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Abstract: Traffic accidents have significant financial and social impacts. Reducing the losses caused
by traffic accidents has always been one of the most important issues. This paper presents an effort
to investigate the factors affecting the accident severity of drivers with different driving experience.
Special focus was placed on the combined effect of driving experience and age. Based on our dataset
(traffic accidents that occurred between 2005 and 2021 in Shaanxi, China), CatBoost model was
applied to deal with categorical feature, and SHAP (Shapley Additive exPlanations) model was used
to interpret the output. Results show that accident cause, age, visibility, light condition, season, road
alignment, and terrain are the key factors affecting accident severity for both novice and experienced
drivers. Age has the opposite impact on fatal accident for novice and experienced drivers. Novice
drivers younger than 30 or older than 55 are prone to suffer fatal accident, but for experienced drivers,
the risk of fatal accident decreases when they are young and increases when they are old. These
findings fill the research gap of the combined effect of driving experience and age on accident severity.
Meanwhile, it can provide useful insights for practitioners to improve traffic safety for novice and
experienced drivers.

Keywords: traffic safety; accident severity; driving experience; machine learning; CatBoost

1. Introduction

According to China Statistical Yearbook (2020), in 2019, there were 247,646 road traffic
accidents in China, resulting in 62,763 deaths, 25,101 injuries, and direct property losses of
1346.179 million CNY. The harm of traffic accidents to human and society is self-evident;
in order to reduce the occurrence of traffic accidents, it is necessary to explore the factors
affecting the severity of accidents. Driving experience is the key factor that cannot be
ignored in accident analysis. Studies show that novice drivers are prone to suffer fatal
accidents [1,2]. In addition, compared with experienced drivers, novice drivers tend to
overestimate driving skills [3] and more likely to be disturbed by external factors, such as
smartphones and billboards, which makes novice drivers more vulnerable to serious injury.
Therefore, it is necessary to investigate and analyze the influencing factors of accident
severity for novice drivers and experienced drivers.

At present, many scholars have conducted research on accident analysis of drivers
with different driving experience. Xiao et al. [4] found that there is correlation between
novice and experienced drivers for influencing factors of accident severity, but the corre-
lation is not strong. Al Garawi’s study [5] of novice female drivers with different ages
found no significant difference in accident rates among very young females, intermediate
females, and older females. Young drivers are more prone to suffer accidents than middle-
aged drivers in different groups with significant difference in driving experience. Moral
Garcia [6] found that in accidents involving novice drivers, speeding is a key factor; besides,
poor road condition and roads without sidewalks also make novice drivers more prone
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to serious accidents. However, these studies mostly focus on a certain driving experience
group or the independent influence of a single factor, ignoring the comparison of differ-
ent driving experience groups and the combined effect of factors. In this study, drivers
are divided into three groups according to their driving experience, and the influencing
factors of accident severity of different groups are comparatively studied. On this basis,
the combined effect of age and driving experience is analyzed. The CatBoost (Categorical
Boosting) model is applied to deal with many categorical features in accident data. As
a boosting algorithm, CatBoost can deal with categorical features well and has superior
performance compared with XGBoost (eXtreme Gradient Boosting) and LightGBM (Light
Gradient Boosting Machine) [7], which has been widely used in computer vision, data
mining, and other fields. However, the difficulty in applying machine learning methods is
how to clearly interpret the results. In this paper, SHAP (Shapley Additive exPlanations)
model is used to explain the CatBoost model output. SHAP is based on game theory and
interprets the model by calculating each variable’s contribution to the prediction, and one
study shows that it can be used to interpret any machine learning model [8].

The paper is organized as follows: Section 2 reviews the research on the traffic accident
severity of drivers with different driving experience and related models. Section 3 lists
the data sources in detail and analyzes the accident distribution characteristics. Section 4
introduces the methods used in this paper, and Section 5 analyzes the model results and
discusses the key results obtained from the model. Section 6 draws the conclusions. The
innovation of our study is analyzing the combined influence of driving experience and
age on traffic accident severity. The key questions to be addressed are: what are the major
factors causing serious accident outcomes for drivers with different driving experience?
Are there any significant variations in their impacts?

2. Literature Review
2.1. Novice and Experienced Driver in Traffic Accident Analysis

Previous studies [9,10] showed that driving experience is an important factor in
accident analysis, and the novice driver is prone to being fatally injured. Traffic accident
analysis for novice drivers and experienced drivers is one of the hot spots in traffic safety
research.

Through simulation experiment and questionnaire survey, Ivers et al. [11] found that
dangerous driving behavior of novice drivers is related to the increase of accident risk.
Craen et al. [3] also found that novice drivers tend to overestimate their driving skills.
Through driving simulation experiment, Ohlhauser et al. [12] found that the PRT (Percep-
tion Response Time) of novice drivers was significantly longer than that of experienced
drivers. Moral Garcia et al. [6] studied the traffic accidents of novice driver in urban areas
using the decision tree ensemble method, and the results showed that speeding is the main
cause of serious injury.

