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Abstract – Mosquitoes transmit several agents of diseases and the presence of different species represents a threat to
animal and public health. Aedes and Culex mosquitoes are of particular concern giving their potential vector compe-
tence for Arbovirus transmission. In Morocco, the lack of detailed information related to their spatial distribution raises
major concerns and hampers effective vector surveillance and control. Using maximum entropy (Maxent) modeling,
we generated prediction models for the potential distribution of Arboviruses vectors (Aedes aegypti, Ae. vexans,
Ae. caspius, Ae. detritus, and Culex pipiens) in Morocco, under current climatic conditions. Also, we investigated
the habitat suitability for the potential occurrence and establishment of Ae. albopictus and Ae. vittatus recorded only
once in the country. Prediction models for these last two species were generated considering occurrence datasets from
close countries of the Mediterranean Basin, where Ae. albopictus is well established, and from a worldwide database
for the case of Ae. vittatus (model transferability). With the exception of Ae. vittatus, the results identify potential habi-
tat suitability in Morocco for all mosquitos considered. Existing areas with maximum risk of establishment and high
potential distribution were mainly located in the northwestern and central parts of Morocco. Our results essentially
underline the assumption that Ae. albopictus, if not quickly controlled, might find suitable habitats and has the potential
to become established, especially in the northwest of the country. These findings may help to better understand the
potential distribution of each species and enhance surveillance efforts in areas identified as high risk.
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Résumé – Modélisation et cartographie de l’aptitude de l’habitat et de la distribution potentielle des vecteurs
d’Arbovirus au Maroc. Les moustiques transmettent plusieurs agents de maladies et la présence de différentes espèces
représente une menace pour la santé animale et publique. Les moustiques Aedes et Culex sont particulièrement
préoccupants compte tenu de leur compétence de vecteur potentiel pour la transmission des Arbovirus. Au Maroc,
le manque d’informations détaillées relatives à leur répartition spatiale soulève des préoccupations majeures et
entrave une surveillance et un contrôle efficaces des vecteurs. En utilisant la modélisation de l’entropie maximale
(Maxent), nous avons généré des modèles de prédiction pour la distribution potentielle des vecteurs d’Arbovirus
(Aedes aegypti, Ae. vexans, Ae. caspius, Ae. detritus et Culex pipiens) au Maroc, dans les conditions climatiques
actuelles. De plus, nous avons étudié l’adéquation de l’habitat pour l’occurrence et l’établissement potentiels
d’Ae. albopictus et Ae. vittatus signalés une seule fois dans le pays. Des modèles de prévision pour ces deux
dernières espèces ont été générés en tenant compte des ensembles de données d’occurrence des pays voisins du
bassin méditerranéen, où Ae. albopictus est bien établi et provient d’une base de données mondiale pour le cas
d’Ae. vittatus (transférabilité du modèle). À l’exception d’Ae. vittatus, les résultats identifient la pertinence
potentielle de l’habitat au Maroc pour tous les moustiques considérés. Les zones existantes présentant un risque
maximal d’établissement et une distribution à fort potentiel étaient principalement situées dans le nord-ouest et le
centre du Maroc. Nos résultats soulignent essentiellement l’hypothèse qu’Ae. albopictus, s’il n’est pas rapidement
contrôlé, pourrait trouver des habitats convenables et a le potentiel de s’établir, en particulier dans le nord-ouest du
pays. Ces résultats peuvent aider à mieux comprendre la répartition potentielle de chaque espèce et à renforcer les
efforts de surveillance dans les zones identifiées comme à haut risque.
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Introduction

Over the past few years, arboviruses (arthropod-borne
viruses) have (re)emerged at an alarming rate, posing a signif-
icant health threat to millions of people worldwide [128].
Dengue virus epidemics (DENV) are responsible for about
50–100 million infections each year [72], Chikungunya virus
(CHIKV) is still ongoing periodically since the mid-2000s
[123], West Nile virus (WNV) was first introduced to the Uni-
ted States in 1999 and rapidly spread and became endemic
throughout North America [131], and most recently Zika virus
(ZIKV) quickly spread all over the Western Hemisphere [91]
and was declared a Public Health Emergency of International
Concern in 2016 [153]. All serve as examples of how explosive
and unpredictable arboviral infections outbreaks could be.

