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The accurate quantitation of proteins and peptides in complex biological systems is one of themost challenging areas of proteomics.
Mass spectrometry-based approaches have forged significant in-roads allowing accurate and sensitive quantitation and the ability
to multiplex vastly complex samples through the application of robust bioinformatic tools. These relative and absolute quantitative
measures using label-free, tags, or stable isotope labelling have their own strengths and limitations.The continuous development of
these methods is vital for increasing reproducibility in the rapidly expanding application of quantitative proteomics in biomarker
discovery and validation. This paper provides a critical overview of the primary mass spectrometry-based quantitative approaches
and the current status of quantitative proteomics in biomedical research.

1. Introduction

Quantification in a proteomics setting relies on the ability
to detect small changes in protein and peptide abundance
in response to an altered state [1]. Differential analysis is
generated from LC-MS experiments and can be carried out
using both label and label-free approaches. For trace amounts
of proteins within complex proteomes such as plasma, tears,
and urine, no singular technique should be used as a stand-
alone guarantee of quantitative precision without hypothesis-
driven, targeted approaches. Enrichment and fractionation of
specific classes of protein is beneficial during the discovery
phase of a project, but because these methods can involve
numerous steps, they can become a limiting factor for
large scale validation. The variability introduced by multiple
methods prior to quantitative mass spectrometry should be
assessed, and it is paramount that protein measurements
reflect the authentic concentration in the original sample.The
development of methods for accurate protein quantitation is
one of the most challenging areas of proteomics.

Quantitative proteomics comes in two forms: absolute
and relative. Relative quantitation compares the levels of

a specific protein in different samples with results being
expressed as a relative fold change of protein abundance
[2]. Absolute quantitation is the determination of the exact
amount or mass concentration of a protein, for example, in
units of ng/mL of a plasma biomarker.

Traditional proteomic quantitation approaches rely on
high-resolution protein separation by 2D gels. The use of
dyes, fluorophores, or radioactivity to label proteins allows
visualization of spots/bandswith differential intensities [3, 4].
These methods facilitate relative abundance comparison but
require many replicates and intensive image analysis that
can often be quite user subjective. The simplicity of mass
spectrometry-based approaches addresses issues of repro-
ducibility [5] and poor representation of low-abundance [6],
low-mass, and basic proteins [7, 8], as well as the need for the
postdifferential identification by MS [3] as it is inherent in
the separation methods. MS-based methods have also come
into prominence compared to traditional antibody-based
methods due to their higher specificity, good reproducibility
and precision, and ability to rapidly analyse hundreds of
peptide transitions in one MRM assay [9]. Pragmatically, the
course of a biomarker project sees a number of quantitative
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Figure 1: Relationship between the peptide ion content and the
difficulty in obtaining sufficient MSMS information to both identify
and also quantitate those peptides. Adapted from Michalski et al.
[10] and Liu et al. [11].

techniques used from discovery-driven low-cost methods
such as relative and label-free quantitation to hypothesis-
driven quantitation using synthetic standards with compli-
mentary analysis of trends by alternative techniques such as
ELISA or Western blot. Here, we provide a critical overview
of the main MS-based quantitation approaches and outline
the advances and challenges of applying these techniques in
protein biomarker discovery and validation.

2. Quantitative Proteomics in
Biomarker Discovery

The ultimate aim of biomarker discovery is to develop a
simple differential test to be used as a clinical evaluation tool.
This requires a lengthy and difficult process which involves
candidate discovery, verification, validation, and translation
to clinical laboratory use [12, 13]. Current discovery studies
aim to detect disease-specific markers by analysing and
comparing healthy controls and disease-affected subjects
[14], and despite the discovery of increasing numbers of
potential markers, few have progressed to clinical practice
[15, 16]. Much of this dilemma is a reflection of the chal-
lenges associated with linking bench to clinic outcomes and
providing basic researchers with the opportunity to finance
and progress their science past the validation phase [12,
17]. The development of targeted, quantitative approaches
that provide accurate and statistically reliable quantitative
outcomes for multisite studies may provide a critical bridge
to establishing validity of individual or panels of biomarkers.