Compared with novice drivers, experienced drivers perform better in driving expe-
rience, decision-making ability, and other aspects. The research on experienced drivers
focuses on the comparison with novice drivers at present. Mitchell et al. [13] compared
common collision accidents between novice drivers and experienced drivers, and they
found that the accident characteristics of novice drivers and experienced drivers were
similar, but speeding, drowsy driving, and drunk driving were significant factors causing
accidents for novice drivers. By analyzing the eye movement data of novice and experi-
enced drivers when driving on different types of roads, Underwood et al. [14] found that
compared with novice drivers, experienced drivers showed higher sensitivity on the whole.
Xiao et al. [4] used the bivariate random-effects probit model to analyze the influencing
factors of accident severity for novice and experienced drivers, and they found that the key
factors of fatal injury suffered by novice drivers and experienced drivers are different.
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2.2. Traffic Accident Severity Modeling

Discrete response models are widely used in the modeling of accident severity in
previous studies. Bedard et al. [15] applied multivariate logistic regression to evaluate
the influence of the driver, accident, and vehicle characteristics on fatal injury, and found
that older drivers, females, not wearing seat belt, and speeding would lead to serious
accidents. However, the disordered response model fails to reflect the internal order of the
accident severity variable, and scholars use the ordered response model instead [16,17]. In
addition, the generalized ordered model [18-20] and random parameter model [21,22] are
also introduced. The generalized ordered model is an improvement of the ordered model;
it believes that the external variables have different effects on different alternatives, while
the random parameter model believes that the parameters in the model are random. Shao
et.al [23] analyzed the factors affecting the severity of truck involved rear-end collisions.
They found that there is a significant difference between the car-strike-truck and truck-
strike-car crashes. Chen et.al [24] found a significant correlation between the severity
of injuries of two drivers in the same rear-end collision. Driver’s age, gender, vehicle
type, and use of airbag or safety belt are found to affect injury severity. In addition,
road attributes, such as road surface condition and road width, are also closely related to
accident severity. Satoshi’s study [25] showed that snow-covered road surface conditions
significantly reduced the severity of accident. Xiao et al. [26] found that narrow lanes
(8 ft~11 ft) increase the collision risk; for sections with many lanes, a lane width of no less
than 12 ft helps to reduce the risk. When studying the factor affecting the severity of truck
and passenger car, Zhou et al. [27] found that non-intersection areas are more prone to
suffer fatal accidents. The research results of Ma [16] showed that when hazardous material
transportation accidents occur on highway, the probability of fatal accidents is higher than
that of other road types.

In the past two decades, the rapid development and excellent performance of machine
learning methods have attracted extensive attention of researchers. Compared with tra-
ditional statistical methods, machine learning methods have higher flexibility, almost no
presupposition on accident severity data, and can deal with missing values and noise [28].
Li et al. [29] used SVM to analyze the injury severity and found that SVM model was
superior to ordered probit model in accuracy. Yu et al. [30] used CART model to select
variables before modeling with SVM. Chen et al. [31] also used SVM model to study the
injury severity in rollover accident and used CART model to identify significant variables,
finding that SVM model with polynomial kernel function did better in prediction. Alkheder
et al. [32] applied Decision Tree, Bayesian Network, and linear SVM to analyze the risk
factors related to traffic accident severity. They found that road type and accident type are
key factors.

To improve model performance, multiple weak learners can be combined to form
a strong learner, that is, ensemble learning. In accident severity analysis, mainly two
ensemble learning methods are used—bagging (i.e., random forest [28,33]) and boosting.
Gradient boosting is an implementation of boosting method that could achieve most
advanced results in a variety of practical tasks. It has been the primary method during
the past decades for solving learning problems with heterogeneous characteristics, noisy
data, and complex dependency. Zhou et al. [27] used five classification models, including
multinomial logistic regression, naive bayes, CART, SVM, and XGBoost to analyze the
factors affecting the severity of passenger car and truck accidents. The results showed that
XGBoost combined with cost sensitive learning had the best effect. Xiao et al. [26] analyzed
vehicle accidents in Texas by using Light GBM model and found that speed limit, numbers
of lanes, road level, shoulder width, and shoulder type are key factors and the importance
of factors varies with accident type. However, the models mentioned above will cause
“dimension disaster” when dealing with the categorical features with many categories.
CatBoost is a novel gradient boosting technology proposed by Yandex Company [7]. It has
incomparable advantages in dealing with features with a large number of categories and is
widely used in many fields but rarely used in traffic accident severity analysis.
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3. Data Preparation

This paper collected 8447 road accidents from 2005 to 2021 in Shaanxi Province, China.
A three-point ordinal scale was used to classify the severity of traffic accident, including
PDO (property damage only), injury, and fatality. The distribution of the accident severity
levels was as follows: PDO = 22.15%, injury = 47.78%, and fatality = 30.07%.

The definition of novice drivers in this paper was consistent with a previous study [6],
and experienced drivers were divided into two groups according to their driving experi-
ence, as follows:

1. Group 1: driving experience < 3 years (i.e., novice driver).
2. Group 2: 3 years < driving experience < 10 years (i.e., experienced driver).
3. Group 3: driving experience > 10 years (i.e., experienced driver).

The distribution of these groups was as follows: Group 1 = 30.87%, Group 2 = 42.64%,
Group 3 = 26.48%, as shown in Figure 1. A total of 16 independent variables were selected
from driver properties (age, gender), vehicle properties (vehicle type, overload condition),
road properties (pavement surface condition, road alignment), environment properties
(day of week, season, hour, weather, visibility, traffic control, light condition, terrain), and
accident properties (accident cause and accident pattern). These features are categorical
features; this paper encodes the category into an ordinary number for numerical processing.
The specific information is shown in Table A1.

