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The most frequent injury sustained by US service members deployed to Iraq or 
Afghanistan is mild traumatic brain injuries (mTBI), or concussion, by far most often 
caused by blast waves from improvised explosive devices or other explosive ordnance. 
TBI from all causes gives rise to chronic neuroendocrine disorders with an estimated 
prevalence of 25–50%. The current study expands upon our earlier finding that chronic 
pituitary gland dysfunction occurs with a similarly high frequency after blast-related 
concussions. We measured circulating hormone levels and accessed demographic 
and testing data from two groups of male veterans with hazardous duty experience in 
Iraq or Afghanistan. Veterans in the mTBI group had experienced one or more blast-re-
lated concussion. Members of the deployment control (DC) group encountered similar 
deployment conditions but had no history of blast-related mTBI. 12 of 39 (31%) of the 
mTBI participants and 3 of 20 (15%) veterans in the DC group screened positive for 
one or more neuroendocrine disorders. Positive screens for growth hormone deficiency 
occurred most often. Analysis of responses on self-report questionnaires revealed main 
effects of both mTBI and hypopituitarism on postconcussive and posttraumatic stress 
disorder (PTSD) symptoms. Symptoms associated with pituitary dysfunction overlap 
considerably with those of PTSD. They include cognitive deficiencies, mood and anxiety 
disorders, sleep problems, diminished quality of life, deleterious changes in metabolism 
and body composition, and increased cardiovascular mortality. When such symptoms 
are due to hypopituitarism, they may be alleviated by hormone replacement. These 
findings suggest consideration of routine post-deployment neuroendocrine screening 
of service members and veterans who have experienced blast-related mTBI and are 
reporting postconcussive symptoms.

Keywords: traumatic brain injury, blast, concussion, pituitary, military, posttraumatic stress disorder, growth 
hormone deficiency, veterans
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inTrODUcTiOn

“Concussions,” a term often used synonymously with “mild 
traumatic brain injuries” (mTBI), accounted for 2.8 million 
emergency room visits or hospitalizations in the US in 2013 (1). 
The number of reported concussions has increased especially 
rapidly in high school, college, and professional athletes and 
deployed service members. Approximately 75% of diagnosed 
TBIs are mTBIs (2). In response, the focus of research and 
media attention on the prevalence, natural history, treatment, 
and prevention of mTBI in athletes has increased dramatically 
during the past decade. However, mTBI in military person-
nel and veterans has received less public notice, even though 
mTBI—most often caused by blasts from improvised explosive 
devices—is the most frequent injury sustained by US troops 
deployed to Iraq and Afghanistan (3–5). mTBIs constituted 
82.4% of approximately 290,000 military TBIs diagnosed from 
2000 to 2013. In both civilian and military populations, many 
mTBIs are unreported or undiagnosed, and the true incidence 
has been estimated to be two to five times higher than current 
reports (6–9).

The American Congress of Rehabilitation Medicine has 
defined mTBI as manifested by at least one of the following: 1. a 
period of loss of consciousness (LOC) of approximately 30 min 
or less; 2. loss of memory not greater than 24 h for events imme-
diately before or after the incident; 3. any alteration in mental 
state at the time of the incident (e.g., feeling dazed, disoriented, 
or confused); or 4. focal neurological deficit(s) that may or may 
not be transient (10, 11).

A frequent consequence of TBI is chronic hypopituitarism, 
defined as a deficiency in one or more pituitary hormone axes. 
Since 2000, more than 40 research papers have characterized 
chronic neuroendocrine deficiencies resulting from TBI, more 
than half of which reported a prevalence of 25–50% after TBIs 
from all causes. Although review articles often assert an associa-
tion of the prevalence of hypopituitarism with the severity of the 
injury, multiple studies that included a range of TBIs from mild 
to severe have found no relationship between pituitary dysfunc-
tion and severity of TBI (12–21). Repetitive mild TBIs have been 

shown to result in a high prevalence of hypopituitarism in several 
studies (22–27).

We previously published preliminary data supporting the 
high prevalence of chronic hypopituitarism in US military 
veterans deployed to Iraq or Afghanistan who sustained one or 
more blast-related concussions compared to similarly deployed 
veterans without blast exposure (27). We have now extended our 
preliminary findings to a larger sample and have also examined 
the effects of chronic hypopituitarism on measures of mood, sleep 
quality, symptoms of posttraumatic stress disorder (PTSD), and 
cognitive functioning.

MaTerials anD MeThODs

Participants and sample acquisition
The Congressionally Directed Medical Research Programs 
Concept Award that funded this study prohibited direct sam-
pling of biological fluids from human participants and access 
to identifiable private information. Therefore, all plasma and 
serum samples, demographic, and blast exposure data used in the 
study were obtained from an established biorepository entitled 
“Alzheimer’s Disease Research Center Participant Registry and 
Sample Repository.” The VA Puget Sound Health Care System 
Institutional Review Board and the U.S. Army Medical Research 
and Materiel Command Office of Research Protections Human 
Research Protection Office approved the subject protocol with a 
waiver of informed consent. All participants whose samples were 
utilized had provided written informed consent to have their 
samples and data used in future research of this type. No direct 
intervention with any participant was allowed. These conditions 
precluded the use of provocative testing as a part of the screening 
procedure.

Plasma and serum specimens and demographic and testing 
data were obtained from the repository for 59 male veterans 
with documented hazardous duty experience in Iraq and/or 
Afghanistan with the US Armed Forces. Thirty-nine of these 
individuals (the mTBI group) had sustained at least one explosive 
blast-induced concussion. The remaining 20 veterans (deploy-
ment control or DC group) were exposed to similar deployment 
conditions but had not experienced a blast-related mTBI.

Blood samples from 95 healthy male community volunteers 
with no evidence or history of cognitive or functional decline and 
no history of military service or TBI were also retrieved from the 
repository. These samples were used only for the establishment 
of normative hormone concentration ranges using our assay 
methods.

exclusion criteria and screening
Exclusion criteria for all participants included a history of TBI 
with LOC greater than 30 min; penetrating head wound; seizure 
disorder; insulin-dependent diabetes; current or past diagnosis 
of schizophrenia, other psychotic disorders, bipolar disorder, 
or dementia with Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition (DSM-IV) criteria (28); or a DSM-IV 
diagnosis of alcohol or other substance abuse or dependence 
within the previous 3 months.

