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Abstract: Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine kinase
with a plethora of substrates. As a modulator of several cellular processes, GSK-3 has a central
position in cell metabolism and signaling, with important roles both in physiological and pathological
conditions. GSK-3 has been associated with a number of human disorders, such as neurodegenerative
diseases including Alzheimer’s disease (AD). GSK-3 contributes to the hyperphosphorylation of tau
protein, the main component of neurofibrillary tangles (NFTs), one of the hallmarks of AD. GSK-3 is
further involved in the regulation of different neuronal processes that are dysregulated during AD
pathogenesis, such as the generation of amyloid-β (Aβ) peptide or Aβ-induced cell death, axonal
transport, cholinergic function, and adult neurogenesis or synaptic function. In this review, we will
summarize recent data about GSK-3 involvement in these processes contributing to AD pathology,
mostly focusing on the crucial interplay between GSK-3 and tau protein. We further discuss the
current development of potential AD therapies targeting GSK-3 or GSK-3-phosphorylated tau.
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1. Introduction

Glycogen synthase kinase-3 (GSK-3) is a ubiquitous serine/threonine kinase initially
shown to phosphorylate and inhibit glycogen synthase [1]. GSK-3 has many substrates, in-
cluding metabolic proteins [2], transcription factors [3], translation factors [4] or cytoskeletal
proteins [5–7] present in different subcellular compartments.

GSK-3 is evolutionarily conserved in all eucaryotes examined to date [8–10]. There
are two highly similar GSK-3 isoforms in mammals, GSK-3α and GSK-3β [11,12], which
are known to act on different substrates [13]. GSK-3β is enriched in the brain and shows
increased levels during aging [14]. Moreover, alternative splicing of the GSK3β gene
in rodents [15] and humans [16–18] leads to a long form named GSK3β2. GSK-3β2 is
neuron-specific, with high expression during brain development that persists until adult-
hood [19,20].

GSK-3 has been traditionally considered a constitutively active kinase, with high
activity in resting cells, and inhibited by serine phosphorylation (Ser 21 in GSK-3α and
Ser 9 in GSK-3β), induced by numerous extracellular signals and mediated by different
ser/thr kinases [2,21–23]. However, GSK-3 activation has also been shown to occur in
association with an increase in tyrosine phosphorylation (Tyr 279 in GSK-3α and Tyr
216 in GSK-3β). GSK-3 tyrosine phosphorylation has been proposed to occur either by
intramolecular autophosphorylation [24,25], or by the action of tyrosine kinases such as
Fyn [26] or Pyk2 [27,28] in mammals, or ZAK1 in D. discoideum [10]. GSK-3 can also
be activated by serine dephosphorylation by phosphatases such as PP2A [29]. GSK-3
activity can be regulated by other mechanisms including protein complex association
(e.g., in the Wnt or the Hedgehog pathways [30,31]), subcellular localization [32,33] and
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protein cleavage [34,35]. Of note, in neuronal cells, GSK-3 has been shown to be activated
by extracellular factors that induce growth cone collapse and neurite retraction, such as
lysophosphatidic acid (LPA) [28,36] or semaphorin 3A [37] and by neurotoxic insults such
as prion protein (PrP) [38] or amyloid-β (Aβ) peptide [39].

Diverse signaling pathways converge on GSK-3 during neuronal development. For
this reason, GSK-3 is a key regulator of several processes involved in the development
of neurons, such as neurogenesis [40], regulation of neuronal polarity and axon exten-
sion [41–44], dendrite development [45], synaptogenesis [46], and neuronal survival. Fur-
thermore, studies performed in GSK-3 mutant mice have shown the importance of GSK-3
in different aspects of brain function, including brain development, learning and mem-
ory, emotionality, depressive-like behavior, and sensorimotor functions (reviewed in [47]).
GSK-3β knockout (KO) mice die during late embryonic development due to liver and heart
defects [48], but the brain and spinal cord do not show gross abnormalities [49]. However,
GSK-3β heterozygous mice present diverse behavioral deficits, such as reduced movement,
increased anxiety, aggressive behavior, and decreased memory [50–52]. Downregulation of
GSK-3β by shRNA injection in the hippocampal dentate gyrus results in decreased immo-
bility time and anti-depressant-like behavior [53]. Behavior is also altered in transgenic
mice that overexpress GSK-3β in the brain, which show mania and hyperactivity [54]. Of
note, GSK-3α KO animals are viable, but male mice are infertile [55,56]. These mice also
show behavioral deficits such as decreased immobility time, decreased exploratory activity
and anti-aggression behavior or impaired associative memory and coordination, among
others [57]. Although research in the field has mostly focused on the GSK-3β isoform,
recent evidence points to GSK-3α as a key player in important brain processes such as
synaptic plasticity [58].

