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Abstract: In this study, 48 inhibitors were docked to 107 allosteric centers of human immunodeficiency
virus 1 (HIV-1) reverse transcriptase from the Protein Data Bank (PDB). Based on the average binding
scores, quantitative structure-activity relationship (QSAR) equations were constructed in order to
elucidate directions of further development in the design of inhibitors. Such developments, informed
by structural data, must have a focus on activity against mutated forms of the enzyme, which are the
cause of the emergence of multidrug-resistant viral strains. Docking studies employed the HYDE
scoring function. Two types of QSARs have been considered: One based on topological descriptors
and the other on structural fragments of the inhibitors. Both methods gave similar results, indicating
substructures favoring binding to mutated forms of the enzyme.
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1. Introduction

Approximately 77 million people have become infected with human immunodeficiency virus-1
(HIV-1) since the first cases were reported in 1981 [1]. By the end of 2016, the World Health Organization
estimated that approximately 36.7 million people were currently living with HIV-1 infection, including
1.8 million newly infected people in 2016 [2]. Over the past two decades, significant advances have
been mounted to address the epidemic and significant progress has been made. However, because of
toxicity, the rapid emergence of resistance, detrimental side effects caused by long-term drug treatment
and issues associated with drug tolerability, there remains a need for new antiviral agents [3,4].

Due to well-characterized mechanisms of action and abundant structure information, reverse
transcriptase (RT)—one of three essential enzymes encoded in the HIV-1 genome—represents
a successful target for chemotherapeutic intervention [5,6]. RT inhibitors may be divided into
nucleoside/nucleotide RT inhibitors (NRTIs/NtRTIs) and non-nucleoside RT inhibitors (NNRTIs) [7].
These inhibitors are widely used in highly active antiretroviral therapy (HAART) regimens, owing to
their potent activity, high selectivity, and favorable pharmacokinetics [8]. NNRTIs in particular act by
disrupting the normal functions of RT via binding to the NNRTI binding pocket (NNIBP), close to the
polymerase active site [7]. So far, six NNRTIs have been licensed for use [9]. Nevirapine, delavirdine,
and efavirenz are the first-generation NNRTIs with high potency [10]. However, central nervous
system side effects, hepatotoxicity, poor resistance profile and low genetic barriers for viral resistance
are the major treatment-limiting factors in their clinical application [9,11]. In particular, single mutants
K103N, Y181C and double mutation K103N/Y181C are prevalent in clinical HIV-1 isolates [12,13]. Even
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in naive patients, low frequencies of these mutant variants can lead to an increased risk of virologic
failure [14].

In an effort to develop novel NNRTIs with improved antidrug resistance profiles, two other
drugs—i.e., etravirine and rilpivirine—have been approved by the U.S. Food and Drug Administration
(FDA) and European Union in 2008 and 2011, respectively [15]. As their mechanism of action is
different from the first-generation NNRTIs, they are called the second-generation NNRTIs. Both of
these drugs are diarylpyrimidine derivatives, the group of heterocycles that resembles pyrimidine
nucleosides found in DNA [16]. Their conformational flexibility (along with the plasticity of the
binding sites of RT) give them a very high potency and are reportedly less likely to generate resistance
compared to other NNRTIs [17,18]. However, both etravirine and rilpivirine suffer from poor solubility.
Etravirine is practically insoluble in water over physiological pH, leading to a daily dosage of 400 mg
due to extensive formulation work, while rilpivirine is hardly dissolved in water, making it display
an atypical absorption mechanism involving aggregates. Moreover, it was found that only about
one-third of patients could retain full susceptibility to the two diarylpyrimidine drugs; for etravirine,
36.5%; for rilpivirine, 27.3% [19]. In addition, etravirine shows severe side-effects, such as peripheral
neuropathy, skin rashes, and hepatotoxicity, and was even listed as a “dangerous drug” by the U.S.
FDA in 2008. Finally, NNRTI resistance-associated mutations are still observed in patients receiving
second-generation NNRTIs regimens [3,20]. Furthermore, when resistance to rilpivirine is selected after
virologic failure, broad cross-resistance profiles against almost all of the NNRTI drugs is commonly
observed [3,21–30]. Thus, it is still urgently needed to identify novel NNRTIs with high potency against
resistance mutations, improved water solubility and favorable safety profiles.