Many arboviruses vectored by mosquitoes (Diptera:
Culicidae) have expanded their geographic range and managed
to achieve greater expansion in areas where they did not exist
before. Human movement, global trade, climate change, and
availability of susceptible mosquito vectors has increased the
introduction of diseases to populations that otherwise would
have been safely out of reach [35, 88]. In Morocco, as for
the majority of North Africa and Middle East countries, the epi-
demiological situation of arboviruses remains poorly or even
uncharacterized [61]. Anopheles species, vectors of malaria,
have always been the most studied in Morocco [10, 25, 63,
74–76, 110], while other genera such as Aedes and Culex
remained poorly studied and characterized. Detailed informa-
tion related to their spatial distribution is scarce, scattered,
and rather inaccurate, which hampers effective surveillance
and control, especially for the ones representing significant pub-
lic health threats and listed among Culicidae of Morocco or
Africa–Mediterranean [141, 142]. This is completely true for
the case of Aedes aegypti (Linnaeus, 1762), Aedes albopictus
(Skuse, 1895), Aedes vittatus (Bigot, 1861), Aedes vexans
(Meigen, 1830), Aedes caspius (Pallas, 1771), Aedes detritus
(Haliday, 1833) and Culex pipiens (Linnaeus, 1758), known
to be potentially vector competent for Arbovirus transmission
(Table 1).

Recently, ecological niche modeling has been used inten-
sively as the best tool with which to assess, quantify and char-
acterize the risk of mosquitoes’ potential distribution in a
defined locality, by relating observed occurrence to environ-
mental data [43, 88]. The approach can provide reliable results
even for species with scarce occurrence records [119].

In the context of preventing arbovirus outbreak expansion,
knowledge of Ae. aegypti and Ae. albopictus potential distribu-
tion, using ecological niche modeling, has already been shown
to help predict the spread of viruses transmitted, such as chikun-
gunya, dengue, and Zika viruses, at both regional and interna-
tional scales [18, 24, 89]. The work of Kraemer et al. [88] is the
best example of the importance of emphasizing the potential
threat of vector spread and availability on anticipating arbo-
viruses transmission, especially after the Zika virus emerged
in Brazil within a few months of this study’s publication
[153].

In the present study, we generated prediction models for the
potential distribution of Ae. aegypti, Ae. vexans, Ae. caspius,
Ae. detritus and Cx. pipiens in Morocco. Also, we estimated

and evaluated the habitat suitability for the potential occurrence
and establishment of Ae. albopictus and Ae. vittatus, recorded
only once in the country. The results produced herein should
be considered as a starting point to target and enhance surveil-
lance efforts in areas identified as high risk.

Materials and methods

Mosquito records

From the Culicidae of Morocco database, tracing back the
history of mosquitos in the country from 1916 to 2017, we
extracted 9 geo-positioned points for Ae. aegypti and
Ae. vexans, 59 for Ae. caspius, 53 for Ae. detritus, and 257
for Cx. pipiens [140]. Dataset records for Ae. albopictus and
Ae. vittatus were obtained from the Global Biodiversity Infor-
mation Facility (https://www.gbif.org) and the worldwide data-
base compiled by Kraemer et al. [68, 88, 90]. The downloaded
dataset for each species was separately filtered by excluding
records with missing latitude or longitude and duplicate records
sharing the same coordinates [117]. Over 1550 observed points
of Ae. albopictus were retained for predictions from close coun-
tries of the Mediterranean Basin, where Ae. albopictus is well
established and was suspected to be the source of the identified
population collected in Morocco in 2016 [17]. For Ae. vittatus,
429 assembled points were retained and used for predictions at
a global scale, given that the species was recorded only once in
Morocco without any detailed information regarding its geolo-
cation [141, 142] and also given the scarce occurrence records
on the species presence at the regional scale. During model
training, the final records were randomly split 20 times into
training and testing data in a proportion of 70:30.

