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Abstract
This study aims to discover the genetic modules that distinguish glioblastoma multiforme
(GBM) from low‐grade glioma (LGG) and identify hub genes. A co‐expression network
is constructed using the expression profiles of 28 GBM and LGG patients from the Gene
Expression Omnibus database. The authors performed gene ontology (GO) and Kyoto
encyclopaedia of genes and genomes (KEGG) analysis on these genes. The maximal
clique centrality method was used to identify hub genes. Online tools were employed to
confirm the link between hub gene expression and overall patient survival rate. The top
5000 genes with major variance were classified into 18 co‐expression gene modules. GO
analysis indicated that abnormal changes in ‘cell migration’ and ‘collagen metabolic
process’ were involved in the development of GBM. KEGG analysis suggested that ‘focal
adhesion’ and ‘p53 signalling pathway’ regulate the tumour progression. TNFAIP6 was
identified as a hub gene, and the expression of TNFAIP6 was increased with the elevation
of pathological grade. Survival analysis indicated that the higher the expression of
TNFAIP6, the shorter the survival time of patients. The authors identified TNFAIP6 as
the hub gene in the progression of GBM, and its high expression indicates the poor
prognosis of the patients.

1 | INTRODUCTION

Glioblastoma multiforme (GBM), the most common and
highly low‐survival primary intracranial tumour, accounts for
14.6% of all brain and other central nervous system (CNS)
tumours and 48.3% of malignant tumours [1]. According to
CBTRUS report, glioblastoma had the highest average annual
age‐adjusted incidence rates in malignant brain tumours,
reaching 3.22 per 100,000 population. Its 5‐year relative
survival was only 6.8% [1]. Glioblastoma presents highly
aggressive, proliferative, and other highly malignant biological
behaviours that severely limit the survival of cancer patients.
The current standard treatment for newly diagnosed glioblas-
toma is STUPP plan [2], implying that tumour is surgically
excised to the greatest extent possible, followed by concurrent
chemoradiotherapy and then maintained with temozolomide
chemotherapy. Even with the most rigorous treatment, the

average median survival time for glioblastoma patients is just
approximately 15 months [3]. Although numerous studies have
been conducted to investigate new therapies for glioblastoma,
alternative treatment strategies such as targeted therapy [4, 5]
and immunotherapy, among others, have not demonstrated
substantial effects except in tumour‐treating fields [6, 7].

Previous research has revealed a plethora of glioblastoma
genetic and epigenetic aberrations, including mutations in
IDH1/2, EGFR, PDGFRA, and NF1, methylation alterations
in MGMT promoter, hTERT activation mutations, and so on
[8–12]. These biomarkers are essential for improving glio-
blastoma categorisation, increasing diagnostic accuracy,
predicting patient prognosis, and designing effective molecular
targeted treatment medicines. However, current targeted
treatment techniques for glioblastoma have made little prog-
ress [13, 14]. Researchers believed that the efficacy of single‐
drug targeted therapy was limited and that combining
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multiple targeted therapy medications could benefit patients
with glioblastoma. As a result, more research is urgently
required to explore new therapeutic targets for glioblastoma
and design new therapeutic techniques. Due to the rapid
development of bioinformatics, we can conduct an in‐depth
analysis of publicly available data. Weighted gene
co‐expression network analysis (WGCNA) [15] is an advanced
bioinformatics method that constructs highly synergistically
changing gene groups based on thousands of genes with the
most remarkable expression variances. Then, these genetic
modules are correlated with clinical phenotypes to identify
essential regulatory genes. WGCNA has been employed in a
range of disease models, including tumours [16], neurodegen-
erative diseases [17], dermatology [18], and mental illness [19],
among others. Its findings can also be corroborated by bio-
logical investigations or clinical analysis. This study performed
co‐expression analysis on expression profiles from samples of
28 patients with glioblastoma and nine patients with low‐grade
glioma (LGG). Then, we screened clinical‐related gene mod-
ules and performed functional enrichment analysis. Next, we
constructed a regulatory network for genes within the module
and mine hub genes. Finally, the other two databases were used
to verify the expression of the hub gene and its relationship
with the prognosis of glioblastoma patients. We anticipate that
this research study will assist in explaining the progression of
glioblastoma and identify a potential therapeutic target for this
cancer.

2 | MATERIALS AND METHODS

2.1 | Data of GBM and LGG patients in the
study

The overall design of this investigation was exhibited in the
flow chart (Figure 1). The gene expression profile of
GSE43289, including 28 GBM patients and nine samples of
LGG patients, was obtained and downloaded from Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The dataset was based on the GPL570 plat-
form of [HG‐U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array.