2. Interplay between GSK-3 and Tau in Alzheimer´s Disease

Since GSK-3 plays central roles in nervous system function, GSK-3 dysregulation is
involved in the pathogenesis of diverse brain disorders, including Alzheimer´s disease
(AD). AD is the most prevalent neurodegenerative disorder, characterized by a progressive
loss of episodic memory as well as behavioral and cognitive deficits. Some GSK-3 targets
are of particular relevance to AD, including Aβ peptide and tau protein, the components of
the main pathological hallmarks of AD, namely neuritic plaques (NPs) and neurofibrillary
tangles (NFTs), respectively [5,59,60]

GSK-3 has been proposed to function as a molecular link between Aβ and tau in AD
pathogenesis [61]. Aβ activates GSK-3 [62,63], which in turns phosphorylates tau [64].
On the other hand, GSK-3 regulates amyloid precursor protein (APP) metabolism and
Aβ production and promotes neuronal death induced by Aβ [65–67]. In diverse mouse
models of AD, GSK-3 inhibition with different compounds reduces Aβ deposition and
neuritic plaque formation, as well as tau phosphorylation, and improves cognitive deficits,
as measured in behavioral assays [68–72]. Conversely, mice conditionally overexpressing
GSK-3β in the forebrain (Tet/GSK-3β mice) show hyperphosphorylation of tau in AD
relevant epitopes, in correlation with somatodendritic accumulation of tau in hippocampal
neurons [73]. Tet/GSK-3β mice also display different signs of neurodegeneration such as
increased neuronal cell death, reactive astrocytosis, and microgliosis [73], as well as spatial
learning defects [74]. Transgenic mice conditionally overexpressing GSK-3β recapitulate
different aspects of AD pathology, thus providing a suitable animal model to study the
relevance of GSK-3β dysregulation for AD pathogenesis. Shutdown of the transgene in
Tet/GSK-3β mice with signs of AD pathology leads to normal GSK-3 activity, normal levels
of phosphorylated tau, reduced neuronal death and reactive gliosis, and improvement
of cognitive deficits [75]. Remarkably, mice overexpressing GSK-3β in the absence of
tau (tau knockout background) present milder and slower signs of neurodegeneration
as well as reduced cognitive deficits [76]. Recent data indicate that transgenic mice with
GSK-3β haploinsufficiency show reduced tau hyperphosphorylation, synaptic accumu-
lation, aggregation, and trans-cellular spread in the brain [77]. This suggests that the
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AD-like pathology found in brains of GSK-3 overexpressing mice relies, at least partially,
on hyperphosphorylated tau (see Figure 1).
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  Figure 1. Overexpression of GSK-3β induces tau-dependent AD-like pathology. Transgenic mice overexpressing GSK-3β
(Tet/GSK-3β mice) in forebrain show tau hyperphosphorylation and relocalization to the somatodendritic compartment in
hippocampal neurons, in correlation with different signs of neurodegeneration. These mice recapitulate different aspects of
AD pathology, which—at least partially—rely on GSK-3β-induced hyperphosphorylation of tau protein. A similar role for
GSK-3α in tau hyperphosphorylation found in AD cannot be precluded, as it has not been extensively analyzed. Abbrev:
AHN: Adult hippocampal neurogenesis.

Elevated levels of GSK-3 have been found in postmortem brains from AD patients
compared to age-matched control samples [78]. Abnormal activation of GSK-3, for ex-
ample, by truncation, has also been associated with AD [79]. Of note, LPA, a reported
activator of GSK-3 and tau phosphorylation [28,36], has been related to AD. Different LPA
species showed significant positive association with cerebrospinal fluid (CSF) biomarkers
of AD, such as Aβ-42, phospho-tau, and total tau [80]. In addition, autotaxin, the enzyme
that catalyzes the formation of LPA, shows increased levels in CSF and brains from AD
patients [81,82]. This suggests that dysregulation of LPA metabolism might be linked to
GSK-3 overactivation and tau phosphorylation in AD brains.

3. Tau Protein: Functional Domains, Isoforms, and Phosphorylation

Tau is a microtubule (MT)-associated protein [83,84], mainly expressed in neurons [85].
Tau binds along the MT lattice and regulates MT assembly, stability, and dynamics in
neurons (reviewed in [86]). Recent work suggests that tau preferentially binds GDP-tubulin
at the MT polymer [87] and that tau enables axonal MTs to have long labile domains [88,89].
Tau protein shows different functional domains [90]. The longest tau isoform (tau 2N4R,
441aa, Figure 2) contains an N-terminal projection domain with two inserts (N1 and
N2), a proline-rich region (PRR), a MT binding region (MTBR), and a C-terminal domain.
The MTBR is formed by three or four imperfect repeat sequences: R1, R2, R3, and R4
(Figure 2) [91].