We have addressed this problem recently using computational methods that included a quantitative
structure-activity relationship (QSAR) model based on average binding scores of 48 inhibitors and
structural information of 107 allosteric centers of HIV-1 reverse transcriptase. In the present contribution,
we extend our studies to the newer scoring function HYDE that proved very successful in docking
studies [31]. Additionally, in the quest for elucidation of directions of further development in the
design of inhibitors for mutated forms of the enzyme, we constructed QSAR equations based on
descriptors and substructures for the wild type enzyme and for its mutants.

2. Results and Discussion

The procedure used in docking followed that previously reported for the FlexX scoring function [32].
In short, 48 ligands were docked to the allosteric cavity of 107 HIV-1 RT enzymes (available from the
PDB [33]), and an average binding score for a given ligand was obtained separately for the wild type
(wt) and mutated enzyme. Poses (Table 1) were inspected for correct orientation within the cavity.
Average binding scores obtained for the wt and mutated enzymes were then compared. As illustrated
in Figure 1, binding of either the wt enzyme or its mutated forms was generally random and did
not correlate with the calculated binding energy. This observation indicates that activity against
mutated forms of the enzyme is not governed by the strength of binding. A sole exception to the above
observation is the result obtained for the DJZ ligand, which binds to the mutated forms of HIV-1 RT
much stronger than to its wt structures.
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Figure 1. The signed difference in averaged HYDE score between binding to wild type enzyme vs. 
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Table 1. Averaged HYDE docking scores for all ligands docked to wild type (wt) and mutated human 
immunodeficiency virus 1 (HIV-1) reverse transcriptase structures. 

Ligand wt Mutants Ligand wt Mutants 
1BT -34.1152 -30.4307 HBY -38.4728 -36.3343 
5DV -36.2861 -36.4489 IL5 -17.1507 -16.2802 
ETR -29.5144 -26.6089 IB1 -28.9966 -27.5694 
AAP -27.0837 -24.194 IET -28.7788 -29.569 
AC -8.23919 -7.69253 JLJ -33.4534 -33.9484 

ADB -24.4548 -23.5214 KBT -32.7463 -33.5286 
BML -41.6980 -41.3882 KRL -16.9556 -17.6174 
CXD -29.3032 -26.394 KRP -27.2074 -30.5539 
DIZ -26.8585 -35.3463 KRV -25.1656 -24.7641 
EFZ -33.4729 -35.689 MRX -24.3403 -22.6474 
EUR -30.4311 -28.8389 NNB -31.9689 -33.4506 
FPT -27.5513 -29.8596 NNC -30.8118 -32.6434 
FTC -26.3065 -21.4942 NNI -33.5227 -32.9436 
G73 -32.4751 -34.9394 NVE -37.7553 -39.4643 
GFA -38.0480 -39.3134 NVP -25.9061 -25.3768 
GWB -38.2004 -39.4685 RPV -7.04157 -6.83753 
GWE -39.0764 -39.6241 TNK -31.9944 -33.5303 
GWI -21.5385 -23.9688 TT1 -41.0422 -38.9757 
GWJ -26.2591 -29.3954 UCL -40.5484 -38.9499 
H12 -44.1400 -42.9899 UDR -40.3172 -36.4783 
H16 -48.2483 -46.4841 WHU -29.9227 -45.0533 
H18 -48.4723 -47.8513 YKN -30.7327 -25.5981 
H20 -46.5444 -43.7552 ZZE -29.7661 -28.8066 
HBQ -41.6605 -42.4763 QO9 -7.04157 -6.83753 

Ligands that bind to the allosteric site impair enzyme action by a wedge mechanism; they hinder 
domain mobility, opening and closing access to the active site. Final allosteric site architecture is 
achieved upon binding of the ligand. This flexibility and the possible clash between protein and 
ligand was accounted for by using a large overlap volume (100 Å3). Lack of systematic differences 
between binding to the wt versus the mutated enzyme indicates that activity against mutants is 
connected with the structural features of the ligand, rather than the energy of their binding. 
Interactions within the allosteric site are mostly associated with van der Waals forces and, to a lesser 
extent, hydrogen bonding [33]. Ligand H18 exhibited the strongest binding to all forms of the 
enzyme, however, as mentioned above, it is a DJZ ligand that shows the largest change in binding 
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Figure 1. The signed difference in averaged HYDE score between binding to wild type enzyme vs.
binding to mutants as a function of the binding score.

Table 1. Averaged HYDE docking scores for all ligands docked to wild type (wt) and mutated human
immunodeficiency virus 1 (HIV-1) reverse transcriptase structures.