2.2 | Data processing

For the pre‐processing of raw data, probe annotation, gene
filtering, and outlier sample exclusion were performed. We
employed a Perl environment to conduct probe annotation
with a microarray platform file. Probes that matched more
than one gene were discarded. Whereas, for genes that
matched several probes, the average value of these probes was
determined as the expression level of these genes. We sepa-
rated non‐variant genes in the whole gene expression profile
based on variance because non‐variant genes were regarded as
background noise that influenced WGCNA analysis. Then,
using the hierarchical clustering method, we identified and

eliminated outlier samples. Gene set enrichment analysis
(GSEA) was performed for enrichment analysis.

2.3 | Enrichment analyses by gene set
enrichment analysis (GSEA)

To anticipate gene functions, we used GSEA version 4.1.0
software downloaded from the GSEA website MSigDB data-
base (http://software.broadinstitute.org/gsea/msigdb) to
clarify the role of genes in the pathogenesis of GBM. In brief,
we used gene ontology (GO) biological process ontology and
Kyoto encyclopaedia of genes and genomes (KEGG) gene sets
to run GSEA on GBM and LGG samples. The default
weighted enrichment method was applied for enrichment
analysis. The random combination was set 1000 times. The
false discovery rate was added as a correction for Type I errors,
and FDRs less than 0.05, together with p‐values less than 0.05,
were considered significant.

2.4 | Construction of weighted gene co‐
expression network and division of gene
modules

We utilised the WGCNA package [20] to construct a weighted
gene co‐expression network and division of gene modules
under the R environment. First, we adopted Pearson's analysis
to correlate the whole genes and created a correlation matrix.
Second, we converted the correlation matrix into an adjacency
matrix using a suitable soft‐thresholding value β. Considering
that the higher the scale‐free fit index is, the better the coin-
cidence with the scale‐free network is, and the higher the mean
connectivity is, the better the connection of the whole network
is, we calculated the scale‐free fit index and mean connectivity
of each β value from 1 to 15, respectively. We chose the β value
with the highest mean connectivity when the scale‐free fit in-
dex was 0.85. Then, in the sight of indirect correlation between

F I GURE 1 Flow chart of the whole design of this study: data
processing, analyses, identification and validation of hub gene
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genes, we transformed the adjacency matrix into a topological
overlap matrix (TOM). Finally, we divided clustered genes into
different modules using hierarchical clustering based on TOM‐
dependent dissimilarity metric. We used module eigengenes
(the first principal component of a given module) to merge
extremely comparable modules (with Pearson's correlation
greater than 0.75) into the same module.

2.5 | Identification of the most clinical‐
related modules

The clinical traits of our samples included non‐GBM and
GBM, and we calculated the correlation between the clinical
traits and module. In brief, the non‐GBM group was refined as
0, and GBM group was refined as 1. Then, we used Spearman
correlation analysis between clinical traits and module and
calculated the correlation coefficient. The greater the correla-
tion coefficient was, the closer the module was to clinical traits.
Moreover, genes in modules of positive correlation with GBM
were considered to play essential roles in tumourigenesis. On
the other hand, genes in modules of positive correlation with
non‐GBM were crucial to maintaining normal biological
functions. Hence, we extracted gene modules with the highest
correlations with GBM and non‐GBM in subsequent analysis
in our study.

In addition, we introduce the conception of gene signifi-
cance (GS) and module membership (MM). GS was referred to
as the association between the gene in the module and the
clinical trait. The closer the GS value was to 1, the closer the
gene was to the designated clinical traits. In contrast, if the GS
value was close to 0, we considered the genes in the module
were nearly not relevant to the clinical traits. Module mem-
bership was the result of the correlation analysis between genes
in the module and eigengenes. Similarly, the higher the MM
value was, the stronger the correlation between genes and
module. Thus, genes with a high correlation of GS and MM
were necessary for being a hub module.

2.6 | GO and KEGG pathway enrichment
analyses

To investigate the specific function of genes in the clinical‐
related module, we conducted GO [21] and KEGG [22]
enrichment analyses. Gene ontology and KEGG analyses
aimed to clarify the terms a certain gene set was enriched in
and predict the function of these genes in tumourigenesis.
In brief, GO analysis was carried out based on the genes in
the module most related to the clinical trait. We used cluster
profile R packages and org.Hs.eg.db R packages to conduct
GO and KEGG analyses, and the significance was decided
by Fisher's exact test. We identified the terms based on the
cut‐off of p‐value < 0.01 and Benjamin–Hochberg adjusted
p‐value < 0.05 as significant terms. Then, the top 10 significant
terms were visualised using ggplot2, Cairo, and GOplot R
packages [23].