Environmental predictor variables

Any living species can only achieve and maintain its life
cycle within a limited range of environmental characteristics.
For mosquitos, temperature and precipitation are the most
important factors that condition their survival and geographical
distribution. Thus, to characterize the current climate condi-
tions, we used data from WorldClim (version 1.4, https://www.
worldclim.org). This includes altitude and 19 bioclimatic vari-
ables, representing 50 years (1950–2000) of monthly derived
temperature and precipitation data, collected from weather
stations all over the world at 1 � 1 km (30 arc sec) spatial
resolution (Table 2).

To select an optimal variable set, a prior modeling test was
performed with all of the 20 environmental variables, so as to
get a general overview of the variables contributing most to
each modeled species. Briefly, the approach consists of running
multiple models and each time excluding variables that con-
tribute less or are less informative by comparing model perfor-
mance with and without the considered variable, which
markedly decreases when excluding variables with important
contributions and vice versa [84]. To determine the contribution
of environmental variables, the Jackknife test option in Maxent
was applied [121]. Variables were then submitted to statistical
analysis for covariation and collinearity investigation (S1 file
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and S2 file) using Pearson’s correlation function available in
ENMTools package under R system [151, 152]. Variables con-
tributing less with higher correlation (|r| < 0.7) to the ones of
highest contribution were omitted from the prediction [64]. This
process was repeated until left with a set of uncorrelated vari-
ables that all had a model contribution [84, 93], which were
then used for final predictions (Table 3).

Species distribution modeling

The modeling was carried out using Maxent (Maximum
Entropy) software version 3.4.1, which uses an optimization
procedure comparing species presence (from occurrence
records) with environment characteristics, based on the maxi-
mum entropy principle [121]. This machine-learning algorithm,
designed to be performed with presence-only record data, has
recently gained direct use in various field applications for spe-
cies distribution modeling, with hundreds of peer-reviewed

articles published each year [114]. As the literature recom-
mends, we avoided relying only on the default automatic con-
figuration of Maxent, given increasing debate regarding its use
as a black-box, which may not always generate the best results
[126, 135]. For each modeled species, we tested a combination
of different features (linear, quadratic, product, threshold, and
hinge), regularizations multiplier, and used cross-validation to
select the optimal settings (S3 file). The Akaike information cri-
terion (AICc) was used to select the optimal combination (the
one with minimal AICc value) using NicheA software version
3.0 [93, 125]. Given the lack of occurrence records in some
areas, the lack of detailed information on each species distribu-
tion range, and the non-availability of absence data, we created
a bias file used to fine-tune background and occurrence point
selection in Maxent. For this, we restricted background sam-
pling to a maximum radial distance of no more than 5 km from
observation points, using SDMtoolbox [29]. We ran 20 repli-
cates in Maxent for each model and used the mean values to
summarize the model predictions results.

Table 1. Overview of the medical importance of certain mosquitos tracked in Morocco.

Species Period of record in
Morocco

Number of
times

Reference Arboviruses transmitted Reference

Ae. aegypti 1916–1997 9 [8, 39, 67, 78, 149] Zika virus (ZIKV) [47, 65, 71, 92, 103, 129]
Chikungunya virus (CHIKV) [38, 45, 102]

Dengue virus (DENV) [9]
Mayaro virus (MAYV) [86]
Uganda S virus (UGSV) [83]
Yellow fever virus (YFV) [95]

Ae. albopictus 2016 1 [17] Zika virus (ZIKV) [41, 96, 137]
Chikungunya virus (CHIKV) [134]

Dengue virus (DENV) [32]
Japanese Encephalitis virus (JEV) [48]
Rift Valley fever virus (RVFV) [33]

Usutu virus (USUV) [124]
West Nile virus (WNV) [34]
Yellow fever virus (YFV) [6, 7]

Ae. vittatus 1916 1 [67] Zika virus (ZIKV) [50, 51]
Chikungunya virus (CHIKV) [49]

Dengue virus (DENV) [105]
Yellow fever virus (YFV) [70]

Ae. vexans 1947–2016 9 [57, 66, 78, 79, 109] Zika virus (ZIKV) [58, 69]
Rift Valley fever virus (RVFV) [112]

St. Louis Encephalitis virus (SLEV) [77]
Tahyna virus (TAHV) [107]
West Nile virus (WNV) [62]

