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SUMMARY
Germ cells are thought to exhibit a unique DNA damage response that differs from that of somatic stem cells, and previous studies sug-

gested that Trp53 is not involved in the survival of spermatogonial stem cells (SSCs) after irradiation. Here, we report a critical role for the

Trp53-Trp53inp1-Tnfrsf10b pathway during radiation-induced SSC apoptosis. Spermatogonial transplantation revealed that Trp53 defi-

ciency increased the survival of SSCs after irradiation. Although Bbc3, a member of the intrinsic apoptotic pathway, was implicated in

apoptosis of germ and somatic stem cells, Bbc3 depletion inhibited apoptosis in committed spermatogonia, but not in SSCs. In contrast,

inhibition of Tnfrsf10b, an extrinsic apoptosis regulator, rescued SSCs. Tnfrsf10b, whose deficiency protected SSCs, was upregulated by

Trp53inp1 upon irradiation. These results suggest that the Trp53-Trp53inp1-Tnfrsf10b pathway responds to genotoxic damage in SSCs

and that stem and progenitor cells exhibit distinct DNA damage responses in self-renewing tissue.
INTRODUCTION

The testis is a tissue that is highly sensitive to DNA damage

by ionizing radiation. Compared with somatic cells in the

testis, spermatogenic cells are easily damaged by radiation

insults: irradiated animals undergo germ cell loss and

become sterile (Meistrich, 1982; Creemers et al., 2002).

However, depending on the radiation dose, spermatogen-

esis can regenerate to regain fertility (Meistrich et al.,

1978). Spermatogonial stem cells (SSCs) are important for

regeneration. Although there are only 2–3 3 104 SSCs in

the testis (Meistrich and van Beek, 1993; de Rooij and Rus-

sell, 2000), their robust regenerative activity supports sper-

matogenesis throughout adult life.

It is generally believed that germ cells have a lowermuta-

tion rate than somatic cells (Provost et al., 1993; Walter

et al., 1998; Hill et al., 2004). Moreover, the survival of

spermatogonia after radiation damage varies depending

on their stage of differentiation. Differentiating spermato-

gonia (including A1–A4, intermediate, and B spermato-

gonia) are the most sensitive, whereas undifferentiated

spermatogonia (including SSCs) can survivemoderate radi-

ation doses (Erickson, 1976; Dym and Clermont, 1970). A

relatively higher apoptosis rate of progenitors has also

been reported in other self-renewing tissues (Etienne

et al., 2012; Qiu et al., 2008), but the mechanism for this

remains unclear.

Double-strand breaks (DSBs), which are created by radia-

tion and are the most hazardous type of DNA damage, are

generally repaired by nonhomologous end joining (NHEJ)
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and homologous recombination (HR) (Branzei and Foiani,

2008). Whereas NHEJ is error prone and functions

throughout the cell cycle, HR is error free and occurs in S

and G2 phases when sister chromatids are available as

templates. The cellular response is initiated by ataxia telan-

giectasia-mutated (ATM) and DNA protein kinase, which

associates with DSBs and phosphorylates histone H2AX.

PhosphorylatedH2AX (gH2AX) recruits damage repair pro-

teins such as MDC1. Additional factors, such as 53BP1,

then bind and initiate DNA repair (Eliezer et al., 2009).

However, several studies have suggested that a unique

DNA repair mechanism operates in SSCs. gH2AX is

not detected in undifferentiated spermatogonia, possibly

including SSCs, whereas differentiated spermatogonia

exhibit distinct foci formation (Rübe et al., 2011). It was

shown that these cells also do not express MDC1 after

irradiation, although nuclear 53BP1 foci were detected

(Ahmed et al., 2007; Rübe et al., 2011). More surprisingly,

several groups suggested that the tumor suppressor

Trp53, a key molecule in the response to DNA damage,

does not play a role in the radiation-induced apoptosis of

SSCs (Hendry et al., 1996; Beumer et al., 1998; Hasegawa

et al., 1998). In Trp53 knockout (KO) mice, negligible sper-

matogonia apoptosis was observed after doses of up to 5

Gy, whereas the number of spermatogonia was reduced

by 60% within 1 day in wild-type (WT) mice (Beumer

et al., 1998). In addition, TRP53 was not detected in undif-

ferentiated spermatogonia in either nonirradiated or irradi-

ated conditions. Therefore, the reduction in the number of

spermatogonia resulted from Trp53-dependent apoptosis
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in differentiating spermatogonia (Beumer et al., 1998; Ha-

segawa et al., 1998).