2.7 | Identification of hub genes

Hub gene was highly associated with the whole module and
GBM‐trait. We extracted the whole module with the highest
connectivity and significance to carry out GO and KEGG
analysis. Then, we selected the top GO term based on the
significance associated with the development of GBM to
construct sub‐network. Cytoscape and its plug‐in and cyto-
Hubba were utilised to find the hub gene from the sub‐
network [24]. Based on the maximal clique centrality (MCC)
value of each gene, we found several candidate hub genes.
Combining with the GS value and MM value of selected genes,
the hub gene was finally determined.

2.8 | Validation of hub genes

To testify the expression level of hub genes in GBM and LGG
samples and explore whether the expression level would change
with disease progression, we utilised an online gene expression
analysis tool known as Gene Expression Profiling Interactive
Analysis (GEPIA, http://gepia.cancer‐pku.cn/). Besides, we
calculated the hub gene expression in our microarray data.
Furthermore, to assess the function of the hub gene inGBMand
LGGpatients, we visitedGEPIA and UALCAN (http://ualcan.
path.uab.edu/) to verify the association between the expression
of hub genes and the overall survival rate of GBM and LGG
patients. Moreover, we used the Human Protein Atlas (HPA)
(http://www.proteinatlas.org/) to validate the hub gene
expression on the protein level in GBM and LGG samples.

3 | RESULTS

3.1 | Data processing

We obtained a whole expression profile of 23,319 genes after
probe annotation and a final expression profile of 5000 genes
after gene filtering. After eliminating outlier samples, our
selected samples were clustered in sample trees (Figure 2),
which exhibited basic clinical traits of each sample. GEO ID
and traits of each sample are included in Table S1.

3.2 | Enrichment analyses by GSEA

We performed GSEA on GO and KEGG gene sets to
investigate the function of genes in the development of GBM.
The findings revealed that the top five significant GO path-
ways were ‘syncytium formation,’ ‘myoblast fusion,’ ‘positive
regulation of regulatory T cell differentiation,’ ‘pyrimidine
nucleoside monophosphate metabolic process’ and ‘integrin‐
mediated signalling pathway’ (Figure S1A‐E). The top five
KEGG pathways were identified: ‘drug metabolism other en-
zymes,’ ‘starch and sucrose metabolism,’ ‘pantothenate and
COA biosynthesis,’ ‘ECM receptor interaction,’ and ‘focal
adhesion’ (Figure S1F‐J).
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3.3 | Construction of weighted gene co‐
expression network and division of gene
modules

Based on the scale‐free fit index and mean connectivity, we
selected nine as the most appropriate β value (Figures 3a
and 3b). The expression matrix was then turned into a cor-
relation matrix, which was subsequently translated into an
adjacent matrix, and lastly into a TOM. Five thousand genes
were divided into numerous modules, and after merging
several similar modules, 18 modules were finally generated
(Figures 4a and 4b). The green, green‐yellow, purple, yellow,
royal blue, midnight blue, black, brown, magenta, light cyan,
turquoise, light green, cyan, light yellow, grey 60, blue, red,
and grey contained 609, 161, 168, 445, 38, 79, 386, 512, 175,
181, 718, 52, 85, 44, 66, 581, 249 and 451 genes, respectively.
However, there were genes in the grey module that could not
be split into any co‐expression modules.

3.4 | Identification of significant clinically
related hub module

We evaluated the correlation coefficients between clinical traits
and gene modules. The results were exhibited as a heatmap

(Figure 5a). We found that genes in the blue module were
highly associated with the GBM trait with a high significance
(r = 0.74, p = 3E‐07). Furthermore, we calculated the corre-
lation of GS and MM in the GBM trait‐related blue module
(cor = 0.77, p = 4.4E‐115) (Figure 5b). The selected GBM
trait‐related module was the most appropriate module for
subsequent analysis.

3.5 | GO and KEGG enrichment analyses of
the hub module

To investigate the biological function of genes in hub modules,
we performed GO and KEGG enrichment analyses on the
hub GBM modules and displayed the top 10 terms of GO and
KEGG enrichment results. The results of GO and KEGG
enrichment analyses are concluded in Table S2.