2000 ] 1936 :l FDO
1 . mjury
1800 [ Jratality
1600
1400 1353
o |
1200 4 1181
05 -
£ 1000 886
£ 800 4 755 747
1 604
6004 500 485
400
200
]
Groupl Group?2 Group3

Figure 1. Distribution of driving experience and accident severity.

4. Methodology

The framework of this paper is shown in Figure 2, and the methods are described in
detail in this section.

CatBoost Model ! Resampling

: : E Ja
; 1 ENN SMOTE| :
Firsti(1,...,n) samples and their residuals H ! :

and i-th model in the previous iteration

I Tree 1 I I Tree 2 I :
IModel 1 I IModel 2 I ;
Tree
: Explainer
Repeat T iterations : Features Interpretation ](—
! N

Figure 2. The analytic framework.



Int. J. Environ. Res. Public Health 2021, 18, 12725 50f 20

4.1. Data Resampling

No matter what model is adopted, the inherent imbalance attribute of accident data
may bring unexpected deviation. Imbalance refers to the unbalanced proportion of data
in different classes. In general, the number of fatal accidents is far less than that of injury
accidents. How to deal with unbalanced data is a key problem in accident severity analysis.

There are two common processing methods: over-sampling and under-sampling.
Over-sampling eliminates the class imbalance by creating synthetic minority instances,
including SMOTE (Synthetic Minority Over-sampling Technique) [34] and Borderline-
SMOTE (BSM) [35]. Under-sampling creates better-defined class clusters by removing
samples with specific selection criteria, and typical methods include ENN (Edited Near-
est Neighbor) [36] and Tomeklink [37]. However, the former method increases useless
information through adding samples, while the latter method losses information when
removing samples. To integrate the advantages of over-sampling and over-sampling,
the SMOTE-ENN method firstly uses SMOTE method to achieve over-sampling on the
minority class samples and then finishes under-sampling on the majority class samples by
using ENN method. This method preserves the features of majority samples and increases
the characteristics of minority samples, has good classification performance for unbalanced
datasets [38], and it is widely used in traffic safety analysis [39—41].

4.2. Gradient Boosting

As a classic implementation of gradient boosting, GBDT (Gradient Boosting Decision
Tree) has achieved success in the field of accident severity analysis [42,43]. GBDT can be

expressed as Equation (1):
M

F(x) = ) T(x0) 1)
j=1
where T (x;6) is the decision tree; 6 is the parameter of the decision tree; M is the number
of trees.
The loss function of decision tree T(x; 6) is expressed as L(-); in GBDT, the parameter
of the next decision tree is determined by minimizing the loss function, as shown in
Equation (2):

N
Om = argmin Y L(y;, Tu_1(x) + T(x;;0)) ()
i=1
Compared with GBDT, an improvement of XGBoost is that it adds a regularization
term to the objective function to reduce the complexity of the model and avoid overfit-
ting [44]. The objective function can be expressed as Equation (3):

n ) . k
L= Y 10790+ ¥ o) ()
i= j=

(i)

where 1 is the number of samples; I(-) is the loss function; . is the prediction value of

the sample i at iteration k, as an additive learning approach, y?](:) = 91@1 + fi(xD); fi () s

T
the k! tree function; Q) ( f]) = 9T+ %/\ Y wjz is the regularization term; T is the number
j=1
of leaf nodes; y and A are constants.

Different from GBDT, XGBoost makes a second-order Taylor expansion of the objective

function, as shown in Equation (4):

n N . . 1, . 1. I
Lz Y060 000 + G 4 h RGO 40T+ 52 Y wf @)
i=1 j=1
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where ¢() is the first-order gradient of the loss function; i(?) is the second-order gradient
of the loss function.

LightGBM improves the problems of GBDT and XGBoost in dealing with high-
dimensional features. Different from GBDT, LightGBM uses GOSS (Gradient based One-
Side Sampling) method to divide internal nodes. In GOSS, samples with large absolute
value of gradient are retained, while samples with small absolute value of gradient are
randomly selected to reduce the amount of calculation. In addition, LightGBM uses EFB
(Exclusive Feature Bundling) method to reduce the number of features. Further explanation
can be obtained in [45].

CatBoost is an implementation of Gradient Boosting Decision Trees that avoids the
conditional shift with Ordered TS and the prediction shift with Ordered Boosting. Yandex
proposed this algorithm in 2017 and compared it with XGBoost and LightGBM, and their
empirical results show that CatBoost has a tremendous advantage over current in the
boosting algorithms [7].

4.3. CatBoost
4.3.1. Ordered TS

Generally, boosting algorithm uses one-hot encoding method to process categorical
feature, but for categorical feature with many categories, this method will produce a plenty
of new features. To solve this problem, categories can be grouped into limited clusters
and with following application of one-hot encoding method. A common approach is to
use TS (Target Statistics) to estimate the expected target value in each category and group
categories based on that. That s, it uses TS feature £. to replace the k-th training sample x!
of categorical feature i.