Abbreviations: ACTH, adrenocorticotropin; AUDIT-C, alcohol use disorders 
identification test-consumption; ACRM, American Congress of Rehabilitation 
Medicine; ANOVA, analysis of variance; BUN, blood urea nitrogen; BMI, body 
mass index; CAPS, clinician-administered PTSD scale for DSM-IV; CEQ, combat 
experiences questionnaire; DC, deployment control; DI, diabetes insipidus; 
DSM-IV, diagnostic and statistical manual of mental disorders, fourth edition; 
EIA, enzyme immunoassay; ELISA, enzyme-linked immunosorbent assay; EDTA, 
ethylenediaminetetraacetic acid; FSH, follicle-stimulating hormone; GHD, growth 
hormone deficiency; IRMA, immunoradiometric assay; IGF-I, insulin-like growth 
factor-I; LOC, loss of consciousness; LH, luteinizing hormone; mTBI, mild trau-
matic brain injuries; NSI, neurobehavioral symptom inventory; PHQ-9, patient 
health questionnaire-9; PCTL, percentile; PPCS, persistent postconcussive; PSQI, 
Pittsburgh Sleep Quality Index; Posm, plasma osmolality; PTHP, posttraumatic 
hypopituitarism; PTSD, posttraumatic stress disorder; PCL-M, PTSD checklist-
military version; ROC, receiver operating characteristic; RIA, radioimmunoassay; 
sAI, secondary adrenal insufficiency; SDS, SD score; SIADH, syndrome of inappro-
priate antidiuretic hormone secretion; TSH, thyroid-stimulating hormone; TMT, 
trail making test; Uosm, urine osmolality; USG, urine specific gravity; WTAR, 
Wechsler test of adult reading.
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TaBle 1 | Assay kit sources and characteristics.

hormone Kit name Manufacturer location

Adrenocorticotropin (ACTH) ACTH IRMA Scantibodies Laboratory Santee, CA, USA
Cortisol Corti-Cote Cortisol RIA MP Biomedicals Santa Ana, CA, USA
Follicle-stimulating hormone (FSH) DELPHIA hFSH Fluoroimmunoassay PerkinElmer Waltham, MA, USA
Insulin-like growth factor (IGF-I) Human IGF-I Quantikine ELISA R&D Systems Minneapolis, MN, USA
Luteinizing hormone (LH) ImmuChem Coated Tube LH 125I RIA MP Biomedicals Santa Ana, CA, USA
Oxytocin Oxytocin ELISA Enzo Life Sciences, Inc. Farmingdale, NY, USA
Prolactin ImmuChem Coated Tube Prolactin 125I IRMA MP Biomedicals Santa Ana, CA, USA
Testosterone ImmuChem Double Antibody Testosterone 125I RIA MP Biomedicals Santa Ana, CA, USA
Thyroxine Free Thyroxine (FT4) Immunoassay MP Biomedicals Santa Ana, CA, USA
Thyroid-stimulating hormone (TSH) ImmuChem Coated Tube TSH 125I IRMA MP Biomedicals Santa Ana, CA, USA
Vasopressin Vasopressin Direct RIA Buhlmann Diagnostics Amherst, NH, USA

hormone assay type sample type assay size sample size (µl) assay range sensitivity

ACTH IRMA Plasma 100 tubes 200 2–372 pmol/L 0.22 pmol/L
Cortisol RIA Plasma 100 tubes 25 0.027–1.65 µmol/L 5.79 nmol/L
FSH Fluoroimmunoassay Serum 96 wells 25 0.98–256 IU/L 0.05 IU/L
IGF-I ELISA Serum 96 wells 0.5 0.02–1.31 nmol/L 2.62 pmol/L
LH RIA Serum 100 tubes 100 2.5–200 mIU/mL 1.5 mIU/mL
Oxytocin ELISA Plasma 96 wells 400 0–504 pmol/L 5.2 pmol/L
Prolactin IRMA Serum 100 tubes 25 0.11–4.35 nmol/L 109 pmol/L
Testosterone RIA Serum 100 tubes 50 0.69–55.5 nmol/L 0.14 nmol/L
Thyroxine EIA Serum 96 wells 50 5.8–98 pmol/L 6.44 pmol/L
TSH IRMA Plasma 100 tubes 200 0.2–50 IU/L 0.04 IU/L
Vasopressin RIA Plasma 100 tubes 400 1.15–73.84 pmol/L 0.09 pmol/L

IRMA, immunoradiometric assay; RIA, radioimmunoassay; ELISA, enzyme-linked immunosorbent assay; EIA, enzyme immunoassay.
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Screening for study eligibility included physical and neu-
rological examinations. The Structured Clinical Interview for 
DSM-IV (SCID-IV) was used to screen for exclusionary mood, 
psychotic, anxiety, and substance abuse disorders (29).

Demographics and Military history
Demographic, military deployment history, and blast exposure 
information were collected from all participants at screening. 
Data collected included age, education (in years), race, body mass 
index (BMI), number of deployments to Iraq or Afghanistan, 
total deployment time (in months), number of blast exposures 
during deployment, and time since last blast exposure.

Blast exposure and mTBI histories were obtained from par-
ticipants in a semi-structured clinical interview by two expert 
clinicians. Specific inquiries were made about total number of 
blast-related mTBIs in Iraq or Afghanistan and lifetime history 
of non-blast head injuries accompanied by acute symptoms of 
mTBI. Evaluations based on these interviews determined the 
assignment of the participants to mTBI or DC groups.