Traditionally, the effects of radiation on spermatogonia

have been evaluated by morphological analyses. It is

considered that the percentage of seminiferous tubule

cross-sections that show type A spermatogonia 10 days af-

ter irradiation is representative of SSC survival (van der

Meer et al., 1992). Among the several different types of

undifferentiated spermatogonia, Asingle (As) spermatogonia

are thought to have SSC potential (de Rooij and Russell,

2000). However, it is difficult to distinguish SSCs from

committed progenitors morphologically. This is particu-

larly true after genotoxic stress, which may influence the

cell cycle and morphology. Moreover, because germ cells

contact Sertoli cells directly within seminiferous tubules,

the potential effects of paracrine interactions with neigh-

boring peritubular and interstitial cells must be considered.

Radiation-induced damage to Sertoli cells causes hormonal

imbalance and dysregulated cytokine secretion (Guitton

et al., 1999; Legué et al., 2001), which impairs the analysis

of SSCs after irradiation.

In this study, we used two techniques to investigate the

mechanism of radiation-induced apoptosis of SSCs. First,

we used germ cell transplantation. Transplantation of testis

cells into the seminiferous tubules of infertile testes results

in the regeneration of spermatogenesis from donor SSCs

(Brinster and Zimmermann, 1994). This allows the func-

tional identification of SSCs. Second, we used an SSC

culture technique (Kanatsu-Shinohara et al., 2003). SSCs

undergo self-renewal division and proliferate as grape-

like clusters of spermatogonia when the media are supple-

mented with fibroblast growth factor 2 (FGF2) and glial

cell line-derived neurotrophic factor (GDNF). These

cultured spermatogonia, designated germline stem cells

(GSCs), are enriched for SSCs. Assuming 10% colonization

efficiency (Nagano et al., 1999), 1%–2% of GSCs can colo-

nize seminiferous tubules (Kanatsu-Shinohara et al.,

2005).GSCsproliferate logarithmically and recolonize sem-

iniferous tubules, resulting in spermatogenesis and normal

offspring. Because it is possible to manipulate GSCs geneti-

cally, the combination of transplantation and culture tech-

niques for SSCs provides a powerful approach for investi-

gating the effect of candidate genes involved in radiation

response. Using these strategies, we assessed the molecular

mechanism underlying the DNA damage response in SSCs.
RESULTS

Increased SSC Survival in Trp53 KO Mice

To examine the impact of radiation on SSCs, we irradiated

the testes of transgenic mice (C57BL6/Tg14(act-EGFP-

OsbY01), termed ‘‘green mice’’) that expressed enhanced
Stem Cell
GFP (EGFP). Green mice with the WT and Trp53 KO geno-

types were used for transplantation. The testes of recipient

animals were recovered 2months after transplantation and

the number of donor-cell-derived colonies was counted un-

der UV light. More colonies were derived from Trp53 KO

testis cells at all tested radiation doses than from WT cells.

The difference was statistically significant when cells were

irradiated at >4 Gy (Figures 1A and 1B). We also evaluated

the effect of cell dissociation. Dissociated testis cells at

this dose had a higher apoptotic rate than intact testes

that were irradiated before dissociation (Figure 1C), sug-

gesting that the seminiferous tubule structure confers

some SSC radioprotection.