Assuming the training dataset is denoted as D = {(xk, yx);_y ,}, Where x, =
(xi,. .., X"} is a vector of m features, and y;, € R is the target. CatBoost introduces a
random permutation ¢ of training samples; for each sample, it uses Equation (5) to com-
pute its TS, called Ordered TS [7]:

XA;( _ ijEDk H{x} = x;(}y] + ap

®)
Zx]'GDk H{x; = x;(} +a

where a > 0 is a parameter; p is the average target value in the dataset. For the training
sample, Dy = {x;:0(j) < o(k)}, and Dy = D for the test sample.

4.3.2. Ordered Boosting

Assume the goal of learning is to train a minimal expected loss £(F) : = EL(y, F(x)),
where L(-,-) is a smooth loss function, and (x,y) is the sample of the test dataset. The
gradient boosting algorithm takes greedy fashion to construct an approximate sequence
F!: R™ — R by modifying from the previous estimate, as shown in Equation (6):

F' = F1 o ah! ©6)

where « is the step size; t = 1,2,...; function k' :R™ — R (the base learner) is chosen
from a family of functions H to minimize the expected loss, as shown in Equation (7):

n o= argminheHE<Ft_l+h) = argminheHEL(y,Ft_l(x)+h(x)) (7)

Usually, the least-squares approximation is used, as shown in Equation (8):

W = argminyeyB(—g' (x,y) — h(x))’ ®)
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where ¢f(x,y) : = % ls = Fi-1(y)- However, in practice, the expectation in Equation (8) is

unknown and is usually approximated using the same dataset D, as shown in Equation (9):

n

, 1 2
n o= argminyep - Z (=8 (¥, yi) — h(x0)) ©)
k=1

This inevitably leads to a deviation between the base learner h! defined by Equation (9)
and the solution of Equation (8), because the conditional distribution of the gradient
8" (¢, yi) | xx is shifted from g'(x, y)|x. The solution in CatBoost is called Ordered Boosting.
It takes one random permutation ¢ of the training examples and maintains 7 different
models My, ..., M,, where model M; is learned using only the first i samples in the
permutation. In each step, the model M;_; is used to calculate the residual of the j sample.

4.4. SHAP

Traffic safety is more concerned about how to interpret the model. However, most of
the previous studies focused on improving the accuracy of the model and model compar-
ison but neglected the interpretability. This paper applies SHAP model to interpret the
model output. SHAP is an additive interpretation model inspired by Shapely value from
game theory. It calculates the Shapely value of each feature, which is used as a basis for
measuring the impact of the feature on the final output, as shown in Equation (10).

M
g(z) = o+ Y o7/ (10)

ji=1

where:

g is the explanation model.

M is the number of features in the model.

¢; is the SHAP value for the feature j.

z/ = 1if the feature j is present, and otherwise, z;' = 0.

¢o is a constant.

The SHAP value for feature j is calculated by comparing the model output with and
without the feature, described in the Equation (11):

¢ = )

SCM~{j)

[S[*(IM] — IS = 1)!
|M]!

[(SU{j}) —o(5)] (11)

where S is the subset of features used in the model; M is the set of all features; v(S U {j}),
and v(S) are the model output with and without feature j. If the SHAP value of a feature is
positive, it indicates that the feature has a positive effect on the model results, and in this
study, it tends to aggravate the severity of accidents. If the SHAP value is negative, it is the
opposite.

However, the limitation of this model is that as the number of features increases,
the computation cost increases exponentially. To break through this limitation, Lundberg
et al. [46] proposed the TreeExplainer, which is suitable for tree-based machine learning
models, such as LightGBM and CatBoost. The TreeExplainer can calculate the accurate
Shapley value and correctly estimate the Shapley value when there is correlation between
features [47]. The SHAP interaction values can be calculated as the difference between the
Shapley values of feature i with and without feature j, as shown in Equation (12).

¢ = 2

SCM~{i,j}

|5|’(|M|A71||!5 “ 2 o(s U i, }) — o(S U {i}) — (S U {j}) + o(8)] (12)
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4.5. Performance Measures

The performance of machine learning models can be evaluated by several metrics,
which can be generally calculated from the confusion matrix, depicted in Figure 3.

A common measure of model performance is the accuracy, where the total number of
correct predictions is divided by the total number predictions. However, in unbalanced
data sets, this metric cannot truly reflect the performance of the model. For example,
assuming that the ratio of samples numbers of class A and class B in the test set is 9:1, the
accuracy of the model that directly predicts all test samples are class A will be as high as
90%, but the performance of this model is very poor. To address this issue, the F; score is
often used. F; score combines precision and recall and is computed as the harmonic mean
of precision and recall, as shown in Equation (13).

Precision * Recall
FL =2 1
! * Precision + Recall (13)

where Precision = % and Recall = TPZ% It is generally believed that the larger

the F; score, the higher the performance of the model.

Prediction
Negative Positive
2
= True Negative False Positive
z é” (TN) (FP)
<
2
Q
< | 2 . .
= False Negative True Positive
S (FN) (TP)

Figure 3. Confusion matrix.

Another method is to use ROC (Receiver Operating Characteristic) as a measurement
metric. The ROC curve is plotted with TPR (True-Positive Rate) against the FPR (False-
Positive Rate), where TPR is on the y-axis and FPR is on the x-axis. The performance of the
model can be intuitively judged by calculating AUC (Area Under ROC Curve). Generally,
the value of AUC is between 0.5 and 1, with larger AUC representing better performance.