The Wechsler Test of Adult Reading (WTAR) and the Combat 
Experiences Questionnaire (CEQ) were also administered. The 
WTAR is a measure of premorbid intellectual functioning that 
is thought to be resilient to mTBI. The test provides estimates 
of both verbal IQ and the overall level of general cognitive and 
intellectual functioning (Full Scale IQ) (30, 31). The CEQ is 
an 18-item true/false questionnaire excerpted from Hoge et al. 
(32) addressing the frequency and severity of experiences that 
participants may have been exposed to during deployment 
(e.g., shooting or directing fire at the enemy; being attacked, or 
ambushed).

hormone Measurement
Blood samples were collected between 9:00 a.m. and 10:00 a.m. 
from supine participants 30 or more min after the insertion 
of an intravenous catheter in an antecubital vein. Samples for 
determination of hormones in plasma were collected in chilled 
tubes containing ethylenediaminetetraacetic acid, placed on ice, 
and centrifuged at 4°C prior to removal of the plasma fraction. 
Blood samples for serum hormone quantification were collected 
in serum-separator tubes, allowed to clot at room temperature 
for 10 min, and centrifuged at 4°C to isolate serum. Serum and 
plasma samples were aliquoted and stored at −70°C. Eleven 
pituitary or target-organ hormones were measured in these 
samples. The type, source, and performance characteristics of 
the assay kits used for the measurements are shown in Table 1. 
Adrenocorticotropin (ACTH), cortisol, thyroid-stimulating 
hormone (TSH), oxytocin, and vasopressin concentrations were 
determined in plasma; free thyroxine, luteinizing hormone (LH), 
follicle-stimulating hormone (FSH), prolactin, total testosterone, 
and insulin-like growth factor-I (IGF-I) were measured in serum. 
Measurements of plasma and urine osmolality, plasma and urine 
Na+, plasma K+, urine specific gravity (USG), blood urea nitro-
gen, creatinine, and glucose were used in determining functional 
vasopressin insufficiency.

criteria for identifying Pituitary hormone 
Deficiencies
Concentration percentiles based on the lognormal distribution 
of each hormone in blood samples from 95 community control 
participants were calculated. Dysfunction in each of five anterior 
pituitary axes and two posterior pituitary axes were defined by 
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TaBle 2 | Screening criteria for identifying abnormal circulating hormone levels.

cutoff criteria based on lognormal distribution of community control reference sample

Disorder hormone Percentile cutoff (siU)

Adrenal insufficiency Cortisol <10th percentile 141.8 nmol/L
Adrenocorticotropin <10th percentile 3.4 pmol/L

Thyroid deficiency Free thyroxine <5th percentile 11.97 pmol/L
Thyroid-stimulating hormone <50th percentile 1.78 mlU/L

Hypogonadism Total testosterone <5th percentile 6.9 nmol/L
and either luteinizing hormone (LH) or  
follicle-stimulating hormone (FSH)

<10th percentile LH: 1.32 IU/L, FSH: 1.63 IU/L

OR total testosterone <5th percentile 6.9 nmol/L
and prolactin >95th percentile 910.86 pmol/L

Hypo-/Hyperprolactinemia Prolactin <5th percentile 189.56 pmol/L
OR > 95th percentile 910.86 pmol/L

Growth hormone deficiency Insulin-like growth factor <age-adjusted 10th PCTL (SDS < −1.4)
Hypooxytocinemia Oxytocin <5th percentile 1.8 pmol/L
Diabetes insipidus Vasopressin <5th percentile 0.25 pmol/L

and Posm ≫ Uosm USG < 1.005

Hypopituitarism—abnormalities in at least one of these seven axes

Posm, plasma osmolality; Uosm, urine osmolality; PCTL, percentile; USG, urine specific gravity.
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specific percentile levels based on the consensus of criteria used in 
multiple published studies of pituitary dysfunction after TBI from 
all causes. Due to concerns about the reliability and sensitivity of 
the vasopressin assay, measures of urine and plasma osmolality 
(Posm) and electrolytes were the primary determinants of dia-
betes insipidus (DI) and syndrome of inappropriate antidiuretic 
hormone secretion. Measurement of serum IGF-I concentration 
was used for growth hormone deficiency (GHD) screening. Since 
IGF-I concentrations decline significantly with increasing age in 
adults, the lognormal distribution of IGF-I levels in the reference 
group was adjusted for age, and the IGF-I concentration of each of 
the TBI and DC subjects was plotted in relation to age to provide 
appropriate comparisons. The criteria for deficient (or excessive) 
hormone levels in each axis are shown in Table 2.

PTsD evaluation
The Clinician-Administered PTSD Scale for DSM-IV (CAPS) 
(33) is a structured interview designed to make a categorical 
diagnosis of PTSD and to assess the frequency and intensity 
of 17 PTSD symptoms to yield continuous severity scores for 
each symptom and the disorder as a whole. Administration of 
the CAPS requires identification of an index traumatic event 
to serve as the basis for symptom inquiry. In the absence of an 
appropriate traumatic event the symptom severity questionnaire 
is not administered.

symptom self-report Questionnaires
The PTSD Checklist-Military Version (PCL-M), a self-report 
inventory of the 17 DSM-IV symptoms that define PTSD, was used 
to assess individual PTSD symptoms (34). The Neurobehavioral 
Symptom Inventory (NSI) is a 22-item questionnaire designed to 
assess the presence and severity of common cognitive, emotional, 
sensory, and somatic postconcussive symptoms (35). The Patient 
Health Questionnaire-9 (PHQ-9) is the 9-item depression mod-
ule of the Patient Health Questionnaire that corresponds with 

DSM-IV criteria for depression (36). The Pittsburgh Sleep Quality 
Index (PSQI) is a self-report questionnaire assessing sleep quality 
and disturbances over a 1-month time interval (37). The Alcohol 
Use Disorders Identification Test-Consumption enquires about 
frequency and quantity of typical alcohol consumption and the 
frequency of episodes of heavy drinking (38).

cognitive Measures
Trail Making Test
The Trail Making Test (TMT) consists of two parts. Trails A is 
a measure of processing speed (visual search and motor speed 
skills). Trails B has an added set-shifting component and is widely 
regarded as a measure of executive functioning (39). The score on 
each part represents the amount of time required to complete the 
task. Normative scores, corrected for age, education, race, and 
gender, are reported as T-scores.

Ruff 2&7 Selective Attention Test
The Ruff 2&7 Test is a measure of visual sustained and selective 
attention. Participants identify and mark target digits that are 
intermixed with other number distractors or capital letter dis-
tractors. This measure yields age and education corrected Total 
Speed (total target numbers crossed out) and Total Accuracy T 
scores. This measure has been shown to be sensitive to the effects 
of mTBI (40).