Ae. caspius 1946–2010 59 [57, 150] Sindbis virus (SINV) [98]
Tahyna virus (TAHV) [122]
Usutu virus (USUV) [44]

Rift Valley fever virus (RVFV) [139, 145]
West Nile virus (WNV) [59, 116]

Ae. detritus 1924–2007 53 [39, 81] Zika virus (ZIKV) [22]
Chikungunya virus (CHIKV) [146]
Japanese Encephalitis (JEV) [101]

Rift Valley fever virus (RVFV) [97, 139]
West Nile virus (WNV) [21]

Cx. pipiens 1916–2013 257 [8, 56] Tahyna virus (TAHV) [98]
Japanese Encephalitis virus (JEV) [127]
Rift Valley fever virus (RVFV) [5]

Sindbis virus (SINV) [99]
Usutu virus (USUV) [36]

West Nile virus (WNV) [106]
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Modeling evaluation

Model performance was evaluated using the partial receiver
operating characteristic (pROC) approach, in addition to the
area under the curve (AUC). Partial ROC represents a more
suitable indicator of statistical significance and allows a better
assessment of the niche model predictive ability [120], consid-
ering only omission error and proportional area predicted as
suitable, and only over a range of omission error deemed
acceptable in light of error characteristics of the input data
[136]. AUC measures can be misleading and may reflect model
accuracy poorly. It weights omission and commission errors
equally, does not give information about the spatial distribution
of model errors, and summarizes the entire ROC curve, includ-
ing regions that frequently are not relevant to practical applica-
tions [94, 100]. In a partial ROC test, the statistical significance
is determined by bootstrap resampling of 50% of testing data,
and probabilities are assessed by direct count of the proportion
of bootstrap replicates for which the AUC ratio is �1.0 [42].
Occurrence datasets and obtained maps were subjected to over
1000 bootstrap iteration analyses, each based on 50% random
points resampling, with replacement, and with an omission
error threshold of 1% (p < 0.01). The pROC statistics test
was used using the pROC function available in the
NicheToolBox package under R system [118].

Results

Modeled habitat suitability

According to AUC measurement (Table 4), all generated
models performed well with AUC values exceeding 0.9 (aver-
age over 20 runs) and performed significantly better than ran-
dom expectations based on the partial ROC test (p < 0.01).
Maxent predicted widespread environmental suitability for
Ae. aegypti (Fig. 1 and S4 file) and Ae. vexans (Fig. 2, and
S5 file) across the country. Areas with the highest risk of poten-
tial distribution are essentially located in central parts. Aedes
albopictus probable risk of occurrence (Fig. 3, S6 file, and S7
file) seems to be highly relevant in areas of the northwest, while
the rest of the country was found to be probably unsuitable for
establishment. The environmental conditions in Morocco (up to
half of the country’s surface area) seem to fit the potential dis-
tribution requirement of Ae. caspius (Fig. 4 and S8 file) and
Cx. Pipiens (Fig. 5 and S9 file). Areas classified as highly suit-
able were primarily located in the center and the northern parts.
Moroccan littorals, especially in the north, were modeled at
high risk of Ae. detritus probable spreading (Fig. 6 and S10
file). For Ae. vittatus, the environmental conditions in Morocco
seem to be currently unsuitable for potential distribution of this
species (Fig. 7, S11 file and S12 file).

Table 2. Summary of the environmental variables downloaded.

Environmental
variable layers

Signification Units Resolution Reference

Spatial (km) Temporal

Altitude Elevation above sea level m ~1 � 1 – WorldClima

BIO1 Annual mean temperature �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO2 Mean diurnal range (mean of monthly