A challenge facing biomarker development is the sheer
complexity and range of concentrations within the human

proteome [12, 16]. Human plasma is estimated to contain
more than 10,000 core proteins [35], of which only small frac-
tions are effectively characterized with current technology
[36]. Proteins in plasma have a 1012-fold concentration range,
from millimolar for albumin, down to attomolar ranges, and
further for cytokines [35] and other proteins, hormones, and
peptides.This greatly exceeds the ability of current proteomic
approaches, which have linearity over∼3 orders ofmagnitude
[16].

Disease-specific proteins, including low-mass peptides,
can be low in abundance and difficult to detect amongst a
diverse “sea” of proteins [37]. Combined with the immense
extent of human and disease variation and the challenges fac-
ing the development of sensitive and specific differentiators,
developing these technologies to the clinic is a formidable
task. Discovery phase quantitative approaches entail the
differentiation of as many peptides as possible (rather than
the identification of all proteins) from LC-MS experiments
and is highly dependent on scan speed, sensitivity, and
ability to isolate precursor ions for selection to MS/MS [10].
Figure 1 shows the relationship between peptide ions and
quantitation and is adapted from Michalski et al. [10] and
Liu et al. [11]. This figure demonstrates the gap between
peptide content and ability to quantitate those peptides and
proteins comprehensively to provide quantitative coverage.
As instruments improve in these areas, there will be an
associated increase in depth of coverage and accuracy which
is required to discern the very small changes in abundance,
peptide modifications, and mass differences that delineate
a disease type or process. For targeted approaches, the use
of high-resolution instruments has the advantage of relying
on the mass accuracy to provide fewer transitions and
therefore being able to simultaneouslymonitormore peptides
within the one scheduled experiment. This should assist the
reliability and precision of targeted assays to unambiguously
identify the target peptide and avoid interfering transitions
particularly in complex biological matrices [38]. Indeed,
there is a growing consensus that panels of multiple biomark-
ers are more likely to achieve adequate clinical sensitivity and
specificity [12, 37, 39].

There are a number of novel techniques that allow for
the fractionation, depletion, enrichment, and equalisation
of complex samples to assist in improving the proteome
coverage and number of peptide ions targeted for MS/MS
within an instrument’s detection range. Fractionation tech-
niques can be applied to cut samples into subgroups of fewer
proteins [15] and are most commonly in the form of (gel)
electrophoresis and liquid chromatography (LC), techniques
which exploit a variety of physicochemical properties of
proteins to fractionate proteomes [7]. To reduce protein
concentration variability, high-abundance proteins such as
albumin can be removed from plasma samples through
immunodepletion.There is, however, a risk of codepletion of
potentially significant biomarkers due to nonspecific binding
or loss of biomarkers bound to higher-abundance carrier
proteins [40–42].These techniques in combination effectively
allow the detection of trace proteins [7, 15, 16]. However,
any additional manipulation during the sample processing
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can introduce preanalytical variables that cause changes
in quantitative peptide amounts [9]. While the previous
techniques can improve discovery of trace levels of candidate
protein biomarkers, extensive validation and standardization
of these steps will be required before they can be used for
direct clinical applications [9, 43].

Data analysis is yet another significant challenge associ-
ated withMS-based proteomics.With the enormous volumes
of proteomic data generated, expertmanual analysis would be
inconsistent and unfeasible [44]. Thus, bioinformatics tools
are crucial in the determination of which proteins and pep-
tides emerge as candidate biomarkers from discovery studies
and the interpretation of quantitative data [9, 45]. There
is a need for sophisticated yet transparent computational
methods and algorithms to allow for consistent analysis and
interpretation of proteomic data using statistical principles
[45]. The development and validation of such tools is a
critical part in the process of developing quality standards
for MS experiments and, hence, generating reproducible and
accurate data.

3. Strengths and Limitations of
Mass Spectrometry-Based
Quantitative Approaches

Protein mass spectrometry is not inherently quantitative.
There aremany reasons as to why the amount of analyte com-
pared to theMS signal intensity does not always show a linear
relationship [3, 44]. Because of this, accurate comparisons
between two samples must be based on the same individual
peptide in LC-MS/MS experiments conducted under the
same conditions [4], particularly for absolute quantitation.
Table 1 presents an overview of the technical parameters
of the main quantitative approaches, their strengths and
limitations.