Test of Memory Malingering (TOMM)
The TOMM was used to evaluate performance validity on the 
neuropsychological measures in this study (41). This measure 
involves two learning/recognition trials and an optional reten-
tion trial following a delay. Established cutoff scores were used 
to determine performance validity; if participants scored below 
these cutoffs, their neuropsychological test scores were not 
included in the analyses.
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FigUre 1 | Concentration of insulin-like growth factor (IGF-I) in serum of 
deployment control (DC) (circles) and mild traumatic brain injuries (mTBI) 
(triangles) participants as a function of age. The criterion for a positive screen 
for growth hormone is an IGF-I level below the age-adjusted 10th percentile 
of IGF-I concentration (diagonal line) in the community control reference 
group. Serum IGF-I values of six of the mTBI group (▲) and two of the DC 
group (●) fell below the cutoff line.
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statistical analysis
Analysis of the difference between the proportion of participants 
with hypopituitarism in the DC and mTBI groups was performed 
with a modified “N-1” chi-squared test for 2  ×  2 contingency 
tables (42, 43). Analysis of the difference in the number of indi-
vidual hormonal abnormalities between the two groups was per-
formed with the unequal variance t-test for independent samples 
(44). Analysis of the relationships of mTBI and hypopituitarism 
with demographic, military history, symptom self-report, and 
cognitive testing data were performed with two-way analysis of 
variance (ANOVA). One-way ANOVAs were used to analyze the 
differences in the scores among the four participant subgroups, 
DC-N, DC-HP, mTBI-N, and mTBI-HP, on each of the individual 
items of the NSI.

resUlTs

identification of abnormal Plasma/serum 
hormone concentrations
12 of the 39 mTBI participants (31%) and 3 of the 20 DC par-
ticipants (15%) screened positive for one or more hormonal dis-
orders. Of the 15 participants with abnormal hormone levels, 8, 
including 2 of the DC participants, had markedly low basal serum 
IGF-I levels consistent with GHD. The diagonal line in Figure 1 
represents the age-adjusted 10th percentile of the IGF-I concen-
tration of the community control reference sample [equivalent to 
an SD score (SDS) of −1.4] used as the cutoff level for identifying 
probable GHD (Table 2). Basal IGF-I concentrations of four of 

the eight (mTBI-E, mTBI-A, mTBI-B, and DC-A) participants 
who screened positive fell below an SDS of −2.0 relative to the 
age-adjusted mean.

Hypogonadism was identified in two participants in the mTBI 
group. Two mTBI participants screened positive for hypothy-
roidism and one participant in each group screened positive 
for hyperprolactinemia. No participants screened positive for 
secondary adrenal insufficiency (sAI) (Table 3).

Five mTBI group individuals screened positive for posterior 
pituitary hormone deficiencies. Three were identified with DI 
based on multiple measures (including plasma and urine Na+, 
plasma and urine osmolality, and USG), and two screened posi-
tive for hypooxytocinemia. One individual, mTBI-E, screened 
positive for GHD, hypogonadism, and hyperprolactinemia. 
mTBI-D screened positive for hypothyroidism and DI, and 
TBI-L had hormone concentrations indicative of both GHD and 
hypooxytocinemia.

The proportion of individuals in each participant group who 
screened positive for one or more indices of hypopituitarism did 
not differ significantly (p = 0.094) when compared using the modi-
fied “N-1” chi-squared test for 2 × 2 contingency tables (42, 43).

When the differences between the two groups in the number 
of individual deficiencies were compared, a significant group 
difference was observed. The 39 members of the mTBI group 
screened positive for a total of 16 individual pituitary disorders 
(mean number of deficits per person = 0.413, SD = 0.715). Three 
of 20 (15%) DC participants showed evidence of a single pituitary 
impairment (mean = 0.15, SD = 0.366). There was a significant 
difference in total number of deficiencies between the groups by 
t-test of independent samples with unequal variances (t = 1.85, 
df = 56.99, p = 0.035) (44).

relationships of mTBi and 
hypopituitarism to Demographics and 
Military history
After hormonal screening, the mTBI and DC groups were divided 
into subgroups based on the presence or absence of hypopitui-
tarism. The resulting four groups are: deployment controls with 
(DC-N) and without (DC-HP) normal pituitary function, and 
mTBI group members with (mTBI-N) and without (mTBI-HP) 
normal pituitary function. Differences in demographics, deploy-
ment history, and blast exposure of the subgroups were analyzed 
with two-way ANOVA (Table 4). At the time of study enrollment, 
the four groups of veteran participants did not differ significantly 
in age, education, BMI, number of deployments, total months 
deployed, or time since last the blast-related concussion. There 
also were no significant differences among subgroup scores on 
the WTAR. There were, however, significant group differences in 
combat experiences endorsed on the CEQ. Both mTBI (F = 90.9, 
df = 1, p < 0.0001) and hypopituitarism (F = 4.21, df = 1, p < 0.05) 
were significantly associated with increased numbers of combat 
experiences.

PTsD Diagnosis
Two of 17 participants (11.8%) in the DC-N group, 1 of 3 
(33.3%) in the DC-HP group, 13 of 26 (50.0%, one unscored) 
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TaBle 4 | Subgroup means ± SEM and ranges ( ) for demographic characteristics, deployment history, and blast exposure of study participants.