Tau protein is encoded by a single-copy gene, MAPT, located in chromosome 17 in
human, and chromosome 11 in mice. MAPT undergoes alternative splicing of exons 2,3,
and 10, giving rise to six different tau isoforms [91,92]. Exon 10 codes for one of the four
repeats that form the microtubule-binding region (MTBR) (Figure 2). Tau isoforms differ
in their number of MTBR repeats, containing three (tau 3R) or four (tau 4R), and in the
number of N-terminal inserts (zero, one or two), localized in the N-terminal region [93]. The
expression of the different tau isoforms is developmentally regulated [94]. Differences are
found in the expression patterns of human and murine isoforms. Tau 3R is the predominant
isoform in the fetal brain, both in mice and humans [95]. However, while in the adult
mouse brain, only tau4R is expressed, in the human brain, the expression of tau4R increases
to the level of tau3R during the postnatal period, reaching a 1:1 ratio [92]. Deviations of this
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ratio are linked to diverse neurodegenerative diseases [96]. Human and murine tau also
show some variability in their primary sequences, mostly in their N-terminal ends [97]. The
N-terminal projection region of tau protrudes from the microtubule surface [98], allowing
its interaction with membranes and with other proteins [99]. The N-terminal region of
human tau contains an additional 11aa peptide, which is absent in mouse tau (aa17-28)
and enables human tau to interact with specific protein partners [100,101]. Tau protein has
been proposed to adopt a “paperclip” conformation in solution in which the N- and the C-
terminal domains fold back on the central and MTBR domain [102]. The longer N-terminus
might influence the intramolecular interaction between the N- and C-terminal ends of the
protein and the MTBRs, making human tau more predisposed than mouse tau to adopt
this pathological “paperclip” conformation. This would contribute to explaining why
humans are particularly susceptible to develop tau pathology (including NFTs), leading to
neurodegeneration. It further explains why mouse models fail to recapitulate tau pathology,
unless human tau is overexpressed.

1 

 

 
Figure 2. Tau functional domains and phosphorylation sites. Schematic illustration of tau functional domains and
localization of the best characterized phosphorylation sites. GSK-3 phosphorylation sites are highlighted in fuchsia. The
scheme illustrates the longest tau isoform (tau4R, 441aa). The N-terminal projection domain (aa1-165) contains two inserts,
N1 (aa46-75) and N2 (aa76-102). The proline-rich region (PRR) (aa165-242) contains numerous phosphorylation sites, for
GSK-3 and other kinases. Tau binds to MTs through the microtubule-binding region (MTBR), which comprises 4 imperfect
repeats: R1 (aa243-273), R2 (aa274-304). R3 (aa305-335) and R4 (aa336-367). The C-terminal domain is formed by aa368-441.

Tau binding to MTs is mostly regulated by phosphorylation [103–105]. Tau is a sub-
strate of several kinases, mostly ser/thr kinases (such as GSK-3, CDK5, MARK, PKA,
CamKII, PKC, MAPK, JNK, or ROCK), but also tyrosine kinases (Fyn or Abl), that phospho-
rylate tau at numerous specific sites (~85) (reviewed in [106]. Figure 2 shows schematically
the best characterized tau phosphorylation sites, highlighting GSK-3 sites (more than
30). Tau phosphorylation reduces its affinity for MTs, providing dynamics to the system
in healthy neurons [103,104]. In AD brains, tau is hyperphosphorylated on serines and
threonines in paired helical filaments (PHFs) in NFTs [107]. GSK-3 phosphorylates most
residues present in hyperphosphorylated tau in AD (reviewed in [108]). Tau binds to both
GSK-3 isoforms, GSK-3α and GSK-3β, in brain extracts, although the complex tau/GSK-3β
is more abundant [109]. The tau–GSK-3 interaction may be direct [109] or mediated by
14-3-3 protein [110]. Tau interaction with 14-3-3 protein is enhanced upon tau phosphory-
lation [111]. Tau phosphorylation by GSK-3 lies at the core of diverse neuronal processes
that are dysregulated during AD pathogenesis.

4. Axonal Transport Impairment by GSK-3-Mediated Tau Phosphorylation

Axonal transport disruption is an early pathological hallmark common to many
neurodegenerative disorders. Disturbance of axonal trafficking leads to subcellular mis-
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localization and aggregation of molecules, organelles, and synaptic vesicle in affected
neurons, contributing to synaptic failure, neuronal malfunction, and eventual degeneration.
Tau axonal transport relies on its interaction with kinesin-1, which is dependent on GSK-3
phosphorylation [112]. Of note, axonal transport is disrupted upon tau overexpression,
leading to vesicular aggregation, a process reversed by GSK-3 inhibition [13]. Furthermore,
GSK-3 regulates axonal trafficking of mitochondria in a tau-dependent manner [113].

Efficient transport in axons largely depends on an intact MT cytoskeleton. Hyper-
phosphorylated tau has been found to mediate axonal transport defects under pathological
conditions such as AD [114]. Tau hyperphosphorylation induces MT disassembly, which
impairs motor protein and cargo binding [115]. A proposed mechanism for this phe-
nomenon is that tau hyperphosphorylation leads to impairment of the function of c-Jun
N-terminal kinase-interacting protein 1 (JIP1), a protein that regulates cargo binding to
kinesin motors. As observed in AD brains, hyperphosphorylated tau interacts with JIP1,
blocking JIP1 axonal transport and inducing its accumulation in the cell body [114].