5. Results and Discussions
5.1. Model Parameters

Hyper-parameters tuning is the key step of training/fitting machine learning model.
Proper parameters can improve the generalization performance, avoid overfitting, and
reduce the complexity of the model. For the CatBoost model, several hyper-parameters
listed in Table 1 need to be tuned. GridSearch method is the common method for hyper-
parameters tuning in machine learning, but the disadvantage of this method is that it
takes long time. In this paper, an open-source library named Hyperopt [48] is used for
hyper-parameters tuning. It is an implementation based on Bayesian hyper-parameters
optimization that optimizes continuous, discrete, and condition variables and automatically
obtains the best hyper-parameters. Hyperopt is widely used in hyper-parameter tuning of
machine learning model, which has a good performance [49-51].



Int. |. Environ. Res. Public Health 2021, 18, 12725 9 of 20

Table 1. CatBoost parameter tuning results.

Parameter Description Group 1 Group 2 Group 3

Coefficient at the L2 regularization

12_leaf_reg term of the cost function. 2 5 5
learning_rate Used for reducing the gradient step. 0.15 0.3 0.25
depth Depth of the tree. 8 10 10
iterations The maximum numbf:r of trees that 1000 400 500
can be built.
loss_function The metric to use in training. MultiClass MultiClass MultiClass

The number of iterations to continue
od_wait the training after the iteration with the 12 16 14
optimal metric value.

In this study, 65% of the randomly selected data was used to train the model, and
35% of the data was used to test the model. In addition, a 10-fold cross validation is
conducted on the training set to identify the optimal hyper-parameters for the CatBoost
model. Three CatBoost models are developed for Group 1, Group 2, and Group 3, and the
optimal hyper-parameter values are provided in Table 1. All experiments were processed in
DataSpell (2021.3 EAP 20) using python 3.8.10, AMD Ryzen 7 4800U with Radeon Graphics,
1.80 GHz. Regarding the libraries, we used xgboost 1.5.0, lightgbm 3.3.1, catboost 1.0.3,
scikit-learn 1.0.1, imbalance-learn 0.8.1, hyperopt 0.2.6, and shap 0.40.0.

As shown in Figure 4, the AUC values of CatBoost in the three groups are 0.86, 0.79,
and 0.87, which indicates that CatBoost has better performance than GBDT (0.79, 0.77,
and 0.80), XGBoost (0.82, 0.78, and 0.81), and LightGBM (0.84, 0.79, and 0.82). Similarly;,
the F; score values of CatBoost (0.70, 0.67, and 0.70) are better than other models. These
encouraging AUCs and F; scores give a statistical proof of the excellent classification
performance of the CatBoost in this study.

0.90
0754
B ciroupt B oy
- Group2 e
Group3
085 Ecrow 070
s
= 080 3 0651 0.65
< &
075 0.60 4
0.35
0.70 - GBDT XGBoost LightGBM CatBoost
GBDT XGBoost LightGBEM CatBoost
(a) (b)

Figure 4. Classification performance: (a) AUC; (b) F; score.

5.2. Feature Analysis

In this section, the interpreter of CatBoost output results is constructed by using the
SHAP model, and the two questions mentioned above will be discussed in detail: what
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Accident Cause
Age

Season

Visibility

Light Condition
Road Alignment
Terrain

Hour

Accident Pattern
Day of Week
Weather

Vehicle Type
Traffic Control
Pavement Condition
Overload Condition

Gender

are the major factors causing serious accident outcomes for drivers of different driving
experience? Are there any significant variations in their impacts?

Figure 5 illustrates the average absolute impact of each feature on the model output
magnitude, and the different colors indicate the different severity levels of accident. As
shown in Figure 5a, accident cause is the strongest predictor for accident severity of novice
drivers. Besides, age, season, visibility, light condition, road alignment, and terrain also
have significant impact on accident outcomes. On the other hand, pavement surface
condition, overload condition, and gender have the least impact on accident severity.

Regarding factors affecting accident severity of drivers in Group 2 (Figure 5b), accident
cause is the strongest predictor, followed by visibility, age, season, terrain, and road
alignment. Meanwhile, pavement surface condition, gender, and overload condition have
the least impact on accident severity.

For drivers with more than 10 years of driving experience, as shown in Figure 5c,
accident cause is also the strongest predictor. Visibility, road alignment, age, terrain, and
weather have significant impact on accident severity. In addition, accident pattern, overload
condition and gender have the least impact on accident severity.

