodes by 3, 3′- Dithiodipropionic acid di
(N-succinimidyl ester) (DTSP) [78]. Another work took advantage of the MPA-SAM gold electrode
modified by RbIgG and tyrosinase [79].

Wei et al. [80] reported an electrochemical sensor for S. aureus detection using single-stranded
DNA as aptamer linked to reduced graphene oxide-gold nanoparticles (rGO-AuNP) nanocomposite
by impedance spectroscopy. Mansour et al. [81] also detected S. aureus by impedance spectroscopy
through monitoring the change of resistance before and after the S. aureus, recognized by anti-S. aureus,
immobilized on gold electrode using ferri-/ferrocyanide as redox probe. The developed biosensor was
further used to detect stressed and resuscitated pathogens. Recently, a low-cost screen-printed electrode
was applied to build an S. aureus biosensor by Connolly et al. [82] using impedance spectroscopy.
The targets were incubated in chambers containing the electrodes, and the results analyzed through
a novel approach. Impedance spectroscopy provides a label-free method; however, its detection
limit is still not low enough compared to other electrochemical biosensors. Methicillin-resistant
S. aureus collected from patient nasal swabs was captured and detected using a microfluidic device
and antibody-functionalized magnetic nanoparticles. As displayed in Figure 3, the identification of
S. aureus is realized by the use of a strain-specific antibody functionalized with alkaline phosphatase
for electrochemical detection [83].
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release a large amount of gas, which results in severe emphysema of the tissue and affects the supply 
of blood, ultimately causing a large area of tissue necrosis. The bacterial was named of C. perfringens 
also due to the bacteria can form a capsule in the body [84]. 

The detection of clostridium perfringens by electrochemical method is mainly owing to its DNA. Pu 
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Figure 3. Bacterial capture and electrochemical detection. (A) Schematic of bacterial capture device
fabricated in PDMS. (B) Flow profile of capture device simulated on COMSOL Multiphysics. X-shaped
features create areas of reduced flow velocity. (C) Photograph of bacterial capture device filled
with dye in the absence, and presence of, an array of external magnets (above and below images,
respectively). Scale is 10 mm. (D) Filtered nasal swab specimen is incubated with anti-PBP2a MNPs for
1 h. The solution is then processed with the device, where magnetically-labeled bacteria are captured
in areas of low flow velocity. After wash steps, anti-S. aureus antibodies functionalized with ALP are
introduced into the device and washed. (E) The substrate p-APP is introduced to the device, where it is
converted to electrochemically active p-AP by ALP. p-AP is oxidized to quinonimine at a potential of
10 mV against a gold reference electrode. (F) Schematic (left) and photograph (right) of electrochemical
detector chip. A PDMS channel allows simple transfer of electrochemical readout solution from the
capture device. Detection utilizes on-chip working and reference gold electrodes and an external Pt
counter electrode. Scale is 10 mm. (G) Differential pulse voltammogram displaying signal from p-APP
(blue) and p-AP (red). The measured current correlates to number of captured bacteria. Reprinted with
permission from [83]. Copyright (2019) American Chemical Society.

3.5. Clostridium Perfringens

Clostridium perfringens (C. perfringens) is the most common type of Clostridium in clinically genital
gangrene pathogens. C. perfringens can break down sugar in muscle and connective tissue and then
release a large amount of gas, which results in severe emphysema of the tissue and affects the supply
of blood, ultimately causing a large area of tissue necrosis. The bacterial was named of C. perfringens
also due to the bacteria can form a capsule in the body [84].

The detection of clostridium perfringens by electrochemical method is mainly owing to its DNA.
Pu et al. [85] published an electrochemiluminescence sensor for detection of DNA of C. perfringens using
RCA, like the work of Huang et al. [86]. This research team reported another Clostridium perfringens
DNA biosensor based on screen-printed electrodes in the same year [64]. They used the stable hairpin
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form of the initial molecular beacon, which will open after incubating with target DNA, and then the
streptavidin aptamer is reactivated. The electrochemical signal of DPV could be detected by “sandwich”
reaction. Recently, Wang et al. [87] described an electrochemical biosensor for the detection of DNA of
C. perfringens based on CeO2/chitosan-modified electrodes by monitoring the changes of impedance.

3.6. Simultaneous Detection of Multiple Foodborne Pathogens

There seems to be a trend of developing the electrochemical biosensor for the simultaneous
and multiple detection of biologically pathogens [88]. A multi-junction sensor was constructed
for potential multiplexed detection of E. coli and S. aureus based on a 2 × 2 junction array formed
with gold tungsten wires on single walled carbon nanotube and polyethylenimine. The detection
time is rapid and the LODs for E. coli and S. aureus were 10 µL and 100 µL, respectively [89].
Li et al. [57] developed a sandwich-type electrochemical biosensor based on Au/GCP for simultaneous
ultrasensitive detection of E. coli O157:H7 and Vibrio cholerae O1. The detection antibodies specific for
E. coli O157:H7 and Vibrio cholerae O1 were labeled by CdS and PbS nanoparticles via C60@AuNPs
as nanocarriers and HCR amplification, respectively. The antibodies used for capture pathogens
were linked to streptavidin-coated magnetic beads (MB@SA). The prepared biosensor displayed
excellent performance and this method could be expanded readily for detecting other pathogenic
bacteria and would be of great value for future applications in food safety. Furthermore, Ai et al. [90]
built an efficient electrochemical disinfection for E. coli and S. aureus in drinking water based on
ferrocene–PAMAM–multi-walled carbon nanotubes–chitosan nanocomposite modified pyrolytic
graphite electrode. When applying a potential of 0.4 V for 10 min, almost all pathogens were killed,
demonstrating that they provided a valid electrochemical method for the disinfection of pathogens.