Ligand wt Mutants Ligand wt Mutants

1BT −34.1152 −30.4307 HBY −38.4728 −36.3343
5DV −36.2861 −36.4489 IL5 −17.1507 −16.2802
ETR −29.5144 −26.6089 IB1 −28.9966 −27.5694
AAP −27.0837 −24.194 IET −28.7788 −29.569
AC −8.23919 −7.69253 JLJ −33.4534 −33.9484

ADB −24.4548 −23.5214 KBT −32.7463 −33.5286
BML −41.6980 −41.3882 KRL −16.9556 −17.6174
CXD −29.3032 −26.394 KRP −27.2074 −30.5539
DIZ −26.8585 −35.3463 KRV −25.1656 −24.7641
EFZ −33.4729 −35.689 MRX −24.3403 −22.6474
EUR −30.4311 −28.8389 NNB −31.9689 −33.4506
FPT −27.5513 −29.8596 NNC −30.8118 −32.6434
FTC −26.3065 −21.4942 NNI −33.5227 −32.9436
G73 −32.4751 −34.9394 NVE −37.7553 −39.4643
GFA −38.0480 −39.3134 NVP −25.9061 −25.3768
GWB −38.2004 −39.4685 RPV −7.04157 −6.83753
GWE −39.0764 −39.6241 TNK −31.9944 −33.5303
GWI −21.5385 −23.9688 TT1 −41.0422 −38.9757
GWJ −26.2591 −29.3954 UCL −40.5484 −38.9499
H12 −44.1400 −42.9899 UDR −40.3172 −36.4783
H16 −48.2483 −46.4841 WHU −29.9227 −45.0533
H18 −48.4723 −47.8513 YKN −30.7327 −25.5981
H20 −46.5444 −43.7552 ZZE −29.7661 −28.8066
HBQ −41.6605 −42.4763 QO9 −7.04157 −6.83753

Ligands that bind to the allosteric site impair enzyme action by a wedge mechanism; they hinder
domain mobility, opening and closing access to the active site. Final allosteric site architecture is
achieved upon binding of the ligand. This flexibility and the possible clash between protein and ligand
was accounted for by using a large overlap volume (100 Å3). Lack of systematic differences between
binding to the wt versus the mutated enzyme indicates that activity against mutants is connected
with the structural features of the ligand, rather than the energy of their binding. Interactions within
the allosteric site are mostly associated with van der Waals forces and, to a lesser extent, hydrogen
bonding [33]. Ligand H18 exhibited the strongest binding to all forms of the enzyme, however, as
mentioned above, it is a DJZ ligand that shows the largest change in binding energy when moving
from the wt to the mutated enzymes. Its success seems to come from hydrogen bonding to lysine 101
rather than frequently mutated lysine 103. Furthermore, its orientation within the pocket is improved
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by a stronger and stiffer hydrogen bond from piperidine to histidine, compared to a water molecule,
and an additional hydrogen bond to the pyrimidine ring (compare panels of Figure 2).

Pharmaceuticals 2019, 12, 64 4 of 14 

 

energy when moving from the wt to the mutated enzymes. Its success seems to come from hydrogen 
bonding to lysine 101 rather than frequently mutated lysine 103. Furthermore, its orientation within 
the pocket is improved by a stronger and stiffer hydrogen bond from piperidine to histidine, 
compared to a water molecule, and an additional hydrogen bond to the pyrimidine ring (compare 
panels of Figure 2). 

A B C 

Figure 2. Binding of a DJZ ligand in allosteric pockets of A) a wt native enzyme (3m8q) and B) a 
K103N/Y181C mutant (Protein Data Bank [PDB] 3bgr). C) A 3D representation of B. 

The results obtained from docking were used in the QSAR studies. In order to understand the 
very general structural features affecting the binding affinity, two types of QSAR models were used. 
The first one was based on descriptors that had clear “chemical interpretation”, giving suggestions 
for composition and physico-chemical properties in the new compound design. In this approach, we 
used the algorithms and the library of descriptors implemented in the SCIGRESS Suite software [34]. 