(max temp – min temp))
�C ~1 � 1 Monthly, 1950–2000 WorldClim

BIO3 Isothermality (BIO2/BIO7) (� 100) % ~1 � 1 Monthly, 1950–2000 WorldClim
BIO4 Temperature seasonality (standard deviation � 100) % ~1 � 1 Monthly, 1950–2000 WorldClim
BIO5 Max temperature of warmest month �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO6 Min temperature of coldest month �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO7 Temperature annual range (BIO5–BIO6) �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO8 Mean temperature of wettest quarter �C ~1 � 1 km Monthly, 1950–2000 WorldClim
BIO9 Mean temperature of driest quarter �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO10 Mean temperature of warmest quarter �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO11 Mean temperature of coldest quarter �C ~1 � 1 Monthly, 1950–2000 WorldClim
BIO12 Annual precipitation mm ~1 � 1 Monthly, 1950–2000 WorldClim
BIO13 Precipitation of wettest month mm ~1 � 1 Monthly, 1950–2000 WorldClim
BIO14 Precipitation of driest month mm ~1 � 1 Monthly, 1950–2000 WorldClim
BIO15 Precipitation seasonality (coefficient of variation) % ~1 � 1 Monthly, 1950–2000 WorldClim
BIO16 Precipitation of wettest quarter mm ~1 � 1 Monthly, 1950–2000 WorldClim
BIO17 Precipitation of driest quarter mm ~1 � 1 Monthly, 1950–2000 WorldClim
BIO18 Precipitation of warmest quarter mm ~1 � 1 Monthly, 1950–2000 WorldClim
BIO19 Precipitation of coldest quarter mm ~1 � 1 Monthly, 1950–2000 WorldClim

a http://www.diva-gis.org/climate.

Table 3. Correlation matrix of the bioclimatic variables retained for prediction.

BIO1 BIO10 BIO11 BIO12

BIO1 1 0.225 0.248 0.520
BIO10 0.225 1 0.375 �0.200
BIO11 0.248 0.375 1 0.242
BIO12 0.520 �0.200 0.242 1
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Variable importance

By investigating the relative contribution of the bioclimatic
variables used, we were able to identify which of the variables
most influences the predictions (Table 5). The mean tempera-
ture of the coldest quarter (BIO11) was the most informed vari-
able for Ae. detritus, Ae. caspius and Cx. pipiens potential
distribution, followed by the annual mean temperature (BIO1)
as the second most contributing. In the case of Ae. vittatus
and Ae. aegypti, BIO1 appears to provide the most useful infor-
mation contributing with 43.9% and 47.4%, respectively. Con-
cerning Ae. albopictus and Ae. vexans potential prediction, the
mean temperature of the warmest quarter (BIO10) was yielded
as the most dependent variable.

The one-variable response curves

The one-variable response curve generated by Maxent is a
powerful tool that helps define the modeled habitat suitability
requirement for the species considered, depending on only
one variable each time (Fig. 8). In terms of successful establish-
ment thresholds, Ae. aegypti is modeled to find suitable condi-
tions in areas where the annual mean temperature is below

25 �C (optimum from 5 �C to 10 �C) with annual precipitation
of at least 200 mm (optimum < 600 mm). A similar amount of
precipitation with a mean temperature of the warmest quarter of
no more than 25 �C (optimum from 10 �C to 17 �C) seems nec-
essary for successful establishment of Ae. vexans in the country.
In the case of Ae. albopictus, areas with mean temperature of
the warmest quarter ranging from 17 �C to 27 �C and annual
mean temperature of 11–20 �C were modeled as suitable. Aedes
vittatus is modeled to be potentially present in regions with an
annual mean temperature and a mean temperature of the coldest
quarter ranging from 20 �C to 30 �C. For Ae. detritus, Ae.
caspius and Cx. Pipiens predicted distribution, it seems to
highly depend on mean temperature of the coldest quarter
and annual mean temperature ranging from 10 �C to 20 �C.

Discussion

In the present study, we generated prediction models for
the potential distribution of the well-known disease vectors
Ae. aegypti, Ae. vexans, Ae. caspius, Ae. detritus, and
Cx. pipiens in Morocco. Also, we estimated and evaluated the
habitat suitability for the potential occurrence and establishment

Table 4. Area under the curve (AUC) values and partial receiver operating characteristic (pROC) ratios summarizing the performance of
ecological niche models (average over 20 runs).