Demographics Dc-n Dc-hP TBi-n TBi-hP

Age 31.8 ± 1.79 (23–47) 32.7 ± 4.7 (27–42) 32.1 ± 2.19 (22–60) 35.8 ± 2.08 (27–48)
Education (years) 13.8 ± 0.38 (12–17) 13.3 ± 0.67 (12–14) 14.3 ± 0.36 (12–20) 14.2 ± 0.3 (12–16)
Race 13/17 White, 1/17 Black, 

3/17 other
3/3 White 20/27 White, 2/27 Black, 2/27 Asian, 

1/27 Native Hawaiian, 2/27 other
8/12 White, 1/12 Black, 3/12 

other
BMI 27.1 ± 1 (21–34.7) 25.4 ± 3.05 (19.8–30.3) 27.8 ± 0.84 (20.5–35.5) 30.9 ± 1.5 (20.1–38.7)
WTAR—Verbal IQ 108.06 ± 2.17 114.5 ± 2.5 106.59 ± 1.91 106.17 ± 2.26
WTAR—Full Scale IQ 107.41 ± 2.05 113.5 ± 2.5 105.89 ± 1.93 105.58 ± 2.17
Combat Experiences Questionnaire 4.7 ± 1.0 (0–14) 4.3 ± 2.3 (0–8) 12.9 ± 0.5 (6–18) 13.6 ± 0.7 (9–17)

Deployment history Dc-n Dc-hP TBi-n TBi-hP

Number of deployments 2 (1–3) 2 (2–3) 2 (1–3) 2 (1–3)
Total deployment time (months) 14.1 months ± 1.23 

(7.1–24.8)
28.7 months ± 5.03 

(19.3–36.5)
19.2 months ± 2.03 (5.1–48.7) 21.9 months ± 2.3 (12–39.5)

Blast exposure Dc-n Dc-hP TBi-n TBi-hP

Number of deployment blast 
exposures

0 0 8.48 ± 2.12 (1–52) 14.58 ± 5.18 (3–66)

Time since last blast exposure 0 0 4.61 years ± 0.39 (1.65–8.19) 4.29 years ± 0.49 (1.65–8.19)

BMI, body mass index; WTAR, Wechsler Test of Adult Reading.

TaBle 3 | Hormonal disorders and self-report questionnaire percentiles for individual participants who screened positive for hypopituitarism.

identifiers Deficiency Pcl-M nsi PhQ-9 PsQi aUDiT-c

Mild traumatic brain injuries (mTBI)-A GHD 98 92 98 90 22
mTBI-B GHD 82 88 83 97 85
mTBI-C Diabetes insipidus (DI) 55 56 38 97 5
mTBI-D Hypothyroidism, DI 94 97 98 57 85
mTBI-E GHD, hypogonadism, hyperprolactinemia 78 69 72 NS 38
mTBI-F Hypothyroidism 98 99 98 35 11
mTBI-G Hypogonadism 98 99 97 87 99
mTBI-H Hypooxytocinemia 74 60 53 29 56
mTBI-I GHD 49 39 29 23 11
mTBI-J GHD 18 45 25 23 72
mTBI-K DI 51 35 21 87 93
mTBI-L GHD, hypooxytocinemia 22 22 14 23 97
DC-A GHD 57 37 58 57 56
DC-B GHD 10 12 14 5 56
DC-C Hyperprolactinemia 53 41 58 64 11

Percentile is based on the ranking of all participants. The higher the percentile, the more severe or frequent the symptoms endorsed. The participant identifiers in the far-left column 
are “dummy” identifiers and are not the participant identification sequences used in the study. Percentile values falling in the highest (fourth) quartile of scores are highlighted in 
yellow.
GHD, growth hormone deficiency; PCL-M, Posttraumatic Stress Disorder CheckList-Military; NSI, Neurobehavioral Symptom Inventory; PHQ-9, Patient Health Questionnaire-9; 
PSQI, Pittsburgh Sleep Quality Index; AUDIT-C, Alcohol Use Disorders Identification Test-Consumption; NS, no score.
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in the mTBI-N group, and nine of 12 (75.0%) in the mTBI-HP 
group were clinically diagnosed with PTSD with the CAPS. 
There was no significant difference on the total CAPS score 
between the mTBI-N and mTBI-HP groups (Table  5) (33). 
The scores of the two members of the DC-N group and one of 
the DC-HP group who were diagnosed with PTSD were not 
entered in the table because the Ns were too small to include 
in the ANOVA.

There were significant main effects of mTBI on each of five 
self-report questionnaires by two-way ANOVA (Table  5) and 
significant main effects of hypopituitarism on two of the ques-
tionnaires: those measuring PTSD symptoms and postconcussive 
symptoms. The mean score of the mTBI-HP group was numeri-
cally highest of the four groups on the total score of each of the 
self-report questionnaires.

Scores and percentile rankings on each of the self-report ques-
tionnaires were examined for individuals who screened positive 
for hypopituitarism to assess whether specific neuroendocrine 
disorders might be uniquely associated with extreme scores on 
a particular questionnaire (Table 3). Due to the small number 
of individuals in each category, it is not possible to come to 
any definitive conclusions. However, some interesting patterns 
appeared when percentiles were examined. For example, each 
of the two veterans who screened positive for hypothyroidism 
scored in the fourth quartile of the self-report questionnaires 
assessing PTSD symptoms, depression symptoms, postconcus-
sive symptoms, and current alcohol use symptoms. One of the 
two participants reported sleep inefficiency in the fourth quartile. 
Of a total of eight participants in the mTBI-HP and DC-HP 
groups that screened positive for GHD, only two in the mTBI 
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TaBle 5 | Means and SEMs of participant group scores on symptom self-report questionnaires and cognitive instruments.

Participant group Dc-n (n = 17) Dc-hP (n = 3) mTBi-n (n = 27) mTBi-hP (n = 12) mTBi main effect hP Main

self-report Questionnaires
CAPS posttraumatic stress disorder (PTSD) Diagnosis 2/17 11.8% 1/3 33.3% 14/27 51.9% 9/12 75.0% p < 0.005 p < 0.05
CAPS Total Score – – 53.3 ± 6.1 65.0 ± 9.4 – p = 0.291
PTSD CheckList-Military 26.1 ± 3.2 35.0 ± 9.0 46.2 ± 3.1 54.0 ± 5.7 p < 0.0001 p < 0.02
Neurobehavioral Symptom Inventory 8.4 ± 2.6 11.3 ± 5.7 26.9 ± 3.2 37.1 ± 6.6 p < 0.0001 p < 0.02
Patient Health Questionnaire-9 3.9 ± 1.3 6.7 ± 3.3 9.7 ± 1.4 12.7 ± 2.9 p < 0.005 p = 0.076
Pittsburgh Sleep Quality Index 5.8 ± 1.0 7.0 ± 3.5 10.4 ± 1.1 11.1 ± 1.7 p < 0.005 p = 0.308
AUDIT-C 2.7 ± 0.4 3.0 ± 1.0 4.1 ± 0.4 4.2 ± 0.9 p < 0.05 p = 0.369

cognitive measures
Trail making test trails A 55.0 ± 2.5 69.0 ± 4.0 55.6 ± 2.0 54.4 ± 3.4 p = 0.665 p = 0.700
Trail making test trails B 52.7 ± 3.2 63.0 ± 4.0 48.1 ± 2.8 47.8 ± 3.3 p = 0.128 p = 1.000
Ruff 2 & 7—total speed 50.1 ± 2.3 59.5 ± 1.5 50.6 ± 1.7 46.5 ± 2.3 p = 0.462 p = 0.496
Ruff 2 & 7—total accuracy 47.1 ± 2.2 51.0 ± 4.0 45.8 ± 2.1 46.3 ± 2.9 p = 0.742 p = 0.731