The best relationships were identified for both enzyme types. In both cases, they included the 
same four descriptors out of 383 evaluated descriptors: 

HYDE score (wt) = 2234.2083 × carbonyl count/MW + 0.0295×hydrophobic dipole2 
+ 8.8541×ln(Nitrogen count) + 1006.2207×1.0/all bond count − 68.5158 

(1) 

and 
HYDE score (mutants) = 2130.1116 × carbonyl count/MW + 0.0232×hydrophobic 

dipole2 + 8.9709×ln(Nitrogen count) + 1152.9277×1.0/all bond count − 71.1491. (2) 

Both equations exhibited similar statistics characterized by an r2 equal to 0.8028 and 0.7817 for 
the wt and mutant enzyme, respectively, as well as a F-ratio of 41.7281 and 36.7059, respectively. The 
standard deviation in the error predicted by leave-one-out cross-validation and associated r2 were 
3.8481 and 0.7419 for wt enzyme and 4.0614 and 0.7604 for mutants, respectively, suggesting that the 
equations were stable enough to be used for predictions. The quality of predictions is also illustrated 
in Figures 3 and 4, in which the energies of binding predicted by the QSAR are plotted against the 
values obtained from docking (blue circles). Yellow points represent results obtained by leave-one-
out cross validation (CV). 

As may be seen, both relationships are very similar; an increase of numerical values of the 
descriptors leads to a decrease in the affinity. Relative weights of the normalized coefficients of the 
QSAR equations collected in Table 2 imply similar influence on the binding affinity for all four 
parameters. Physico-chemical interpretation of the descriptors suggests that the inhibitors should be 
large, uniformly hydrophobic, and they should have a small number of carboxyl groups and nitrogen 
atoms. 

Figure 2. Binding of a DJZ ligand in allosteric pockets of (A) a wt native enzyme (3m8q) and (B) a
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The results obtained from docking were used in the QSAR studies. In order to understand the
very general structural features affecting the binding affinity, two types of QSAR models were used.
The first one was based on descriptors that had clear “chemical interpretation”, giving suggestions for
composition and physico-chemical properties in the new compound design. In this approach, we used
the algorithms and the library of descriptors implemented in the SCIGRESS Suite software [34].

The best relationships were identified for both enzyme types. In both cases, they included the
same four descriptors out of 383 evaluated descriptors:

HYDE score (wt) = 2234.2083 × carbonyl count/MW + 0.0295 × hydrophobic dipole2

+ 8.8541 × ln(Nitrogen count) + 1006.2207 × 1.0/all bond count − 68.5158
(1)

and

HYDE score (mutants) = 2130.1116 × carbonyl count/MW + 0.0232 × hydrophobic
dipole2 + 8.9709 × ln(Nitrogen count) + 1152.9277 × 1.0/all bond count − 71.1491.

(2)

Both equations exhibited similar statistics characterized by an r2 equal to 0.8028 and 0.7817 for
the wt and mutant enzyme, respectively, as well as a F-ratio of 41.7281 and 36.7059, respectively. The
standard deviation in the error predicted by leave-one-out cross-validation and associated r2 were
3.8481 and 0.7419 for wt enzyme and 4.0614 and 0.7604 for mutants, respectively, suggesting that the
equations were stable enough to be used for predictions. The quality of predictions is also illustrated
in Figures 3 and 4, in which the energies of binding predicted by the QSAR are plotted against the
values obtained from docking (blue circles). Yellow points represent results obtained by leave-one-out
cross validation (CV).

As may be seen, both relationships are very similar; an increase of numerical values of the
descriptors leads to a decrease in the affinity. Relative weights of the normalized coefficients of
the QSAR equations collected in Table 2 imply similar influence on the binding affinity for all four
parameters. Physico-chemical interpretation of the descriptors suggests that the inhibitors should
be large, uniformly hydrophobic, and they should have a small number of carboxyl groups and
nitrogen atoms.
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Table 2. Relative weights of the descriptors for wild type and mutated HIV-reverse transcriptase (-RT).

Descriptor Normalized Coefficient (wt) Normalized Coefficient (mutants)

carbonyl count/MW 0.4412 0.4152
hydrophobic dipole2 0.5324 0.4130
ln (Nitrogen count) 1.0000 1.0000
1.0/all bond count 0.7695 0.8702

The second attempt aimed at creating a QSAR was based on a fragment contribution approach
using common substructures present in the training set. For this purpose, the ADMEWORKS
ModelBuilder was used [35,36]. Due to the size of the training set, sets of 6 descriptors were chosen,
as in our previous work [32]. The substructures contained in both sets are shown in Table 3.