Accident Cause
Visibility

Age

Season

Terrain

Road Alignment
Hour

Vehicle Type
Light Condition
Weather

Day of Week
Accident Pattern
Traffic Control

Pavement Condition

0.0

s PDO Gender = PDO

. Fatality veriond Coni . Fatality

= Injury wverload Condition - Injury
0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 25

Average impact on model ocutput magnitude

Average impact on model output magnitude
(a) (b)

Accident Cause
Visibility

Road Alignment
Age

Terrain
Weather

Light Condition
Season

Hour

Pavement Condition
Vehicle Type

Traffic Control

Day of Week
Accident Pattern
Overload Condition s PDO
Gend I Fatality
enaer . njury

O‘EJO D.éS 0.‘50 0,‘75 l.bO l.éS 1.’50 l.l75 2.‘00
Average impact on model output magnitude

(c)

Figure 5. Feature importance on accident severity: (a) Group 1; (b) Group 2; (¢) Group 3.
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In accident prevention, it is necessary to understand how features affect fatal accident.
This requires more information beyond feature importance. Figure 5 can only show which
features are important; therefore, the SHAP summary plot is required for analysis. The
summary plots of the CatBoost prediction result made by SHAP are shown in Figure 6.
Each field represents the impact of the features on the probability of fatal accident of each
group. The SHAP values sort the features’ rank on the left side of the y-axis and the x-axis
is the scale of all samples calculated SHAP values. The color bar provides more details
regarding how each feature affects the fatal accident. Each dot in the figure represents a
data sample and is colored by the value of the feature from low (blue) to high (red).
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SHAP summary plots of fatal accident: (a) Group 1; (b) Group 2; (c) Group 3.

As shown in Figure 6, accident cause, age, visibility, light condition, and terrain have
a significant impact on fatal accident for both novice and experienced drivers. Accident
cause is the most important feature affecting the occurrence of fatal accident. For drivers
with different driving experience, the impact of accident cause is similar. In Figure 6,
accident cause with high number (e.g., improper operation, illegal overtaking, illegal
U-turn) decreases the risk of fatal accident, while accident cause with low number (e.g.,
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overload or oversize, speeding, drowsy driving) correspondingly increases the risk. Besides,
low visibility and poor light condition have positive SHAP values, which means that these
features increase the risk of fatal accident. This is because the higher the visibility or the
better the road light condition, the greater the sight distance of the driver, and the higher
the safety level, as the driver can get sufficient time and distance to deal with emergencies.
The result is consistent with Ahangar’s research [52]. For terrain, a previous study found
a strong association between unfavorable terrain and locations with high accident rates,
which in general continue to increase as horizontal curvature increases [53]. We also get
similar results: mountains or hills can increase the risk of fatal accidents.

Different from the above features, the impact of age on fatal accidents is different for
novice and experienced drivers. The risk of fatal accident is increased for young novice
drivers and decreased for old novice drivers. This is consistent with Xiao’s study [4]. They
found that increasing age reduces the risk of fatal accidents for novice drivers. However,
for experienced drivers, the impact of age on fatal accident is opposite. At present, there are
few studies on age in the field of accident severity of experienced drivers, and our findings
supplement relevant studies to some extent. It also confirms the necessity of analyzing the
influencing factors of accident severity for drivers with different driving experience.

5.3. Feature Dependency Analysis

To analyze this variation further, the impact of age on fatal accident is analyzed
separately. In Figure 7, the horizontal axis represents the value of feature, and the left
vertical axis is for SHAP value, which describes the contribution of the corresponding
feature to the CatBoost model output.

As shown in Figure 7a, for novice drivers, the trend of the impact of age on fatal
accident presents a U shape. This shows that novice drivers younger than 30 or older
than 55 are prone to suffer fatal accidents, which is consistent with previous research
results [54,55]. One possible explanation is that novice drivers are more likely to suffer
fatal accident due to the lack of driving experience [56]. Besides, young drivers are more
likely to take risks [57], and older drivers’ driving ability decreases due to aging [58], which
increases the risk of fatal accident in these two groups.

For experienced drivers, the impact of age on fatal accident is different from that of
novice drivers. The SHAP value shows an obvious increasing trend with the increase of
age. In Figure 7b,c, SHAP value increases from negative to positive. This indicates that for
experienced drivers, the risk of fatal accident decreases when they are young and increases
when they are old. For Group 2, SHAP value is positive when the age is over 40, while for
Group 3, SHAP value is significantly greater than 0 when the age is over 50. This shows
that the increase of driving experience reduces the impact of the increase of age on the risk
of fatal accident.

From the above analysis, it can be found that, unlike young novice drivers, the risk of
fatal accident of young experienced drivers is decreased because the increase of driving
experience enables young drivers to deal with most emergencies on the road and reduce the
risk of fatal accident. Although older experienced drivers have some driving experience,
the decline of visual function and cognitive ability makes old drivers’ driving ability
decline, which makes older drivers prone to suffer fatal accidents [59-61].
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Figure 7. SHAP dependency plots of Age: (a) Group 1; (b) Group 2; (c) Group 3.

5.4. Feature Interaction Analysis

Considering that accident cause is the strongest predictor of accident severity, mean-
while, it also contains the information of drivers’ condition. This paper provides an
explanation for this variation by analyzing the interaction between accident cause and age.
In Figure 8, the horizontal axis is the value of age, the left vertical axis is the SHAP value of
age, and the right vertical axis is the value of accident cause.

As shown in Figure 8a, novice drivers younger than 30 years old are more likely to
cause serious accidents due to accident cause with low number, such as overload, speeding,
and drowsy driving. For experienced drivers with less than 10 years of driving experience,
Figure 8b shows that drivers younger than 40 years old are more likely to suffer serious
injuries due to an accident cause with a low number, while for drivers older than 40, the
accident cause with a high number is more likely to lead to fatality. The overall trend of
Figure 7c is the same as that of Figure 8b; the difference is that for drivers aged 40~50 with
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Figure 8. SHAP interaction effects plots: (a) Group 1; (b) Group 2; (¢) Group 3.