We found that the top GO‐BP terms (Figure 6a) were
associated with cell migration, transforming growth factor beta
signalling pathway and collagen process, such as ‘positive
regulation of cell migration’ (gene count = 33, p = 1.58E‐07),
‘transmembrane receptor protein serine/threonine kinase sig-
nalling pathway’ (gene count = 31, p = 2.96E‐10), and ‘collagen
metabolic process’ (gene count = 13, p = 9.46E‐09). The top
GO‐MF enriched terms (Figure 6b) were highly related with cell

F I GURE 2 Sample clustering dendrogram and clinical trait heatmap of all the glioma patient samples. The clinical trait of the samples was exhibited with
the colour intensity
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adhesion molecule, growth factor and extracellular matrix, such
as ‘cell adhesion molecule binding’ (gene count = 36, p = 8.27E‐
09), ‘growth factor binding” (gene count = 16, p = 2.27E‐07),
and ‘extracellular matrix binding” (gene count = 11, p = 5.20E‐
08). For GO‐CC, top terms were involved in the extracellular
matrix and cell‐substrate junction (Figure 6c), such as ‘extra-
cellular matrix ’ (gene count = 65, p = 6.06E‐30), ‘cell‐substrate
junction’ (gene count = 30, p = 6.57E‐08), and ‘focal adhesion’
(gene count = 30, p = 4.20E‐08).

The findings of KEGG enrichment analysis were primarily
regarding focal adhesion, which was similar to the conclusions
of GO‐MF and GO‐CC, such as ‘focal adhesion’ (gene
count = 23, p = 1.35E‐09), and some pathways that were re-
ported to play an essential role in cancer progression, such as
‘p53 signalling pathway’ (gene count = 12, p = 2.59E‐07) and
‘MAPK signalling pathway’ (gene count = 21, p = 2.35E‐05).

3.6 | Identification of hub gene

We extracted genes from the top GO‐BP term of ‘positive
regulation of cell migration’ and used them to construct a new
co‐expression sub‐network of these genes. Then, using theMCC
approach in cytoHubba, we computed the centrality of the genes
in the network. A high MCC score indicates a heightened
connection with other genes and a high significance in the
network. We identified the top 10 genes, including TNFAIP6,
ITGA3, PDPN, HSPB1, ITGA5, IQGAP1, TRIP6, MYADM,

MIR21, and HSPA5 in the network in Figure 7. Finally, we chose
TNFAIP6 as our hub gene because it had the highestMCCvalue.

3.7 | Validation of hub genes

We used the online programme GEPIA to identify the relative
expression level in LGG and GBM samples to testify to the
function of the hub gene in the progression of GBM. We
discovered that the expression of TNFAIP6 was equivalent in
LGG samples compared to normal samples but increased
dramatically in GBM samples compared to normal samples
(Figure 8a). Furthermore, the TNFAIP6 expression was higher
inGBM samples than in LGG samples (Figure 8b), showing that
the level of TNFAIP6 increased with the advancement of GBM.
In addition, we validated that GBM patients with higher
TNFAIP6 expression exhibited a much worse prognosis and
lower overall survival rate by survival analysis (Figures 8c and 8d).
We next used the HPA database to detect the protein levels of
TNFAIP6 and found that the expression level of TNFAIP6 was
upregulated in the samples of patients withGBM (Figure 8e).On
the other hand, we also validated the functions of another nine
genes by the methods described above. We found that ITGA3,
PDPN, HSPB1, ITGA5, IQGAP1, and TRIP6 were elevated in
theGBM groups (Figures S2&3). Besides, high levels of ITGA3,
PDPN, HSPB1, ITGA5, IQGAP1, TRIP6, MYADM, and
HSPA5 were positively associated with a worse prognosis
(Figure S4).