5. GSK-3 Regulates the Cholinergic Function: Involvement of Tau Phosphorylation

AD is characterized by a progressive cognitive decline, which is in part due to an
impairment in cholinergic neurotransmission. AD brains show a selective loss of choliner-
gic neurons in specific brain regions and a reduction in acetylcholine (ACh) levels [116].
Moreover, the activity of choline acetyltransferase (ChAT), the enzyme that mediates ACh
synthesis, is reduced in brains of AD patients in correlation with the severity of the de-
mentia [117]. GSK-3 has been shown to be a regulator of the cholinergic function. GSK-3
activation induces a reduction in ACh levels in striatum [118], nucleus basalis of Meynert
and frontal cortex [119]. The GSK-3-induced reduction in ACh levels is mediated by inacti-
vation of ChAT [118,119]. GSK-3 phosphorylates and inactivates pyruvate dehydrogenase
(PDH), an enzyme that catalyzes the conversion of pyruvate to acetyl CoA in mitochondria,
thus leading to a reduction in Ach in cholinergic neurons [120]. Notably, GSK-3 disturbs
axonal transport in cholinergic neurons, in correlation with tau hyperphosphorylation,
and the subsequent accumulation of ChAT in cell bodies [119]. Cholinergic immunotoxin
192-IgG saporin induces degeneration of basal forebrain cholinergic neurons, leading to an
increase in GSK-3 activation and the subsequent tau phosphorylation [121].

6. GSK-3 and Tau Roles in Adult Hippocampal Neurogenesis

The hippocampus is the brain area that shows the highest degree of plasticity during
adulthood, providing the substrate for hippocampal-dependent learning and memory
acquisition and maintenance [122,123]. The reason for this vast plasticity is the continuous
addition of new neurons to the hippocampus throughout life in a process known as
adult hippocampal neurogenesis (AHN) [124,125]. Recent evidence indicates that AHN
persists during both physiological and pathological aging in humans [126]. However,
the number and maturation of new neurons gradually decay with the advance of the
AD pathology [126]. Therefore, impaired AHN in the hippocampus might contribute to
memory deficit and cognitive decline in AD.

GSK-3β has emerged as one of the key regulators of AHN. Voluntary exercise in mice
has been shown to induce an increase in AHN and improved cognition in correlation with
activation of GSK-3β [127]. Other reports indicate that inhibition of GSK-3β promote AHN
in vitro and in vivo [128,129]. Cerebral ischemia-induced AHN involves GSK-3β inacti-
vation downstream of the PI3-K/Akt pathway [130]. Dysregulated hyperactive GSK-3
impairs in vivo neurogenesis in mice and the capacity of therapeutic agents to stimulate
neurogenesis [131]. Of note, conditional overexpression of GSK-3β in mice (Tet/GSK3β
mice) leads to a number of defects in AHN, such as non-reversible depletion in neurogenic
niches in the dentate gyrus of hippocampus, impairment in the differentiation and matura-
tion of newborn neurons, delay in the switching-off of doublecortin expression, as well as
alteration in the survival and death rates of immature precursors [132]. Interestingly, GSK-
3β overexpression in mice (Tet/GSK3β mice) causes reversible alterations to the dendritic
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morphology and postsynaptic densities of hippocampal granule neurons, similar to the
morphological defects found in hippocampal neurons of AD patients [133] (see Figure 3).
In line with this, GSK-3 inhibitors have been shown to improve the cognitive function
in mouse models of different diseases such as AD, Down syndrome (DS), or Fragile X
syndrome, by partially repairing defects in neurogenesis that occur in these disorders [134].
Tau has been shown to play key in vivo roles in the morphological and synaptic maturation
of newborn hippocampal granule neurons in mice [135].

 

3 

 
  Figure 3. Alterations to dendritic tree morphology and postsynaptic densities in newborn granule neurons upon GSK-3β

overexpression or exposure to soluble tau. Under physiological situations (control), maturation of newborn granule
hippocampal neurons leads to a dendritic tree with a “Y-shape” that presents a single apical primary dendrite and several
distal branches. Upon GSK-3β overexpression (OE) or soluble tau exposure, cells acquire a “V-shape”, with numerous
apical dendrites and atrophied distal branching, and show a marked depletion of postsynaptic densities (•PSDs). Neurons
from AD patients show similar morphological alterations. At least part of the observed effects of GSK-3β in AHN might be
mediated by tau protein.

Tau deficiency in mice leads to impairment in the maturation of newborn granule
neurons under basal conditions and these neurons are unresponsive to stimuli that modu-
late AHN, such as environmental enrichment [135]. Tau also underlies the effects of stress
on AHN in mouse brain [135,136]. During the pathogenesis of AD and other tau-related
dementia, changes in soluble tau species, including tau phosphorylation, lead to neuronal
death [137]. Notably, soluble tau, mostly composed of monomers and dimers, induces
long-term detrimental effects on the morphology and connectivity of newborn granule
neurons, in correlation with impaired behavioral pattern separation skills [138]. Overall,
these data suggest that at least part of the observed effects of GSK-3β in AHN might be
mediated by its target protein tau (see Figure 3).