3.1. Label-Free Approaches. Two widely used label-free quan-
titative methods are spectral counting and peptide peak
intensity measurement. Spectral counting requires proteins
to have sufficient peptides (both in number and abundance)
to trigger MS/MS data for quantification and identifica-
tion. The approach is based on the observation that more
abundant proteins will produce more MS/MS spectra than
less abundant proteins, and abundant peptides are sampled
more often in fragment ion scans than are low abundance
peptides. Relative quantitation by spectral count thus involves
comparing the number of identified spectra from the same
protein between different samples [54]. Spectral counting is a
protein-centric approach that is less reliable for trace and/or
low mass proteins; and less responsive toward small changes
in response (<2 orders of magnitude) [11, 55], favoring higher
abundance “average” proteins [2], while lower identification
rates for proteins with low sequence coverage and nontryptic
or fewer peptides are a consequence of the methods used
for identification as much as the dynamic range of the
sample and the limited duty cycle of the MS instrument
[56]. This approach has been modified into forms such as

the exponentiallymodified protein abundance index [57] and
absolute protein expression profiling [58].

Relative quantitation using peptide peak intensity mea-
surements involves comparing the MS peptide ion intensities
belonging to a given protein [59]. The ion chromatograms
for every peptide are extracted from an LC-MS run, and
their peak areas are integrated over the chromatographic time
scale. These values can be compared to respective values
in other experiments for relative quantitation, and only the
same ion species can be compared between different samples.
Hence, this approach requiresmultiple replicates and correla-
tion of retention time with m/z ion features and charge state
to avoid discrepancy in matching common ions detected in
each run. The coverage of common ions between different
samples is strongly dependent on sample preparation and can
be severely affected by column conditions, instrument sensi-
tivity, and calibration. These variables are pronounced when
running long-term projects where analysis is carried out
over weeks to months and can introduce approximately 40%
discrepancy at the peptide level [4]. Label-free techniques
have been performed in many studies and are promising
alternatives to stable isotope labeling. They are fast, easy to
perform, and inexpensive, and they allow higher dynamic
range [3]. Furthermore, any soluble biological material can
be used, and unlimited numbers of samples can be compared
[4].

3.2. Stable Isotope Labelling. Stable isotope labelling tech-
niques are based on the introduction of a differential mass
tagwhich affects only themass of a protein or peptidewithout
changing the chemical properties during chromatography or
MS [2]. Relative or absolute quantitation can be achieved by
using MS to compare the abundance of a labeled “heavy”
(known concentration) against the endogenous “light” iso-
forms [60]. Stable isotope labels are introducedmetabolically
or chemically at either the protein or peptide level during
sample preparation.

Metabolic labelling involves the introduction of stable
isotopes to whole cells through the growth medium, which
enables the labels to be incorporated during normal cell
growth and division [61]. Differently labelled samples can
be pooled together for subsequent preparation which avoids
variability of sample preparation. However, this method is
not applicable to samples that are not metabolically active
such as plasma [2]. While the original 15N labelling can only
compare two samples in one experiment, high-throughput
quantitation was developed in the form of stable isotope
labelling by amino acids (SILAC) [62]. SILAC incorporates
heavy and light forms of arginine or lysine in vivo and
also combines light and heavy samples prior to sample
preparation to significantly reduce sample handling and thus
quantitative errors, allowing very small changes in protein
levels as well as protein modifications to be detected.

In chemical labelling, the isotope label is introduced to
proteins or peptides by a chemical reaction, such as with
isotope-coded affinity tags (ICAT) [63] and isotope-coded
protein labels (ICPL) [64]. ICAT labels specifically bind
to cysteine, a relatively rare amino acid, which effectively



6 International Journal of Proteomics

Table 2: Recent quantitative MS-based studies involving human samples.

Authors/year Specimen Quantitative
approach

Sample
preparation Outcomes

Yang et al. 2011 [46]
Urine
54 bladder cancer patients,
46 controls

Label-free—
spectral
count

NIL
Quantified 265 glycoproteins.
alpha-1-antitrypsin, 74% sensitivity and 80%
specificity for bladder cancer patients.

Quintana et al.
2009 [47]

Urine
39 patients kidney chronic
allograft dysfunction, 32
controls

Label-free—peak
peptide intensity

SCX using
magnetic beads

Peptides from uromodulin and kininogen
significantly elevated in control compared to
CAD patients.