Species Mean AUC* Bootstrap iterations pROC ratio

Minimum Maximum Mean Median p < 0.01

Ae. aegypti 0.924 ± 0.035 1000 1.77 2.00 1.88 1.87 0***
Ae. albopictus 0.961 ± 0.002 1000 1.89 1.94 1.92 1.92 0***
Ae. vexans 0.945 ± 0.023 1000 1.81 2.00 1.90 1.90 0***
Ae. vittatus 0.951 ± 0.013 1000 1.74 1.75 1.74 1.74 0***
Ae. caspius 0.988 ± 0.006 1000 1.64 1.88 1.68 1.65 0***
Ae. detritus 0.993 ± 0.003 1000 1.75 1.96 1.80 1.76 0***
Cx. pipiens 0.984 ± 0.001 1000 1.41 1.70 1.60 1.62 0***

* 0.5 (random) < AUC < 1 (perfect).
*** Highly significant.

Figure 1. Predicted probability of Ae. aegypti occurrence in
Morocco.

Figure 2. Predicted probability of Ae. vexans occurrence in
Morocco.
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of Ae. albopictus and Ae. vittatus, recorded only once in the
country.

Knowledge of the current distribution of these mosquito
species can be of great value in identifying the areas at risk
of probable associated arboviruses expansion. Specifically, the
habitat suitability map generated herein can help predict where
these species could become established. Also, to focus attention
on areas where surveillance could be prioritized, especially
where entomological reporting remains poor or where the vec-
tor is currently present but has yet to fulfill its potential funda-
mental niche.

With the exception of Ae. vittatus, a species in which the
current environmental conditions in the country were modeled
unsuitable, the north and central parts of Morocco appeared to
be the areas at high risk. Importantly, they were modeled suit-
able for six species out of seven (Ae. aegypti, Ae. vexans,
Ae. caspius, Cx. pipiens, Ae. detritus, and Ae. albopictus).
For the southern parts, it seems that conditions might be cur-
rently suitable for potential distribution of only Ae. aegypti
and Ae. vexans.

Figure 5. Predicted distribution of Cx. pipiens in Morocco.

Figure 6. Predicted distribution of Ae. detritus in Morocco.

Figure 7. Predicted probability of Ae. vittatus occurrence in
Morocco.

Figure 3. Predicted probability of Ae. albopictus occurrence in
Morocco.

Figure 4. Predicted distribution of Ae. caspius in Morocco.
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Overall, the risk of establishment of mosquitoes in the
country can be classified into two main categories: species with
high (Ae. aegypti, Ae. vexans, Cx. pipiens, Ae. caspius,
Ae. detritus, and Ae. albopictus) and low (Ae. vittatus) probabil-
ity of establishment. This difference in their potential distribu-
tion may reflect unique environmental requirements for each
species such as larval habitat.

The minimum temperature or the mean temperature of the
coldest quarter were identified as critical factors determining
the presence of Ae. aegypti in multiple studies [52, 87].

Temperatures ranging from 4 �C to 10 �C were estimated to
be the minimum temperature threshold for Ae. aegypti [143].
This is consistent with our findings as Maxent predicted suit-
able conditions in areas where the annual mean temperature
is below 25 �C. It is worth mentioning here that the model
developed for Ae. aegypti (Ae. vexans as well) using small sam-
ple sizes should be interpreted with caution as the prediction
only identifies regions that have similar environmental condi-
tions to the points used, and do not represent actual limits to
the range of the species [119]. For example, Ae. aegypti was

Table 5. Main contribution of the environmental variables used for modeling.

Environmental variable layers Permutation importance (%)

Ae. aegypti Ae. albopictus Ae. vexans Ae. vittatus Ae. detritus Ae. caspius Cx. pipiens

Annual mean temperature (BIO1) 43.9 25 4.2 47.4 20.6 29.2 35
Mean temperature of warmest quarter (BIO10) 17.9 31.2 76.6 9.3 9.3 7.3 15.6
Mean temperature of coldest quarter (BIO11) 1.8 23.3 3.5 35.1 67.5 49.8 47.6
Annual precipitation (BIO12) 36.3 20.6 15.6 8.2 2.5 13.7 1.8

Figure 8. Response curves (for most contributing variables) for the one-variable-models indicating the environmental limits for each vector.
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modeled to find suitable conditions in areas where the annual
mean temperature is below 25 �C (optimum from 5 �C to
10 �C), according to the one-variable response curve generated
by Maxent, an optimum which seems very low for a largely
non-temperate species. Aedes aegypti is usually known to be
tolerant to high temperatures and can be viable following expo-
sure to temperatures up to 40 �C [27], but cannot resist low tem-
peratures. Larval survival requires a temperature higher than
10 �C [144] and prolonged exposure of eggs to temperatures
below 10 �C has been fatal [40].