7. GSK-3 Modulation of Cognitive Functions

Cognitive impairment and memory loss in AD correlate with synaptic dysfunction
(reviewed in [139]) and eventual synaptic loss (reviewed in [140]).

GSK-3 has been implicated in the modulation of cognitive functions both at the presy-
naptic and postsynaptic levels. At the presynaptic level, GSK-3 upregulation markedly
reduces the presynaptic release of glutamate and the expression/clustering of synapsin I, a
synaptic vesicle protein involved in neurotransmitter release [141]. GSK-3 inhibits exocyto-
sis of synaptic vesicles by phosphorylating P/Q type calcium channels and impairing the
formation of SNARE complexes [142]. Additionally, GSK-3 controls activity-dependent
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bulk endocytosis of synaptic vesicles, through phosphorylation of the large GTPase dy-
namin [143].

Additionally, GSK-3 regulates postsynaptic function by modulating synaptic plastic-
ity [144]. Synaptic plasticity is the activity-dependent modification of the transmission
efficiency of the synapses (strengthening or weakening), which provides an essential com-
ponent for learning and memory [145]. The structural basis of synaptic plasticity in the
adult brain relies on the formation of new dendritic spines as well as the dynamic changes
in spine morphology. Long-lasting potentiation of synaptic strength by repetitive activation
of excitatory synapses is termed long-term potentiation (LTP). LTP is triggered by intense
activation of N-methyl-D-aspartate glutamate receptors (NMDARs) that causes the incor-
poration of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors
(AMPARs) into the postsynaptic membrane. Long-term depression (LTD) is a long-lasting
decrease in the efficiency of synaptic transmission [146,147], by weak activation of NMDRs,
resulting in the removal of AMPARs from the postsynaptic membranes. This leads to
a decrease in synaptic efficiency which eventually can lead to synapse shrinkage and
elimination [147]. The prototypic forms of synaptic plasticity are the LTP and LTD that
occur in the CA1 region of the hippocampus. LTP and LTD are considered the molecular
and cellular basis of learning and memory processes. Most excitatory synapses localize on
dendritic spines, and undergo growth in response to LTP and elimination following LTD.

GSK-3 participates in the regulation of synaptic plasticity by modulating LTP and LTD
(reviewed in [144,148]). In this way, GSK-3 regulates cognitive function directly. GSK-3β is
inhibited upon LTP induction, as denoted by an increase in Ser 9 phosphorylation [149,150].
Of note, transgenic mice expressing the phosphorylation defective mutant GSK3ss[S9A]
(constitutively active GSK-3β) show a marked inhibition of LTP, in correlation with learning
deficits [74]. Transgenic mice that overexpress GSK-3β also present impaired LTP, which
is reversed by GSK-3 inhibition [149]. In addition, activation of GSK-3 inhibits LTP with
synapse-associated impairments [141].

On the other hand, GSK-3 is involved in the induction of NMDAR-mediated LTD [150].
GSK-3 inhibitors prevent LTD induction in rat hippocampal slices [150]. GSK-3 is activated
during LTD, most likely due to protein phosphatase 1 direct dephosphorylation and by
Akt inhibition, downstream of calcium entry through NMDARs [150].

NMDARs are cation channels gated by the neurotransmitter glutamate, involved in
synaptic formation, synaptic plasticity, learning and memory as well as in excitotoxicity
(reviewed in [151]). GSK-3 interplays with NMDARs in different ways. GSK-3 may be
a NMDAR target since stimulation of NMDARs induces calpain-mediated cleavage and
activation of GSK-3 [34]. Conversely, NMDARs have been reported to be a target of
GSK-3, as NMDAR currents are reduced by a variety of GSK-3 inhibitors and upon GSK-
3 knockdown [152]. Moreover, GSK-3 regulates NMDAR internalization and function,
mostly the receptors containing NR2B subunits [152]. Overactivation of GSK-3β induces
a reduction in the expression of NMDAR subunits NR2A/B and the scaffolding protein
Postsynaptic density-93 (PSD-93) at synapses [141]. GSK-3 also influences the interaction
between NMDARs and PSD-95 [152]. Notably, although the roles of GSK-3 in the brain
have traditionally been assigned to GSK-3β, it has recently been reported that GSK-3α, not
GSK-3β, is the isoform required for NMDAR-dependent regulation of LTD [58].

GSK-3 has been shown to participate in the crosstalk between LTP and LTD [148].
GSK-3 inhibitors rescue abnormal LTP and/or LTD in neuropsychiatric disorders, thereby
improving cognitive deficits [134]. Thus, inhibition of GSK-3 may improve cognitive
dysfunction in some conditions by regulating hippocampal synaptic plasticity.