F I GURE 3 Analysis of soft‐thresholding values (β). (a) Calculation of scale‐free fit index of each β value from 1 to 15. (b) Calculation of mean connectivity
of each β from 1 to 15
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4 | DISCUSSION

This study extracted the gene expression profile data from
GSE43289 for WGCNA, covering 28 samples of glioblastoma
patients and nine samples of LGG patients. Gene ontology
enrichment analysis, KEGG signal pathway analysis, and sur-
vival analysis were used for subsequent analysis. The main

findings of this study were as follows: 1. Analysis of the first
5000 genes with large variances identified 18 gene modules, of
which 1 module (blue) was significantly positively correlated
with the malignancy of the tumour. 2. Gene ontology analysis
revealed that the genes of this module were mainly involved in
cell migration, cell adhesion molecules, and extracellular matrix
formation (ECM). In contrast, KEGG analysis revealed that

F I GURE 4 Division of co‐expression gene
modules and an adjacency heatmap of genes.
(a) Dendrogram of 5000 genes divided into 18
modules based on the TOM‐based dissimilarity
measure. (b) Adjacency heatmap of 5000 genes
analysed by weighted gene co‐expression network
analysis (WGCNA). The correlation of pair‐wise
genes was indicated by colour intensity
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these genes were related to proteoglycan, MAPK signalling
pathway, and p53 signalling pathway. 3. TNFAIP6 was identi-
fied as a hub gene for glioblastoma that was significantly
associated with the prognosis of tumour patients.

Our findings revealed that genes in the module of our
interest were mainly involved in cell migration regulation.
Tumour astrocyte cell migration is a complex and dynamic
process, comprising at least three independent and highly
coordinated biological processes [25]: [1] The cell adheres to
several components of ECM and modifies ECM molecular
composition; [2] the mobility of the cell itself is mainly ach-
ieved by modifying the field of integrin and ECM component
to reorganise the actin cytoskeleton; [3] cell invasion primarily
degrades matrix proteins via proteolytic enzymes secreted by
tumours (including serine proteases, cathepsins, and matrix
metalloproteinases (MMP)‐2, MMP‐9, and MMP‐14 (MT1‐
MMP)). Glioma cells may create a suitable environment by
manufacturing and accumulating modified ECM components
to promote their migration. Several studies have discovered

that some ECM components were upregulated in high‐grade
glioma compared to LGG [26, 27]. Adhesion molecules with
multiple cell surface receptor shape mediate interactions be-
tween glioma cells and ECM components. These findings
corroborated our results. We can speculate that the key to
glioblastoma's malignancy is much higher than that of LGG
may be the difference in the expression of these genes
involved in cell migration.

The results of KEGG analysis revealed that most of the
genes in this module were primarily involved in proteoglycan,
MAPK signalling pathway, and p53 signalling pathway; as we
know, proteoglycans are an essential component of the brain
ECM. Studies found that the expression of many pro-
teoglycans fluctuated dramatically throughout the development
of glioblastoma. For instance, perlecan is considerably upre-
gulated in glioblastoma samples, and its high expression is
linked to the poor prognosis in patients [28]. In GBM, the
MAPK signalling pathway is primarily involved in cell prolif-
eration, angiogenesis, and invasion. The current mainstream

F I GURE 5 Identification of clinical‐related gene modules. (a) The heatmap of clinical trait‐module correlations. The intensity of correlation in each cell was
indicated by colour intensity (red for positive and blue for negative correlation). The significances were shown in the cells. The blue module was identified as
GBM‐related module. (b) Scatter plot exhibiting the correlation between gene significance (GS) and module membership (MM) in the blue module. The
correlation coefficients and p‐value were shown at the top
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view believes that the activation of MAPK signalling pathway
is required for GBM pathogenesis [29].

Furthermore, the activation of most MAPK pathways is
positively correlated with the malignant phenotype of GBM.
p53 pathway deregulation is highly prevalent in glioblastoma
[30]. Deregulated p53 pathway components are associated with
GBM invasion, migration, proliferation, apoptosis escape, and
stemness of cancer cells, all of which are regulated by micro-
RNAs and long non‐coding RNAs [31–33]. Their expression is
linked to poor prognosis, highlighting their potential as a target
for GBM therapy.

WGCNA is an effective bioinformatics tool to explore
disease‐related hub genes. In previous investigations, most of
the hub genes we discovered have been associated with glio-
blastoma. A study employing TCGA data, for example, found
that high expression of the ITGA3 gene predicted a poor
prognosis for glioblastoma [34]. Another study found that
inhibition of HSPA5 could improve the efficacy of

photothermal and radiotherapy for GBM [35]. Similarly, related
reports confirmed that MIR21 [36], TRIP6 [37], ITGA5 [38],
HSPB1 [39], PDPN [40], and IQGAP1 [41] all play a role in
the pathogenesis or treatment of GBM. Based on previous
reports, our study found that the expression levels of PDPN,
HSPB1, ITGA5, IQGAP1, TRIP6, and ITGA3 were higher in
GBM patients. Furthermore, high levels of these genes por-
tended a worse prognosis. The previously mentioned results
proved the reliability of our method. More notably, we
discovered a new gene called TNFAIP6, which has strong
co‐expression relationships with these hub genes. Previous
research has not established a relationship between TNFAIP6
and GBM. Hence, the current study was the first to report the
relationship between TNFAIP6 and GBM, which may provide
a novel therapy target for the GBM.