According to our prediction results, Ae. albopictus was
modeled to find suitable conditions in areas with a mean tem-
perature of the warmest quarter ranging from 17 �C to 27 �C
and annual mean temperature of 11–20 �C. This is completely
in accordance with the commonly known environmental limits
announced by the European Centre for Disease Prevention and
Control (ECDC), regarding the successful establishment thresh-
olds of this species in Europe. According to their findings,
Ae. albopictus could occur in locations where the mean annual
temperature exceeds 11 �C (required condition for mosquito
activity and survival), a summer temperature of 25–30 �C,
mean temperature of the coldest quarter >0 �C, and annual rain-
fall of at least 500 mm (pre-requisite for aquatic habitats avail-
ability and maintenance). However, reports also indicated that
this species can successfully establish under lower mean tem-
peratures (5–28.5 �C) and annual precipitation not exceeding
290 mm [54, 108].

Kraemer et al. [88] and Kamal et al. [85] were the first to
predict the global potential distribution of Ae. aegypti and
Ae. albopictus using ecological niche modeling. Accordingly,
the northwest Atlantic coast of the country was predicted at-risk
of Ae. aegypti and Ae. albopictus potential distribution, which is
consistent with our results. It is worth mentioning here that in
both studies no points were included from Morocco or North
Africa. In addition, our study placed other areas at risk of
Ae. aegypti distribution including southwestern Morocco where
no previous observed occurrence records were available. Either
the species exists here but is not yet documented or it is cur-
rently absent but the environmental conditions are suitable for
possible introduction in the future. Either way, these areas are
worth being intensively monitored as soon as possible, espe-
cially after the species has recently emerged in North Maurita-
nia and Egypt, after years of presumed absence [3, 113]. Of
note, the areas where the species was notified, in North Mauri-
tania and Egypt, share similar environmental conditions with
southern Morocco, according to the Köppen–Geiger Climate
Classification [14].

Aedes caspius, Cx. pipiens and Ae. detritus predicted distri-
bution in Morocco seems to highly depend on the mean temper-
ature of the coldest quarter and annual mean temperature
ranging from 10 to 20 �C. In Roiz et al. [132], a study evaluating
climatic effects on mosquito abundance in Mediterranean wet-
lands using long-term series of mosquito abundance data
(2003–2012), the mean temperature was positively related
to Cx. pipiens and Ochlerotatus caspius (Ae. caspius) abun-
dances. Also, Ewing et al. [60] demonstrated that increases in
mean annual temperature and amplitude of seasonal temperature
fluctuations will increase the abundance of temperate mosqui-
toes (Cx. pipiens) in the United Kingdom in the coming years.

Aedes caspius potential distribution showed high suitability
across the northwestern and northeastern sides of the country,
essentially at low altitudes. Aedes caspius is a species with a
very wide Palearctic distribution; it stretches from Europe to
central Asia, and from Egypt to Morocco [55, 130]. It is a very
well-represented species in the Mediterranean Basin, mainly
along the coast; it has been reported in Italy [147], Belgium
[26], France [13, 37], and Spain [73]. In Morocco, the species
was mainly collected in coastal and relatively more humid
regions. Suitable habitats for Ae. detritus are currently limited
to the northwestern part of the country, especially along the
coastline. Indeed, the species showed a similar distribution pat-
tern in Europe as it is found all over the European coastlines, e.g.
in the United Kingdom [23], Italy [104], Belgium [26], France
[28], and Spain [133]. It is a common Palearctic species that is
more abundant in southern and dry regions [15]. In North Africa,
the species has been detected in Egypt [1], Tunisia [16], Algeria
[111], etc. In Morocco Ae. detritus is very well represented on
the littoral zones, where it is found on a fairly regular strip from
Tangier to Tantan (the Atlantic coast), and on a less regular strip
from Tangier to Saïdia (the Mediterranean coast) [140]. Accord-
ing to our model predictions, up to half of the country’s surface
area seems to be suitable for Cx. pipiens potential distribution.
Areas classified as highly suitable were primarily located in
the central and the northern parts. Culex pipiens is a very com-
mon and ubiquitous species in Morocco, [2, 20]. In temperate
regions, particularly in the Mediterranean basin, Cx. pipiens is
recognized as one of the most widespread cosmopolitan species
[5, 30]. The species also dwells in the temperate regions of
Africa, Asia, Australia, Europe, North and South America [80].