Besides its role as a regulator of NMDARs, GSK-3 is also implicated in the regulation
of AMPARs. AMPARs mediate fast excitatory neurotransmission and play a key role in
synaptic plasticity, being involved in LTP and LTD of hippocampal synaptic transmission
(reviewed in [153]). GSK-3 inhibition or knockdown reduces AMPAR synaptic responses,
in correlation with a loss of AMPAR surface localization and an increase in AMPAR
internalization [154]. Modulation of AMPAR internalization by GSK-3 is mediated by the
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GDI-Rab5 complex [154]. GSK-3 regulation of AMPAR trafficking and function provides
an extra layer of regulation of synaptic transmission and plasticity by GSK-3. Overall, these
studies indicate that GSK-3 exerts critical functions in synaptic assembly and function.

8. Interplay between GSK-3 and Tau during LTD

Interplay between GSK-3 and tau during LTD diverse GSK-3 substrates participate in
GSK-3 mediated LTD. Phosphorylation of phosphatidylinositol 4 kinase type IIa (PI4KIIa)
by GSK-3 is involved in stabilization of NMDARs at synapses, regulation of cell-surface ex-
pression of AMPARs, and direction of vesicular trafficking to lysosomes [155,156]. PSD-95
is phosphorylated by GSK-3 and undergoes synaptic detachment, a process necessary for
LTD induction [157]. Another GSK-3 substrate involved in LTD is protein interacting with
C kinase 1 (PICK1), a protein that interacts with AMPARs [158]. GSK-3-phosphorylated
PICK1 enhances its interaction with AMPARs, this contributing to retain AMPARs inter-
nalized during LTD [159,160]. Kinesin light chain 2 (KLC2) is also phosphorylated by
GSK-3 and participates in AMPARs intracellular trafficking [161]. The signaling pathway
involving GSK-3/KLC2/AMPARs may contribute to the regulation of synaptic plasticity
downstream of diverse neurotransmitters and growth factors during learning and memory
and in the pathophysiology of some psychiatric conditions [161–164].

Tau protein has emerged as a potential key candidate for the multifaceted actions
of GSK-3 in LTD. Of note, tau has been found to be required for LTD induction in the
hippocampus [165], and impaired LTD has been reported in a tauopathy mouse model
(THY-tau22 mice) [166]. Tau is involved in LTD induced by physiological stimuli such as
insulin [167] or glucocorticoids (GCs) [168]. Tau deletion leads also to severe deficits in
LTP [169]. Most NMDARs localize at glutamatergic synapses, where they exert their actions
as mediators of synaptic transmission and synaptic plasticity. Remarkably, a proportion of
NMDARs are present outside synapses in the plasma membrane. Although extrasynaptic
NMDARs have been mostly linked to excitotoxicity and cell death [170], extrasynaptic
NMDAR currents are also crucial for efficient LTD [171–173]. Of note, tau knockout neurons
lack NMDA extrasynaptic currents [174]. This may contribute to LTD deficits exhibited
in tau knockout mice, which also show spatial reversal learning [175]. Furthermore, tau
participates in the regulation of the interaction between PICK1 and AMPARs, thereby
contributing to other key processes for LTD, such as AMPARs internalization [175].

Remarkably, GSK-3α specific implication in LTD occurs via its transient anchoring in
dendritic spines in a tau-dependent manner [58]. GSK-3α overexpression leads to LTD only
in the presence of tau, suggesting that tau is downstream of GSK-3α in this process [58].
GSK-3 phosphorylates tau during LTD [165], and phosphorylation of tau in a GSK-3 site
(Ser 396) is essential for LTD [175]. Therefore, GSK-3-mediated tau phosphorylation and
GSK-3α accumulation in dendritic spines may be crucial events to trigger LTD. Tau actions
on AMPAR internalization and on NMDA extrasynaptic currents contribute further to LTD,
as mentioned above. The interplay between GSK-3α and tau during NMDAR-mediated
LTD is complex and requires further investigation (see Figure 4).

Of note, tau interacts with and is phosphorylated also by tyrosine kinases from the Src
family, such as Fyn [176], which is also present in NFTs in AD brains [177]. Tau is necessary
for the transport of Fyn to dendritic spines, where Fyn phosphorylates the GluN2B subunit
of NMDAR [178]. Fyn phosphorylation enhances the interaction between NMDAR and
PSD-95 in synapses. Stabilization of the NMDAR/PSD95 complex underlies Aβ-induced
excitotoxicity in AD animal models [178]. Tau contributes to the synaptic localization
of kinases to trigger different signaling pathways involved in synaptic plasticity and/or
excitotoxicity.

Tau is predominantly localized in axons under physiological conditions, where it
regulates MT stability and promotes MT polymerization [94]. Therefore, tau requirement
for physiological LTD is surprising since LTD is a postsynaptic process, mediated by the
synaptic removal of AMPARs. One possibility is that LTD might induce tau relocaliza-
tion to dendritic shafts and/or spines. Another option, supported by recent evidence,
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is that some tau is physiologically present in dendritic spines [174], and that this pro-
portion of tau is the one that mediates LTD, exerting its function in synaptic plasticity.
In addition, mechanical injuries of neurons lead to mislocalization of tau to dendritic
spines and tau-dependent synaptic dysfunction, mediated by GSK-3 (and CDK5) tau phos-
phorylation [179]. In neurodegenerative disorders such as AD and other dementias, tau
becomes hyperphosphorylated, detaches from MTs. and is missorted from axons to the
somatodendritic compartment, where it interferes with synaptic function [180,181]. 