TNFAIP6 is localised on the human 2q23.3 chromosome,
also known as TNF‐stimulated gene‐6 [42], and encodes a
secreted protein with anti‐inflammatory and tissue‐protective

F I GURE 6 The gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analyses of genes in the blue module. The length and colour
of barplots in GO analyses represented the gene counts and statistical significances, respectively. The size and colour of dots in KEGG analyses represent the
gene counts and statistical significance, respectively. (a) Top 10 GO‐BP terms. (b) Top 10 GO‐MF terms. (c) Top 10 GO‐CC terms. (d) Top 10 KEGG terms
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effects. TNFAIP6 usually is not expressed but is upregulated in
various cells when exposed to inflammatory mediators and
growth factors [43, 44]. TNFAIP6 expression is inhibited by
anti‐inflammatory cytokines [43]. TSG‐6 (TNFAIP6 secreted
protein) is a glycoprotein with a molecular weight of only
35–38 kDa, released by secreted granules of neutrophils, mast
cells, and macrophages. It is combined with various ECM
components such as glycosaminoglycans, proteoglycan core
proteins, and other matrix components. They primarily serve
to stabilise or reshape ECM [45]. Furthermore, TNFAIP6 has
been found to have therapeutic effects in a variety of disease
models, such as atherosclerosis [46], acute pancreatitis [47],
type‐1 diabetes [48], and acute lung injury [49].

TNFAIP6 is also expressed in the brain and spinal cord. A
basic experiment [50] discovered that TNFAIP6 was present in

mature CD44+/GFAP+rat astrocytes but not during the CNS
development. This experiment confirmed that TNFAIP6 was
associated with astrocyte maturation, as TNFAIP6‐deficient
mice have fewer astrocytes in the neocortex and hippocam-
pus. TNFAIP6 was also significantly upregulated in spinal cord
injury and might be a key component of glial scars bound to a
matrix rich in hyaluronic acid. TNFAIP6 has also been linked
to traumatic brain injury in other research. It can improve
memory and depression‐like behaviour and increase the
number of newborn neurons [51]. However, TNFAIP6
expression in brain tumours has yet to be investigated. This
study found that TNFAIP6 plays a vital role in the occurrence
and development of glioblastoma. The potential mechanism
may be connected to the maturation of astrocytes. TNFAIP6
overexpression may result in malignant transformation of

F I GURE 7 Identification of hub gene by maximal clique centrality (MCC) method. We calculated the MCC value of genes in the GO‐BP term ‘positive
regulation of cell migration’. We displayed genes with top 10 MCC values in red and yellow, and red meant bigger MCC value
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F I GURE 8 Validation of hub gene. (a) The expression level of hub gene TNFAIP6 in normal and patients of low‐grade glioma (LGG) and glioblastoma
multiforme (GBM), respectively. Red box plots represented LGG and GBM patients, respectively and grey box plots represented normal people. (b) The
expression level of TNFAIP6 in dataset of GSE43289. (c) Overall survival analysis on TNFAIP6 with gene expression profiling interactive analysis (GEPIA).
Red line meant high expression level of TNFAIP6 while grey line meant low expression level. ***p < 0.001, LGG versus GBM
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normal astrocytes. To establish the involvement of TNFAIP6
in glioblastoma, more basic experiments and sequencing data
with a larger sample size are needed. This study has various
limitations that must be addressed. First, the sample size of this
investigation is relatively small, and no repeatability verification
of independent datasets was undertaken. We recruited GBM
patients from our brain centre to expand our study samples,
and our findings will be validated in a future study. Second,
only the clinical traits of tumour conditions were excavated and
analysed, and no additional clinical traits were included. Finally,
we speculate a new target for GBM, but subsequent basic
experimental verification remains required. We will explore the
function of TNFAIP6 in developing GBM in vivo and in vitro.

5 | CONCLUSION

We identify TNFAIP6 as the hub gene in GBM progression by
a series of bioinformatics studies with WGCNA as the core,
and its high expression implies a poor prognosis for the
patients. This discovery opens new avenues for understanding
disease mechanisms and identifying novel therapeutic targets.
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