Higher scores on symptom self-report questionnaires reflect endorsement of more severe and/or frequent symptoms. Higher scores on the cognitive tests indicate better 
performance. The fractions in the “CAPS PTSD Diagnosis” row of the table indicate the number of participants with a clinical diagnosis of PTSD in each group divided by the 
total number of participants in the group. The two columns to the far right indicate the level of significance of the main effects of mild traumatic brain injury (mTBI Main) and 
hypopituitarism (HP Main) on group scores on each instrument by two-way analysis of variance. One mTBI-N and one mTBI-HP participant scored below the cutoff level on the Test 
of Memory Malingering, and their scores have been deleted from the statistical computations for cognitive measures. Probability values < 0.02 are printed in red to indicate statistical 
significance of main effects.
CAPS, Clinician-Administered PTSD Scale for DSM-IV; AUDIT-C, alcohol use disorders identification test-consumption.
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group, mTBI-A and mTBI-B, had scores in the fourth quartile 
on more than one symptom self-report questionnaire. The IGF-I 
serum concentrations of both fell more than 2 SDS below the 
age-adjusted mean. No members of the DC-HP group scored in 
the fourth quartile of any self-report questionnaires.

Significant group effects were found on 15 of 22 of the indi-
vidual items on the NSI by one-way ANOVA. The mean score 
of the mTBI-HP group was the highest on all 22 of the items, as 
illustrated in Figure 2. The highest scores of the mTBI-HP group 
on the individual components of the NSI were on the “forgetful-
ness,” “difficulty sleeping,” and “irritability” items.

cognitive Measures
No significant participant group differences were found by 
two-way ANOVA of the total scores of any of the cognitive 
measures used in the study. Neither mTBI nor hypopituitarism 
had a measurable influence on the limited number of cognitive 
domains explored with these instruments, i.e., processing speed 
(TMT: trails A–T score), mental flexibility (TMT: trails B–T 
score), or selective attention (Ruff 2&7: total speed T score, total 
accuracy T score) (Table 5). All participants but two scored above 
the published cutoff for performance validity on the TOMM, sug-
gesting that their performance on neuropsychological measures 
was an accurate reflection of their current cognitive abilities. One 
mTBI-N and one mTBI-HP participant scored below the cutoff 
level, and their scores have been deleted from the statistics for 
cognitive measures shown in Table 5.

DiscUssiOn

Our findings support the hypothesis that the prevalence of 
chronic posttraumatic hypopituitarism (PTHP) consequent to 
blast-related mTBI in US Armed Forces veterans is in accord 
with that reported in studies of pituitary dysfunction in the 
general population after TBI from all causes. Twelve of 39 (31%) 
deployed veterans who sustained blast-related concussions and 

three veterans in the DC group screened positive for hypopitui-
tarism. A wide range of values (from 5 to 90%) for the prevalence 
of PTHP in civilians has been reported in 40-plus studies since 
2000 with most finding a range of 25–50% (27, 45). The large 
variance is due to differences in the populations sampled, injury 
severity, time since injury, hormone measurement methods, and 
screening and clinical diagnostic criteria (46, 47). We employed 
clearly defined screening criteria calculated from the distribution 
of basal morning concentrations of each hormone in a reference 
population.

The hormone concentration measurements obtained in this 
study are valuable as screening assessments but cannot be viewed 
as diagnostic in the absence of provocative testing and/or clinical 
evaluation. They can, however, serve to direct the focus of clini-
cal appraisal by identifying individuals most likely to suffer from 
clinically significant deficits. Hypogonadism, hypothyroidism, 
and lactotroph dysfunction can be provisionally identified by 
measuring basal hormone levels. However, central DI resulting 
from vasopressin deficiency depends upon determination of USG, 
electrolyte concentrations, urine and Posm, and performance of 
a water deprivation test for adequate screening. Although meas-
urement of basal IGF-I, ACTH, and cortisol levels are helpful 
screening tools, diagnosis of GHD and sAI require provocative 
testing for accurate diagnosis. Since this study was restricted to 
the use of banked samples, provocative testing was not possible.

The finding that three of the participants in the DC group 
screened positive for an endocrine disorder—two for GHD and 
one for hyperprolactinemia—was not unexpected. First, there is 
a possibility that these individuals had sustained an unrecognized 
mTBI in their past. The DC participants whose blood samples and 
data were drawn from the repository for the study had undergone 
thorough screening and detailed interviews about their TBI history 
at the time of sample collection and denied having experienced a 
concussion. However, given the relative lack of knowledge about 
concussions and the unconcern about “getting your bell rung” 
prevalent 20 or more years ago, when these veterans were growing 
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FigUre 2 | Mean scores of each participant group on each item of the neurobehavioral symptom inventory. T-bars indicate SEMs. The higher the score, the greater 
the frequency or severity of the symptom endorsed. All symbols indicate a significant main effect of participant group on that self-report item by one-way analysis of 
variance (ANOVA). Significant group effects were found by one-way ANOVA on 15 of 22 items. Each symbol represents a specific result of post hoc Tukey HSD 

tests.  No significant paired comparisons by Tukey HSD.  Significant difference between mTBI-HP and DC-N by Tukey HSD.  Significant difference 
between mTBI-HP and DC-HP by Tukey HSD.  Significant difference between mTBI-N and DC-HP by Tukey HSD.
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up, the existence of prior mTBIs from impact cannot be ruled 
out absolutely in either group. However, the study’s focus was on 
blast-related mTBI, the mechanisms of which differ substantially 
from those of impact mTBI (48, 49), and the screening process 
eliminated the possibility of prior blast-related concussions in the 
DC group.