4 

 Figure 4. Interplay between GSK-3α and tau during NMDAR-mediated LTD. Tau is required for the transient anchoring
of GSK-3α at dendritic spines, a key process during NMDAR-mediated LTD. On the other hand, GSK-3-mediated phos-
phorylation of tau in Ser 396 is necessary for LTD. Tau contributes further to other crucial aspects of LTD, such as the
internalization of AMPAR and NMDAR extrasynaptic currents. It is still controversial whether tau is upstream and/or
downstream of GSK-3α in LTD.

9. GSK-3 and GSK-3-Phosphorylated Tau as Therapeutic Targets in AD

In the last decades, the development of potential therapies for AD has been centered
in the counteraction of the formation of Aβ plaques, since Aβ was considered the key
factor in the pathogenesis of the disease. However, the progression of the cognitive decline
that occurs in AD has been shown to correlate much better with the propagation of tau
pathology than with the deposition of Aβ plaques [182,183]. For that reason, the focus of
AD drug discovery has been shifted toward tau-targeting therapies.

Hyperphosphorylated tau is the main component of the toxic forms of tau present in
AD, including aggregates, fibrils, or NFTs [184]. Moreover, the correct interplay between
GSK-3 and tau is crucial for the proper functioning of diverse neuronal and brain processes,
which, when dysregulated, participate in AD pathogenesis. Therefore, GSK-3 has become
an attractive therapeutic target in AD. An intense research effort has been made in recent
years to develop novel small molecules or peptides and to identify natural compounds
that inhibit GSK-3 and that could be used as potential therapies for AD [185]. Inhibitors of
GSK-3 activity lie in different categories including cations (e.g., lithium), ATP competitive
inhibitors, non-ATP competitive inhibitors (such as substrate competitive inhibitors (SCIs)
or allosteric inhibitors) (reviewed in [186]. Small molecule inhibitors have been mostly
designed by computer-based docking approaches. As mentioned above, GSK-3α and
GSK-3β have different roles in key neuronal processes such as LTD [58]. Since most known
inhibitors do not show isoform specificity, finding small molecules that inhibit one of
the GSK-3 isoforms specifically is needed. Moreover, as GSK-3 participates in diverse
key cellular processes, such as cell division, apoptosis, metabolism, or differentiation, a
complete inhibition of GSK-3 may be toxic and induce side effects such as hypoglycemia
or tumor progression. For that reason, compounds that induce a partial inhibition of
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GSK-3 activity should be identified for use as potential therapies in AD (or other disorders
involving GSK-3). Substrate competitive inhibitors (SCIs) have been proposed as more
suitable candidates for therapies, as they show higher specificity than ATP-competitive
inhibitors and weak inhibitory activity. Among the most promising SCIs candidates are
the novel kinase-peptide inhibitor-based SCI molecules which have been designed based
on a ligand-protein binding model [187].

Several GSK-3 inhibitors have been shown to reduce tau phosphorylation in cells
and in preclinical studies in mice (reviewed in [188]). However, despite the high number
of GSK-3 inhibitors developed over the last years, only a few have reached clinical trials
in humans, and none of them have made it to the market. One of these inhibitors is
tideglusib, an irreversible non-ATP competitive GSK-3 inhibitor that acts as an allosteric
inhibitor [189]. Tideglusib showed neuroprotective effects by reducing amyloid deposition,
gliosis, tau phosphorylation and neuron loss, and by reversing spatial memory deficits in
transgenic mice in preclinical studies. Tideglusib reached phase II clinical trials, and was
shown to be generally well tolerated and safe, with significant improvement (at a particular
concentration) in cognitive function in patients with mild-to-moderate AD, previously
treated for months with cholinesterase inhibitors [190]. Nevertheless, in general, tideglusib
did not exhibit obvious therapeutic effects for AD in clinical trials. Drug discovery towards
novel GSK-3 inhibitors that can be effectively used for treating AD remains one of the
challenges in the field.

The development of potential tau-targeting therapies for AD includes different types
of molecules, which range from agents that modulate tau posttranslational modifications
(such as phosphorylation, -including GSK-3 inhibitors-, acetylation, or O-GlcNAcylation);
compounds that stabilize MTs; activators of tau degradation by autophagy; inhibitors of tau
aggregation; and agents that decrease tau expression (antisense oligonucleotides (ASOs)
(reviewed in [191,192]). However, since the discovery of the importance of transcellular
tau spreading in the progression of tau pathology in AD, the focus has been placed on
tau-based immunotherapy (both passive and active), an approach to target (mostly but not
only) extracellular tau, thereby stopping the spreading process. Immunotherapy has been
shown to decrease tau pathology and improve cognitive deficits in preclinical studies in
AD mouse models (reviewed in [193]).