Micromachines 2019, 10, 222 8 of 15

Table 1. Biosensors for the detection of foodborne pathogens.

Analyst Detection Type Materials Performance Reference

E. coli Amperometric screen-printed electrode Rapid determination of four E. coli subspecies
Assay time: approximately 2 min [46]

E. coli Amperometric DNA nanopyramids Linear range: 1–102 CFU/mL
LOD: 1.20 CFU/mL

[47]

E. coli Amperometric G-quadruplex/hemin/Gold electrode Linear range: 9.4–9.4 × 105 CFU/mL
LOD: 8 CFU/mL

[86]

E. coli Impedimetric rGO-CysCu/Gold electrode
Linear range: 100–108 CFU/mL

LOD: 3.8 CFU/mL
Assay time: > 1 h

[48]

E. coli Impedimetric BSA-conjugated 3D Ag nanoflowers Linear range: 3.0 × 102–3.0 × 108 CFU/mL
LOD: 100 CFU/mL

[49]

E. coli Amperometric T7lacZ phages/PAGE 105 CFU/mL in 3 h and 102 CFU/mL after 7 h [50]

E. coli Amperometric CdS@ZIF-8 particles
Linear range: 10–108 CFU/mL

Assay time: < 3 h
LOD: 3 CFU/mL (S/N=3)

[51]

Vibrio cholerae Amperometric ALP/screen-printed electrodes LOD: 105 cells/mL
Assay time: < 55 min

[55]

Vibrio cholerae Amperometric screen-printed electrodes 8 CFU/mL in sea water, 80 CFU/mL sewer water and tap water
Assay time: 55 min [56]

Vibrio cholera Amperometric Biotinylated-PAb/ SPE LOD: 4 × 102 cells/mL
Assay time: < 1 h

[57]

Vibrio cholerae Impedimetric CeO2 nanowire-modified
microelectrode Linear range: 1.0 × 102–1.0 × 104 CFU/mL [58]

B. cereus Impedimetric GNPs-sDNA-(nheA)/PGE Sensitivity: 100 CFU/mL
LOD: 9.4 × 10−12 mol/L

[66]

B. cereus Amperometric GNPs-Chit-GCE Linear range: 5.0 × 101 to 5.0 × 104 CFU/mL
LOD: 10.0 CFU/mL (S/N = 3)

[67]

B. cereus Potentiometric CPE/SIP Linear range: 102–105 CFU/mL [68]

S. aureus Amperometric HRP-MPA/gold electrode LOD: 1.6 × 105 cells/mL [77]
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Table 1. Cont.

Analyst Detection Type Materials Performance Reference

S. aureus Amperometric HRP-DTSP-/Screen-printed electrodes
Linear range: 1.3 × 103–7.6 × 104 cells/mL

LOD: 3.7 × 102 cells/mL
Assay time: approximately 30 min

[78]

S. aureus Amperometric AP-MPA/gold electrode
Linear range: 4.4 × 105–1.8 × 107 cells/mL

LOD: 1.7 × 105 cells/mL
Assay time: approximately 25 min

[79]

S. aureus Impedimetric Aptamer/rGO-AuNP/GCE
Linear range:10–106 CFU/mL

LOD: 10 CFU/mL (S/N=3)
Assay time: < 1 h

[80]

S. aureus Impedimetric MPA/gold electrode Linear range: 101–107 CFU/mL
LOD: 10 CFU/mL

[81]

S. aureus Impedimetric screen printed electrode Linear range: 3.6 × 107–9.3 × 107 CFU/mL
Assay time: approximately 30 min

[82]

DNA of C. perfringens Electrochemiluminescence gold electrode (rolling circle
amplification)

LOD: 10−15 M
Assay time: approximately 1 h

[85]

DNA of C. perfringens Amperometric SA/ADH/Fe3O4 nanocomposites Linear range: 10−12–10−6 M
Assay time: same as PCR

[64]

C. perfringens Impedimetric CeO2/chitosan/GCE Linear range: 1.0 × 10−14–1.0 × 10−7 mol/L
LOD: 7.06 × 10−15 mol/L

[87]

CPE: carbon paste electrode; SIP: spore-imprinted polymer; HRP: horseradish peroxidase; MPA: 3-mercaptopropionic acid; ADH: alcohol dehydrogenase.
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4. Conclusions and Perspective

Although some traditional methods for detection of foodborne pathogens are sensitive, most of
them are also time-consuming (a few days to a week), which limit their practical application. Therefore,
developing new methods to detect foodborne pathogens is necessary. Electrochemical biosensing
technology has been maturely applied to the rapid determination of pathogens through exploration
and development.

Electrochemical biosensors based on nucleic acid or aptamer displayed high sensitivity and
low detection limit, however the stability and accuracy should be improved. The electrochemical
biosensor based on the combination between antigen and antibody is a big family of biosensors used
for the detection of pathogens. These biosensors have high accuracy, but the detection limit is not low
enough, especially the biosensors based on the sandwiched principle. The tendency for electrochemical
biosensors of pathogens is that multiple pathogens were detected simultaneously. In summary, there is
room for further improvement for the detection methods for food pathogens. A rapid, sensitive and
low-cost detection method for foodborne pathogens has a huge market prospect. Given the demand
and preponderance of electrochemical sensing, there is still a great chance for further developments in
the detection of food pathogens in the near future.
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