Hanas et al. 2008
[48]

Serum
13 pancreatic
adenocarcinoma patients,
12 healthy controls

Label-free—peak
peptide intensity NIL

Quantified 20 low-mass serum peaks.
Bootstrap analysis showed peaks could
differentiate cancer from control sera with
95% accuracy.

Xue et al. 2010 [49]

Cell lysates
Primary and lymph node
metastatic cell lines. 1
patient.

Label-free—peak
peptide intensity NIL

145 differential proteins. Western blot and
ROC curve analysis confirmed that 2
specific proteins could predict colorectal
cancer metastasis.

Besson et al. 2011
[50]

Colorectal cancer tissue
28 colorectal frozen tissue
samples

Stable isotope
labeling—iTRAQ

Peptide
OFFGEL

fractionation

555 proteins with significant fold change
between different cancer stages. Identified a
candidate with increased abundance in
adenomas and early stage colorectal cancer.

Bondar et al. 2007
[51]

Serum
6 healthy male, 20
nonmalignant prostate
biopsy patients, 26
malignant prostate cancer
patients

Stable isotope
labeling NIL

Higher abundance of Zn-𝛼2 glycoprotein
(ZAG) in prostate cancer patients than
nonmalignant prostate disease patients and
healthy controls.

Chaerkady et al.
2008 [52]

Liver tissue
55 samples of
hepatocellular carcinoma,
20 samples of adjacent
noncancer tissues

Stable isotope
labeling—iTRAQ SCX

59 proteins increased in abundant, 92
proteins were less abundant in HCC
compared to normal tissue. 12 proteins
further validated using
immunohistochemical labeling.

Dayon et al. 2008
[53]

Cerebrospinal fluid
4 postmortem CSF
patients, 4 antemortem
CSF from living healthy
controls

Stable isotope
labeling—tandem
mass tag isobaric

labeling

Immunoaffinity
depletion of 6
most abundant
proteins and

SCX

78 proteins more abundant in postmortem
samples compared to antemortem.

reduces sample complexity but also limits its use since it
cannot track proteins that lack cysteine residues [2]. Another
limitation of ICAT is that only two samples can be compared
in a single analysis.

The development of isobaric mass tags such as tandem
mass tag (TMT) [77] and isobaric tags for relative and abso-
lute quantification (iTRAQ) [78] allows for the comparison of
up to eight samples in parallel [79, 80]. iTRAQ involves the
introduction of mass-balanced labels at the level of tryptic
peptides which produce labelled peptides of the same total
mass that coelute in liquid chromatography. The different
mass tags are differentiated by the mass spectrometer only
upon peptide fragmentation [81]. Despite having disadvan-
tages such as variability in labelling efficiencies and protein
digestion [2], TMTand iTRAQare favourable for quantitative
biomarker discovery due to their ability to multiplex up to

eight samples [82]. A summary of some recent projects is
demonstrated in Table 2 and shows the variety of techniques
applied for quantitation.

3.3. Multiple Reaction Monitoring. Multiple reaction mon-
itoring (MRM) is the main current approach for highly
confident protein and peptide quantification. MRM targets
specific peptides in complex samples by typically using
a triple quadrupole mass spectrometer or hybrid triple
quadrupole/linear ion trap mass spectrometer. These instru-
ments have two mass filters that can select a predefined
peptide ion and a combination of its specific fragment ions
to analyse and monitor over time for accurate quantitation
[2, 83]. Combinations of peptide mass and product ion
masses create a unique signature for a particular peptide with
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increase in confidence, the more parent and product masses
that are detected.

Absolute quantitation can be achieved when MRM is
incorporated with isotopically labelled synthetic peptide
internal standards, which are designed to be identical to
target peptides [84]. For MRM using synthetic internal
standards, known concentrations of heavy synthetic peptides
are spiked into the sample, and the concentration of the target
native peptide can be calculated by measuring the observed
MRM response against a standard curve normalised by the
internal heavy spike [3, 83].