Passive immunotherapy implies the administration of antibodies or antisera against
a specific tau epitope, eliminating the need of the recipient to produce an immune re-
sponse and generate his/her own antibodies. Some of the antibodies used in passive
immunotherapy target phospho-tau—in particular, tau phosphorylated in GSK-3 sites (eg.
epitope pSer396/pSer404 (PHF-1 antibody) [194,195]; epitope pThr212/pThr217; [196,197]
(antibodies JNJ-63733657, and PT3 and its humanized version hTP3, [198]; pThr231 and
pSer396 (antibody PHF-13) [199]. Targeting phospho-tau at some of these epitopes (e.g.,
pSer396) may be of special relevance to delay AD progression at initial phases since they
are specifically hyperphosphorylated at earlier stages of the disease [200]. The potential
therapeutic actions of these antibodies have been tested in vivo in preclinical mouse models
showing to reduce tau pathology and functional deficits (reviewed in [201]). Of note, one of
these antibodies JNJ-63733657 has reached the clinical phase. JNJ-63733657 is a monoclonal
antibody that selectively recognizes PHF tau and the mid-region of tau with high affinity
for pThr212 and pThr217. In the first phase I clinical trial (NCT03375697), JNJ-63733657
was shown to be generally safe and well-tolerated and to reduce cerebrospinal fluid (CSF)
phospho-tau levels in a dose-dependent manner [202]. No results have been reported yet
from the second phase I trial (NCT03689153), which ended in December 2019, performed
in both healthy participants and participants with prodromal or mild AD. JNJ-63733657 is
currently being tested in a phase 2 study (NCT04619420) that started in January 2021 in
people with early AD symptoms and a positive tau PET scan. The ongoing trial will run
until 2025 and besides safety and pharmacokinetics, tau pathology burden and measures
of cognition will be assessed.
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Another promising tau-targeting therapy for AD is active immunization by the ad-
ministration of tau-directed vaccines. These vaccines aim to elicit an immune response
targeted to specific pathological conformers of tau or phosphorylated tau without inducing
autoimmune responses against physiological forms of tau. One of the generated vaccines,
ACI-35, is a liposome-based vaccine that encompasses 16 copies of a synthetic fragment
of pSer396/pSer404 tau (residues phosphorylated by GSK-3), attached into a lipid bi-
layer [203]. ACI-35 elicits a rapid and robust immune response in preclinical studies in
transgenic tau mice and a reduction in tau pathology [204]. Notably, ACI-35 was the first
vaccine against phospho-tau tested in clinical trials. ACI-35 showed no safety concerns
but elicited a weak response in people with mild-to-moderate AD, in a phase I clinical trial
(ISRCTN13033912). These results prompted the generation of a redesigned version of the
vaccine that induces an enhanced immune response, with the production of antibodies
specific to phosphorylated tau, and recognition of PHFs extracted from AD brain. An inter-
mediate report from a currently ongoing Phase1b/2a clinical trial for ACI-35.030 in people
with early AD (NCT04445831) pointed to no safety problems and good immunogenicity
with generation of anti phospho-tau antibodies. Further research efforts on tau-based
immunotherapies are needed in the hope to obtain safe and efficient therapies for AD.

10. Conclusions and Future Perspectives

GSK-3 is a crucial regulator of several neuronal processes that are dysregulated in
AD, including axonal transport, cholinergic function or synaptic plasticity. GSK-3 has
numerous substrates in neurons. GSK-3 promiscuity makes it difficult to elucidate whether
the observed effects of GSK-3 are directly due to its kinase activity or to indirect actions via
GSK-3 downstream effectors. This may be of relevance to understand specific neuronal
and brain functions of the kinase and to design GSK-3 based therapies for AD and other
GSK-3-related disorders. Although GSK-3 has many targets, tau protein seems to be the
protein substrate that underlies many of these GSK-3 actions. Thus, GSK-3 and tau stand
as a key duet in AD pathogenesis.

GSK-3 and tau proteins have emerged as important potential therapeutic targets in
AD. Obtaining specific and weak inhibitors of GSK-3 activity remains a key issue in the
field. In the case of tau protein, reducing tau levels has been shown to be neuroprotective.
However, tau is a multifaceted protein with diverse functions in neurons [86,205], beyond
its actions as a MT-associated protein [206]. Hence, tau-based therapies face the challenge
of targeting only pathological tau (including hyperphosphorylated tau), without altering
physiological tau. Otherwise, these treatments could be deleterious, as in the case of potent
GSK-3 inhibitors. Thus, enormous drug-discovery efforts are currently ongoing to develop
potentially safe and efficient therapies for AD that target these two key proteins, such as
GSK-3 inhibitors [187,191] and different types of agents targeting phospho-tau protein,
including passive and active immunotherapy [191,192]. The final goal is to prevent disease
progression at early stages before the brain damage is irreversible. To achieve this, it is also
crucial to develop in parallel novel reliable biomarkers for an early detection of the disease.
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