Second, as stated above, hormonal screening does not provide 
conclusive evidence of clinically significant deficiencies in the 
absence of provocative testing and/or evaluation of potential 
symptoms. Also, the use of specific concentration cutoff crite-
ria to identify deficiencies does not take into account relevant 
variables such as time of day, age, gender, body weight, or fasting 
state. Participant DC-C screened positive for hyperprolactinemia 
by exceeding our normal prolactin concentration range by only a 
fraction of a percentile, clearly an insufficient basis for a clinical 
diagnosis of hyperprolactinemia.

As is characteristic of previous studies of PTHP, we found 
that positive screens for GHD occurred more frequently than 
those for any other pituitary hormone deficiency. Single daytime 
measurements of serum GH are not valid indicators of somato-
troph function or daily GH release. Approximately 75% of GH 
secretion occurs during nighttime sleep, and concentrations 

are markedly low during the day, with short, irregularly spaced 
pulses of secretion occurring at long intervals (50). However, 
GH-stimulated hepatic production of IGF-I can be a valuable 
predictor of GHD. Significantly low age-adjusted levels of IGF-I 
are notably indicative of GHD, but the presence of normal or 
elevated IGF-I levels does not preclude the diagnosis (51–56).

The diagnostic accuracy of measuring IGF-I concentrations 
as an alternative to provocative testing to recognize GHD has 
been compared with receiver operating characteristic (ROC) 
analysis. Corneli et  al. reported that the best pair of highest 
sensitivity (96.6%) and specificity (74.6%) for identifying GHD 
was obtained with an IGF-I cutoff of −1.3 SDS (57), whereas 
Maghnie et al. found the best combination of sensitivity (77%) 
and specificity (100%) with a cutoff of −1.7 SDS (58). In the 
current study, an IGF-I concentration cutoff of −1.4 SDS rela-
tive to the age-adjusted means of the reference sample was used 
to determine a positive screen for GHD. The high specificity of 
IGF-I measurements reduces the likelihood of false positives, 
but the low sensitivity of the measurements suggests that some 
participants with GHD may not have been identified.

Insufficient GH secretion in adults has been shown to have 
negative effects in several cognitive domains and to be associated 
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with numerous behavioral symptoms (17, 59, 60). These include 
reduced physical mobility, fatigue, sleep difficulties, depression, 
social isolation, low sexual drive, lowered metabolic rate, and 
reduced aerobic capacity (61, 62). Poor quality of life is also 
strongly associated with adult GHD, especially in terms of vital-
ity and energy (63–66). Adult GHD results in reduced lean body 
mass, lipidemia, and increased adiposity. Even partial GHD is 
associated with adverse lipid profiles and early atherosclerosis in 
adult patients (67).

The mTBI group included two veteran participants who were 
considered hypogonadal based on our criteria: a total testosterone 
concentration less than the fifth percentile of the reference sam-
ple together with an LH or FSH level below the 10th percentile 
reference level. Hypogonadism has deleterious effects beyond 
those on fertility, psychosexual function, and general well-being. 
Male testosterone deficits are associated with muscle weakness, 
reduced lean body mass, decreased energy and motivation, 
impaired exercise tolerance, and premature mortality secondary 
to cardiovascular disease (68, 69).

One mTBI participant, mTBI-E, exhibited a highly 
elevated concentration of serum prolactin, 2.5 times higher 
than the next highest concentration measured in either group. 
Hyperprolactinemia is causally associated with hypogonadism 
through attenuation of LH and FSH secretion and desensitiza-
tion of gonadal LH and FSH receptors. Reduction of FSH levels 
by excessive prolactin secretion also gives rise to hypoactive 
sexual desire and erectile dysfunction. The symptoms of hyper-
prolactinemia include gynecomastia and erectile dysfunction in 
men, irregular menses in women, and decreased libido, infertility, 
galactorrhea, and osteoporosis in both sexes (70, 71).

Prolactin is the only anterior pituitary hormone for which 
secretion is under primarily inhibitory control. Dopamine 
tonically suppresses prolactin secretion, and diminishment 
of this inhibition results in high levels of circulating prolactin. 
Antipsychotic medications that act as antagonists at dopamine 
D2 receptors may induce hyperprolactinemia (70). Participant 
mTBI-E had been taking quetiapine, a so-called dopamine-
sparing antipsychotic (72). Though less likely to elevate prolactin 
levels than other antipsychotics (e.g., haloperidol and risperi-
done) hyperprolactinemia prevalence rates of up to 29% have 
been reported in association with its use (73, 74).

Participant mTBI-E had also been taking prazosin, an α-1 
adrenoceptor antagonist. Norepinephrine, as well as dopamine, 
has been shown to inhibit prolactin secretion in sheep via pitui-
tary α-1 receptors both in vivo and in vitro (75). Use of quetiapine 
and/or prazosin may have been responsible for the elevation of 
prolactin levels in this individual. Participant DC-C, who was 
found to have a dopamine level fractionally above the 95th 
percentile of the reference group, reported taking only natural 
supplements.

Two veterans in the mTBI group screened positive for central 
hypothyroidism, and no members of either group were found 
with sAI. TSH and ACTH deficiencies have been less frequently 
reported in previous studies of pituitary dysfunction after TBI 
than those of gonadotropins or GH (66, 76, 77). This outcome 
may be due in part to the anatomical location of thyrotrophs 
and corticotrophs in the pituitary’s protected median wedge. 

Vascular input to this region is carried by both long hypophyseal 
portal vessels and by the inferior hypophyseal artery via the short 
hypophyseal portal vessels. In contrast, GH-secreting somato-
trophs are more susceptible to damage because they are situated 
in the gland’s exposed lateral wings and are almost exclusively 
dependent on the long hypophyseal portal vessels for their blood 
supply. Gonadotrophs are distributed throughout the anterior 
pituitary (78).

A large majority of studies of chronic PTHP have focused 
solely on anterior pituitary hormonal disorders. Of those studies 
that have included investigations of the deleterious effects of TBI 
on posterior pituitary function, most have reported the existence 
of disorders related to that lobe as well, the most common being 
DI (15, 22, 66, 77, 79–81).