MRM has a greater sensitivity towards low abundance
peptides and relatively good quantitative precision compared
to other methods discussed [85]. It is capable of detecting
attomole concentrations of peptides across a dynamic range
of up to 105 [66, 86]. The main challenge of MRM absolute
quantitation is the need for suitable internal standards to be
synthesized for each target peptide. Furthermore, absolute
MRM quantitation only measures the abundance of individ-
ual peptides and makes assumptions on the concentration
of the whole protein. Therefore, biomarkers detected and
quantified using MRM must be validated using multiple
peptides from the same protein (challenging for biofluids)
and additional technology to confirm the existence of the
actual protein [2]. MRM remains peptide-centric for many
biomarker studies.

MRM has been used to quantify major plasma proteins
and target biomarkers for a range of diseases. Table 3 lists
recent studies conducted using plasma and serum for MRM-
based approaches with some quantitation achieving atto-
molar levels of detection of peptides in one of the most
complex human samples available. The MRM approach can
also be used for relative quantitation without the use of stable
isotopes [87]. A recent multi-site study has confirmed the
reproducibility and sensitivity ofMRM-based quantitation of
plasma proteins [88]. MRM therefore holds great potential to
be applied as a specific platform for validation of candidate
biomarkers in systematic quantitative studies of clinically
relevant peptides.

Further instrument developments have taken advantage
of the high resolution and mass accuracy of the TOF and
orbitrap analysers and combined them with the selectivity of
the quad analysers by replacing the third quad with either an
orbitrap or a TOF analyser. These high resolution/accurate
mass (HR/AM) instruments are addressing the challenge of
eliminating cofiltering interfering ions, while taking advan-
tage of the accuracy afforded by these instruments. In exper-
iments similar to MRM called parallel reaction monitoring
(PRM), it is possible to detect all product ions of a peptide
in parallel rather than just few transitions per peptide. This
allows an increased number of peptides to be quantitated
in the one experiment. This combination of analysers firstly
uses the quadrupole to select a restricted m/z range (with
broad mass filtering window typically 2–100Th, rather than
broad scan of around 700Th), and theMS/MSmode provides
further selectivity and accuracy utilizing the orbitrap or TOF
analyser to achieve higher resolution and mass accuracy in
both MS and MS/MS scanning modes [89]. A reduced mass
filter window as low as 0.2Th allows reliable discrimination

of targeted ions and increased sensitivity <1 ppm and mass
accuracy [90].These instruments are advancing the reliability
and accuracy of quantitative proteomics and are just the
beginning to a new era in quantitation that will provide
inherent quantitative sampling of all peptides and their
product ions in highly complex samples.

4. Postdiscovery Validation Phase Platforms

The use of multiparametric assays is becoming an increasing
necessity in quantitative studies to overcome a variety of chal-
lenges associated with properties of the marker and/or the
techniques including immobilisation efficiencies, detection,
signal-to-noise [91]. Proteomic-based quantitation of poten-
tial biomarkers requires further validation using orthogonal
techniques. This is required for both verification as much
as for the routine measurement in clinical investigations
[12, 13]. The gold standard for validation experiments is by
enzyme-linked immunosorbent assays (ELISA). However,
alternative techniques such asWestern blot, fluorescent bead,
chip immunoassay arrays, or Surface Plasmon Resonance
(SPR) are also commonly used [91, 92]. Validation by any of
these techniques is to complement the onerous requirements
for clinical assays: high-throughput, high measurement pre-
cision (coefficients of variation of less than 10%) and sufficient
sensitivity [92]. The recent developments in multiplexed
protein immunoassays such as lateral flow immunoassays
and miniaturized microassays [93] hold great promise in
advancing panels of biomarkers developed from MS-based
proteomics research towards clinical applications. In addition
to these orthogonal approaches, parallel validation tech-
niques involving Stable Isotope Standards and Capture by
Antipeptide Antibodies (SISCAPA) [94] may also be bene-
ficial.

5. Conclusion

Quantitative proteomic analysis has been a point of dis-
cussion for the last four decades, with comparative and
once limited MS-based techniques heralding the advances
that would forge the necessary connection between the
dynamic biology of a system and its quantitative proteomic
content. The major advances in quantitative MS proteomics
have been exceptionally demonstrated over the last decade
with the introduction of compatible and reliable label and
label-free techniques. These advances now require further
developments in bioinformatics and downstream validation,
technologies that are required to make sense of complex data
and enable researchers to infermoremeaningful data thatwill
transform into clinical benefit for years to come.
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