One possible explanation is that young drivers are more likely to get involved in
fatal accidents due to risky behavior [1,62,63], and part of the reason for young drivers’
risk-taking behavior is that they cannot identify the potential hazards in the environment
and choose inappropriate behavior [57]. Eye scanning pattern analysis showed that young
drivers tend not to scan potential risk areas [64], and one study showed that once young
drivers identify a hazard, it is difficult for them to deal with [65]. In addition, compared
with experienced drivers, novice drivers are prone to engage in dangerous driving behavior
and are more aggressive when driving [66], making young novice drivers more prone
to suffer fatal accidents. Driving experience can not only help drivers accurately judge
the driving environment but also reduce the risk of dangerous situations by reducing the
tension of drivers when emergencies occur [67]. With the increase of driving experience,
the risk of fatal accidents caused by dangerous behaviors of young drivers decreases.

For older drivers, the risk of fatal accident is increased due to improper operation,
illegal overtaking, and other causes, and the increase of driving experience does not
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significantly reduce the risk. The possible reason is that with the increase of age, the
physical function gradually decreases, and the vision, hearing, and response ability to
the driving environment are weakened [67], which puts older drivers at risk of more
serious injuries [59,60]. Additionally, compared with young drivers, older drivers tend to
have a prudent driving style and less risk-taking behavior with the increase of age. It is
worth noting that older drivers are inherently prone to be seriously injured in an accident
because they are frail [68]. The higher risk of fatality among old drivers tends to reflect
their physical vulnerability rather than the severity of the accident [60].

6. Conclusions

This research studied the influencing factors of traffic accident severity for drivers
with different driving experience. Our innovation further analyzed the combined influence
of age and driving experience. Three CatBoost models were developed and compared
based on driving experience, and the output results were interpreted by using SHAP model.
The following conclusions can be drawn:

1. In the analysis of influencing factors of accident severity, CatBoost generates the
best result (AUC: 0.86, 0.79, and 0.87; F; score: 0.70, 0.67, and 0.70), indicating the
application potential of the model in traffic safety.

2. Accident cause, age, visibility, light condition, season, road alignment, and terrain are
the key factors affecting the severity of traffic accident. Pavement surface condition,
overload condition, accident pattern, and gender have the least impact on accident
severity. The importance of these features varies for drivers with different driving
experience in terms of accident severity.

3. The impact of age on fatal accidents is different for drivers with different driving
experience. Novice drivers younger than 30 or older than 55 are prone to suffer fatal
accidents, but for experienced drivers, the risk of fatal accident decreases when they
are young and increases when they are old.

In the subsequent research, some limitations in this study can be solved. Firstly,
satellite image data can be used to obtain accident-related features to expand the database,
such as curve, number of lanes, etc., and these features would help to reflect the real
accident information more specifically. Secondly, according to the inherent attributes of
driving experience and age, it is possible to combine them into a new feature to further
study their combined influence. In addition, considering that the accident characteristics
have obvious regional attributes, the accident data of different regions can be utilized in
the follow-up study.
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Appendix A
Table Al. Independent variables of traffic accident severity.
Groupl Group2 Group3
Variable Description
N % N % N %
Day of Week Weekday = 1 1928 73.93% 2626 72.90% 1627 72.73%
Weekend =2 680 26.07% 976 27.10% 610 27.27%
Spring: Match to May =1 680 26.07% 922 25.60% 578 25.84%
Summer: June to August = 2 659 25.27% 904 25.10% 553 24.72%
Season Autumn: September to November = 3 649 24.88% 867 24.07% 526 23.51%
Winter: December to February = 4 620 23.77% 909 25.24% 580 25.93%
0:00~06:59 = 1 216 8.28% 314 8.72% 199 8.90%
07:00~09:59 = 2 414 15.87% 550 15.27% 368 16.45%
Hour 10:00~15:59 = 3 923 35.39% 1280 35.54% 774 34.60%
16:00~19:59 = 4 738 28.30% 982 27.26% 589 26.33%
20:00~23:59 = 5 317 12.15% 476 13.21% 307 13.72%
Overloaded or oversized = 1 54 2.07% 63 1.75% 57 2.55%
Driving a vehicle that c@oes not satisfy normal driving 70 2.68% 68 1.89% 84 3.76%
requirements = 2
Speeding = 3 620 23.77% 791 21.96% 368 16.45%
Drowsy driving = 4 30 1.15% 33 0.92% 77 3.44%
Traffic signal violation = 5 31 1.19% 51 1.42% 59 2.64%
Driving without license = 6 46 1.76% 94 2.61% 55 2.46%
Failing to give way to Pedestrians or vehicles as 488 18.71% 670 18.60% 404 18.06%
Accident required =7
Cause Reversing illegally = 8 38 1.46% 75 2.08% 51 2.28%
Improper backing =9 158 6.06% 224 6.22% 135 6.03%
Illegal parking = 10 38 1.46% 49 1.36% 71 3.17%
Affecting normal driving when changing lanes = 11 117 4.49% 186 5.16% 126 5.63%
Improper operation = 12 178 6.83% 237 6.58% 95 4.25%
Illegal overtaking = 13 121 4.64% 149 4.14% 170 7.60%
Driving in a place not for traffic = 14 257 9.85% 410 11.38% 192 8.58%
Illegal vehicle meeting = 15 191 7.32% 288 8.00% 148 6.62%
Illegally cut in = 16 97 3.72% 118 3.28% 57 2.55%
Illegal U-turn = 17 74 2.84% 96 2.67% 88 3.93%
The occupants dropped or thrown =1 3 0.12% 6 0.17% 3 0.13%
Crushing pedestrians = 2 53 2.03% 68 1.89% 50 2.24%
Vehicle falling = 3 23 0.88% 29 0.81% 19 0.85%
Vehicle rolled or rolled over = 4 71 2.72% 96 2.67% 56 2.50%
Accident Vehicle crashes into a non-fixed object = 5 3 0.12% 2 0.06% 2 0.09%
Pattern Vehicle crashes into a fixed object = 6 48 1.84% 94 2.61% 55 2.46%
Crashing into a stationary vehicle = 7 50 1.92% 100 2.78% 84 3.76%
Other vehicle-to-vehicle accidents = 8 21 0.81% 24 0.67% 25 1.12%
Scratch pedestrians = 9 317 12.15% 500 13.88% 281 12.56%
Other vehicle-pedestrian accidents = 10 8 0.31% 7 0.19% 5 0.22%