Versteirt et al. [148] previously identified the current geo-
graphic distribution of Ae. caspius, Ae. detritus and Cx. pipiens
in Europe and countries surrounding the Mediterranean Basin,
including Morocco. According to their findings, Ae. caspius
and Ae. detritus are predicted with high probability on the
Atlantic coast of Morocco. By contrast, Cx. pipiens was pre-
dicted to be highly distributed in areas with more temperate cli-
matic conditions such as the Mediterranean Sea coastline north
of Morocco. Our models yielded similar results of habitat suit-
ability for Ae. caspius and Ae. detritus on the Atlantic coast and
Cx. pipiens on the Mediterranean Sea coastline but recognized
different distributional patterns across the rest of the country.
Reasons for such disagreement may be essentially the non-
appropriate choice of explanatory variables used for prediction
in their study: temperature and vegetation, annual amplitude of
night time temperature, variance in night time temperature, vari-
ance in the enhanced vegetation index, phase of the annual
night time temperature cycle, and maximum of the enhanced
vegetation index, which resulted in substantial underestimation
of habitat suitability. It is known that temperature and precipi-
tation are the most important factors that condition mosquito
survival and distribution, and predictions built with these vari-
ables usually produce more realistic results [31, 46, 82, 85, 88].

Aedes vexans is considered a nuisance species in central
Europe and the Mediterranean region [19]. The species is also
indigenous to North America as it is found throughout the
United States and southern Canada [115]. In North Africa,
the species has been detected in Mauritania, Algeria, Tunisia,
and Morocco [140, 141].
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Versteirt et al. [148] also identified the current geographic
distribution of Ae. vexans in Europe and the Mediterranean
Basin. Accordingly, Ae. vexans is predicted with a very low
probability in Morocco. Our model prediction yielded different
results of habitat suitability. Reasons for such disagreement
may be the non-appropriate choice of explanatory variables
used for prediction in their study (as previously discussed),
and also the absence of points used from Morocco or other
north African countries.

The current distribution of Ae. vittatus includes tropical and
subtropical areas in Asia and Africa. In Europe, the species is
restricted to the occidental Mediterranean region comprising
Italy, France, Spain, and Portugal [53, 138].

Giving the potential suitability of the country for the occur-
rence and distribution of Arboviruses vectors, there is an urgent
need to undertake and enhance periodic surveillance campaigns
in areas currently considered at high risk. This is particularly
important as it was demonstrated recently that Ae. albopictus
identified in Rabat in 2016 [17] is competent for not only Zika
virus transmission but also for many Arboviruses: Dengue,
Chikungunya, and Yellow fever viruses [4]. Moreover, multiple
cases of some imported arboviruses have been described
recently in Morocco, especially Dengue [11] and Chikungunya
[12]. With a suitable environment, viremic travelers caring
viruses, and the potential wild distribution of known competent
vectors, all key elements for potential outbreaks are present.

However, we cannot deny that there are some limits sur-
rounding our study, as the case with every study forecasting
habitat suitability or the potential distribution of any living spe-
cies (Ogden 2017). Specifically, the models emphasize climate
(e.g. macroclimate) as the key driver of mosquito distributions.
The suitable habitats are modeled based on the assumption that
there will not be any dispersed limitation encountered by the
species. The impact of biological interactions, such as the pres-
ence of potential competitors or predators in the new predicted
habitats, is also neglected in our models. Therefore, our predic-
tion is an ideal state and should be considered as a starting point
to target and enhance surveillance efforts in areas identified as
high risk.
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