The obtained r2 value of less than 70% in the leave-one-out cross-validation did not encourage
its use for direct prediction of the unknown compounds. Thus, it was rather the sign of the linear
regression equations weight coefficients that were considered. These are a measure of the influence of
a given substructure’s contribution to the overall activity; negative values indicate improvement in
binding, while positive values suggest that the corresponding substructures should be eliminated or
their presence minimized. The obtained results are summarized in Table 4, where substructures with
the positive contribution to binding are presented on a green background, while those which should
be avoided are distinguished by a red background.
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As illustrated by Figures 5 and 6, the quality of predictions is again very good. The exceptional
behavior of the DJZ inhibitor, noticed in docking results, is revealed by the significant difference
between the prediction based on the full set of studied compounds and that of the leave-one-out result
(point at -42.5 in Figure 6), suggesting its substantial difference in the mode of action or properties
from the rest of the inhibitors. Also in agreement with the descriptor-based approach was the finding
that the presence of both tertiary nitrogen atoms and aromatic rings should be minimized. A strong
positive component of substructure 3 that correlates with the overall size of the molecule was again
in line with the conclusion obtained from the 1/bond count descriptor in the relationship obtained
by SCIGRESS. Specific activity against mutations appeared to come from two specific substructures,
labeled 44 and 53 in Table 3. The presence of the carboxyl groups, on the other hand, appeared to lower
the binding activity of the inhibitors.

Table 3. Substructures used in fragment-based QSAR for wt and mutated enzyme
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3. Materials and Methods

In docking, 107 structures of HIV-1 reverse transcriptase with ligands bound in the allosteric site
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4ko0, 4puo, 4pwd, 4q0b, 5cym, 5cyq, and 5k14, out of which three structures (4puo, 4pwd, and 4q0b)
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ligands to both sites was studied. Furthermore, 32 structures of the mutated RT enzyme: 1bqn, 1fko,
1fkp, 1ikv, 1jkh, 1jla, 1jlc, 1jlg, 1lw0, 1lwc, 1lwe, 1lwf, 1s1t, 1s1u, 1s1v, 1s1w, 1s1x, 2hny, 2ic3. 2opq.
2opr, 2ops, 2ynf, 2ze2, 3bgr, 3dm2, 3dmj, 3dok, 3dol, 3med, 3meg, and 5fdl were studied, bearing
12 types of mutations, with the most dominant mutation being K103N followed by Y181C. The set
included six double mutations and one triple mutation. In the considered structures, 48 ligands were
present. They represented a number of different classes of chemicals. By far the most frequently
studied (25 entries) ligand was NVP. Codes and structures of the remaining ligands are presented in
Table 5. We have excluded the AC7 ligand from the QSAR studies because its polarized surface area
by far exceeded that of the other ligands. This could have potentially led to erroneous results as the
allosteric cavity is hydrophobic and the QO9 ligand, for example, contains silicon atoms, for which
there is no parametrization.

Docking was performed using the HYDE scoring function [37] as implemented in the LeadIT
software package [38]. The receptor was prepared using the graphical interface of the package. Both
protein chains were selected, and the binding site was defined to include residues within 6.5 Å radius
around the native ligand. A library of ligands was imported from the mol2 file. Protonation states
corresponding to the aqueous solution were used. Soft docking (allowing for volume overlap up to
100 Å3) was performed. For ligand base placement, the default hybrid Enthalpy and Entropy strategy
was used. The clash factor was set to 0.6. Default values were used for other parameters. Scores of the
top-ranked poses of each ligand were averaged for a given enzyme structure.

QSAR analysis was performed in two different modes. In both cases the training set included
46 structures, the end-point was the average docking score obtained from HYDE calculations after
exclusion of results for AC7 and QO9. The size of the data set was too small to allow for splitting it into
training and validation sets, so an internal leave-one-out cross-validation approach was chosen instead.

In the first approach, based on classical descriptors, several models were created using the
Complete Topological QSAR method and regression equation, created by feature selection with the
enhanced replacement method [ERM], as implemented in SCIGRESS Suite software [35]. In the second
approach, QSAR was based on molecular fragments contribution. The common substructures were
extracted from the training set. Altogether, the 96 most common fragments in all the dataset produced
by ModelBuilder’s extract substructures feature were used. The six most important features for each
enzyme type were selected using the particle swarm optimization algorithm, with 1000 individuals
run until convergence was observed (about 3000 iterations). The six most often used were selected as
descriptors. The final model was created by applying multiple linear regression.

Table 5. Structures of ligands used in studies.
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The major aim of the studies presented herein was the identification of features improving activities
of NNTRIs in general and in particular those specifically suited for the most common mutations of
HIV-1 RT. The interpretation of the results of the fragment-based QSAR led to similar conclusions
as those made for the topological QSAR: The presence of tertiary nitrogen atoms and nitriles should
be avoided, while large, uniformly hydrophobic molecules are preferable. The presence of carboxyl
groups appears to lower the binding affinity of the inhibitors to mutated forms of the enzyme, while
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