Crashing into a moving vehicle = 11 2011 77.11% 2676 74.29% 1657 74.07%
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Table A1. Cont.

Variable Description Groupl Group2 Group3
N % N % N %
Sunny = 1 1882 72.16% 2618 72.68% 1607 71.84%
Cloudy =2 346 13.27% 476 13.21% 324 14.48%
Weather Foggy =3 6 0.23% 8 0.22% 8 0.36%
Rainy = 4 347 13.31% 469 13.02% 279 12.47%
Snowy =5 27 1.04% 31 0.86% 19 0.85%
Dry =1 2172 83.28% 2994 83.12% 1874 83.77%
Wet =2 379 14.53% 519 14.41% 309 13.81%
Pavement Water standing = 3 38 1.46% 53 1.47% 33 1.48%
Surface
Condition Flooding = 4 2 0.08% 3 0.08% 3 0.13%
Muddy =5 2 0.08% 9 0.25% 1 0.04%
Icy or snowy = 6 15 0.58% 24 0.67% 17 0.76%
<50m=1 411 15.76% 516 14.33% 349 15.60%
50~99 m = 2 768 29.45% 1063 29.51% 661 29.55%
Visibility 100~200 m = 3 513 19.67% 698 19.38% 429 19.18%
>200m = 4 916 35.12% 1325 36.79% 798 35.67%
Traffic Without signal control = 1 729 27.95% 1049 29.12% 602 26.91%
Control With signal control = 2 1879 72.05% 2553 70.88% 1635 73.09%
Day =1 1731 66.37% 2365 65.66% 1453 64.95%
Dawn =2 21 0.81% 41 1.14% 24 1.07%
Col;ligﬂiton Dusk =3 40 1.53% 80 2.22% 53 2.37%
Dark: streetlight on = 4 355 13.61% 493 13.69% 301 13.46%
Dark: streetlight off = 5 461 17.68% 623 17.30% 406 18.15%
Plain = 1 1561 59.85% 2127 59.05% 1338 59.81%
Terrain Hill = 2 208 7.98% 265 7.36% 170 7.60%
Mountain = 3 839 32.17% 1210 33.59% 729 32.59%
Straight and level = 1 1657 63.54% 2322 64.46% 1447 64.68%
Road Straight with gradient = 2 68 2.61% 103 2.86% 65 2.91%
Alignment Curved and level = 3 339 13.00% 438 12.16% 258 11.53%
Curved with gradient = 4 544 20.86% 739 20.52% 467 20.88%
Gender Male = 1 2476 94.94% 3390 94.11% 2127 95.08%
Female =2 132 5.06% 212 5.89% 110 4.92%
18~20=1 110 4.22% 0 0.00% 0 0.00%
21~25=2 541 20.74% 266 7.38% 0 0.00%
26~30 =3 485 18.60% 746 20.71% 49 2.19%
31~35=4 383 14.69% 711 19.74% 317 14.17%
36~40 =5 411 15.76% 620 17.21% 514 22.98%
Age 41~45=6 334 12.81% 569 15.80% 511 22.84%
46~50 =7 202 7.75% 345 9.58% 419 18.73%
51~55 =8 99 3.80% 221 6.14% 247 11.04%
56~60 =9 36 1.38% 90 2.50% 119 5.32%
61~65 = 10 6 0.23% 31 0.86% 58 2.59%
>65 =11 1 0.04% 3 0.08% 3 0.13%
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Table A1. Cont.

Variable Description Groupl Group2 Group3
N 0/0 N 0/0 N 0/0

Overload Overloaded =1 205 7.86% 232 6.44% 149 6.66%
Condition Not overloaded = 2 2403 92.14% 3370 93.56% 2088 93.34%
Trailer = 1 196 7.52% 208 5.77% 122 5.45%
Tractor = 2 43 1.65% 49 1.36% 39 1.74%
V;;‘;Cée Automobile = 3 1955  7496% 2723 7560% 1698  7591%
Motorcycle = 4 394 15.11% 603 16.74% 363 16.23%
Other =5 20 0.77% 19 0.53% 15 0.67%
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