In the current study, in addition to the 12 participants from 
both groups who screened positive for anomalous anterior 
pituitary hormone levels, five veterans with mTBI (including 
one growth hormone deficient and one hypothyroid individual) 
screened positive for posterior pituitary hormone deficiencies. 
Repeated assays for vasopressin gave inconsistent results and 
the data were deemed to be unreliable. A positive screen for DI 
was defined by a combination of USG less than or equal to 1.005, 
urine osmolality less than 200 mOsm/kg, and normal Posm.

Oxytocin levels below the fifth percentile threshold of the 
reference group were found in plasma of mTBI-H and mTBI-L. 
Apart from its important role in parturition and lactation, there 
is no strong evidence for the clinical significance of oxytocin 
deficiency. However, many animal and human studies have 
provided evidence for the positive association of oxytocin 
levels with behavior and attitudes related to social interactions 
such as maternal and romantic bonding, attenuation of stress 
responses, and mediation of social support (82, 83). Deficiencies 
in oxytocin appear to be associated with psychiatric conditions 
involving deficits in social behavior including autism spectrum 
disorders and schizophrenia (84–86). Although findings in the 
literature lack consistency, recent research on both central and 
peripheral actions of oxytocin have identified potential relation-
ships with mood and anxiety (87), learning and memory (88), 
improvement of wound healing (89), modulation of inflamma-
tory responses (90, 91), neuroprotection (89, 91, 92), regulation 
of food intake and body weight (93), and reduction of pain 
sensitivity (94, 95).

There was no significant difference between the numbers of 
blast exposures sustained by the two mTBI subgroups during Iraq/
Afghanistan deployment (Table 4). Two-way ANOVA revealed 
significant main effects of both mTBI and hypopituitarism on the 
scores of the four groups on self-report questionnaires measur-
ing PTSD (PCL-M), and postconcussive symptoms (NSI). This 
finding suggests an independent effect of hypopituitarism on 
behavioral measures.

In another study currently in progress, the blast-related concus-
sion histories of the two mTBI groups are similar to one another, 
with the mTBI-N group tending to be higher than the mTBI-HP 
group in number of deployment mTBIs (96). Nonetheless, the 
TBI-HP group endorses significantly greater symptom frequency 
and severity than the TBI-N group on the PCL-M, NSI, PHQ-
9, and the PSQI described above, as well as the Quality of Life 
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Assessment of GHD in Adults (QoL-AGHDA) (97), and the 
Fatigue Severity Scale (96, 98). These preliminary findings sup-
port the hypothesis that mTBI-induced hypopituitarism has an 
additive effect in increasing neurobehavioral symptomatology 
beyond that of mTBI alone. There is an expanding literature about 
the wide-ranging and severe consequences of repetitive concus-
sions (22–26), but there is thus far no evidence from our studies 
that the number of concussions is related to the prevalence of 
hypopituitarism.

There have been very few published studies of PTHP after 
blast-related concussion to date (21, 27, 99, 100) other than 
our preliminary report. Baxter and colleagues found that six 
of 19 (32.0%) Afghanistan-deployed male United Kingdom 
soldiers with moderate or severe blast-related TBI had anterior 
pituitary dysfunction, compared to one of 39 (2.6%) age- and 
gender-matched civilian control subjects with moderate-to-
severe non-blast TBI (99). In another study, 5 of 20 veterans 
with mTBI sustained during combat (85% from explosive 
blast) had sub-threshold GH responses to glucagon adminis-
tration (100). A study using an integrated structural magnetic 
resonance imaging protocol examined 834 military service 
members with TBI. The participants were diagnosed with pri-
marily chronic (mean, 1,381, median, 888, days after injury), 
blast-related (84%), mild (92%) TBI. The results showed that 
29.0% of military TBI participants had pituitary abnormalities 
compared with only 2.4% in a group of 42 control participants. 
The rates included all pituitary abnormalities noted in struc-
tural images, both before and after administration of contrast 
agent (21).

There is significant overlap in the symptomology of persistent 
postconcussive (PPCS) and PTHP, and similarity of both to 
PTSD. This congruity of symptoms increases the difficulty of 
deciphering the etiology, progression, and identifiable differences 
among the conditions that are essential for successful treatment, 
recovery, and rehabilitation (90). Lack of recognition of pituitary 
dysfunction may be conducive to diminished quality of life, 
fatigue, cognitive deficits, sleep difficulties, sexual dysfunction, 
psychiatric and behavioral disorders such as anxiety, irritability, 
depression, and social isolation, as well as deleterious modifica-
tions in body composition and metabolism leading to increased 
cardiovascular mortality. Unlike PTSD and PPCS, PTHP is often 
readily treatable once identified, and its symptoms may often be 
reversed or attenuated with appropriate hormone replacement 
therapy.

Routine endocrine evaluation of hypopituitarism after brain 
injury has been advocated by several investigators studying PTHP 
(25, 53, 76, 77, 80, 101–108). A recent review of the literature 
stated that because “many of the symptoms of hypopituitarism 
are similar to those of TBI, it is important to make clinicians car-
ing for combat veterans aware of its occurrence … All patients 
who had a TBI of any severity, should undergo baseline hormonal 
evaluation” (109). The results of this study further support the 
need for endocrine evaluation in military personnel and veterans 
with a history of blast-related mTBI who are currently reporting 
postconcussive symptoms.
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The Congressionally Directed Medical Research Programs 
Concept Award that funded this study prohibited direct sam-
pling of biological fluids from human participants and access 
to identifiable private information. Therefore, all plasma and 
serum samples, demographic, and blast exposure data used 
in the study were obtained from an established biorepository 
entitled “Alzheimer’s Disease Research Center Participant 
Registry and Sample Repository.” The VA Puget Sound Health 
Care System Institutional Review Board and the US Army 
Medical Research and Materiel Command Office of Research 
Protections Human Research Protection Office approved the 
subject protocol with a waiver of informed consent. All par-
ticipants whose samples were utilized had consented to have 
their samples and data used in future research of this type. No 
direct intervention with any participant was allowed. These 
conditions precluded the use of provocative testing as a part of 
the screening procedure.
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