We next used GSCs to compare their radiation response

with that ofmouse embryonic fibroblasts (MEFs) andmulti-

potent GSCs (mGSCs), which are derived from GSCs

and exhibit embryonic stem cell (ESC)-like properties (Ka-

natsu-Shinohara et al., 2004; Figure 1D). Cells were recov-

ered at different time points to determine the time course

of cell death. GSCs exhibited the highest sensitivity to irra-

diation: survival decreased in a dose-dependent manner

and the rate of cell recovery was delayed significantly

compared with other cell types. In contrast, mGSCs and

MEFs showed a transient decrease after irradiation, but the

cell number then increased by 3 days postirradiation. Cell

recoverywasminimal at 72, 12, and24hr forGSCs,mGSCs,

and MEFs, respectively. We then used these time points to

determine the lethal dose (LD50) value for each cell type

(Figure 1E). As expected from the transplantation experi-

ments, apoptosiswas attenuated significantly byTrp53defi-

ciency. The LD50 forWTandTrp53KOGSCswas 1.5 and3.6

Gy, respectively. The survival rate of GSCs was comparable

in at least two genetic backgrounds (Figure S1A available

online). The LD50 values for mGSCs and ESCs were also

comparable (3.8 versus 4.2 Gy, respectively; Figure S1B).

MEFs were the least sensitive, with an LD50 of 6.2 Gy. These

LD50 values were used in subsequent experiments.

We confirmed the effect of radiation on GSCs using

transplantation. GSCs from WT and Trp53 KO mice were

labeled with a lentivirus expressing Venus to introduce a

donor cell marker. GSCs were irradiated at 1.5 and 3.6 Gy.

Significantly more Trp53 KO GSCs survived compared

with WT GSCs (Figures 1F and 1G). Western blotting re-

vealed that irradiation increased the expression of TRP53

and its phosphorylation at Ser18 and Ser23, which are

both phosphorylated commonly in somatic cells after irra-

diation (Figure S2). These results suggest that Trp53 defi-

ciency increases the survival of irradiated SSCs.

Comparison of the Radiation Response in Different

Cell Types

To examine the differences in the damage responses of

various cell types, we first used terminal deoxynucleotidyl
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Figure 1. Radiation Response of SSCs and
GSCs
(A) Macroscopic appearance of testes that
received irradiated green mouse testes.
Testis cells were dissociated into a single-
cell suspension and irradiated at the indi-
cated doses.
(B) Colony counts (n = 16–18 cells, 3 ex-
periments).
(C) Increased survival of SSCs in intact
testes. To prepare intact testis samples,
green mouse testes were irradiated at 4 Gy
and dissociated into single-cell suspensions
(n = 24 testes, 3 experiments).
(D) Survival curves of GSCs, mGSCs, and
MEFs. The cell survival rate was determined
at the indicated time points after irradia-
tion (n = 3 experiments). Cells were irradi-
ated 1 day after plating.
(E) Radiation dose dependence of GSCs,
mGSCs, and MEFs. The survival rate of GSCs,
mGSCs, and MEFs was determined 72, 12,
and 24 hr after irradiation, respectively,
when the cells showed minimum cell re-
covery (n = 3 experiments). The LD50 of each
cell type is indicated.
(F) Macroscopic appearance of testes that
received WT and Trp53 KO GSCs. WT and
Trp53 KO GSCs were irradiated at 1.5 and 3.6
Gy, respectively, and transplanted into
recipient mouse testes.
(G) Colony counts (n = 13–15 testes; 3 ex-
periments).
Data are represented as mean ± SEM. *p <
0.05. Scale bar, 1 mm (A and F). See also
Figures S1 and S2.
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transferase biotin-dUTP nick-end labeling (TUNEL) assays

to quantify apoptosis (Figures 2A and 2B). The number of

apoptotic mGSCs and MEFs increased transiently to

�20%–25% within 4 hr and then declined to basal levels

by 72 hr. In contrast, the number of apoptotic WT GSCs

reached �50% at 12 hr after radiation and then declined

gradually until �72 hr. Although Trp53 KO GSCs also un-

derwent apoptosis, the levels were significantly suppressed

compared with those of WT cells. In addition, there was a

different pattern of cell-cycle arrest (Figure 2C). Whereas

MEFs showed a relative increase in G2/M phase after irradi-

ation, theWT, but not Trp53 KO, GSCs were arrested at G1.

ESCs and mGSCs did not show apparent changes.

Next, cells were stained by gH2AX to detect DNA dam-

age (Figure 2D). Both immunocytochemistry and western
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blotting revealed that all cell types exhibited positive sig-

nals immediately after irradiation, but the number of

gH2AX+ mGSCs was decreased significantly compared

with other cell types. Moreover, gH2AX+ mGSCs and

MEFs disappeared rapidly at 12–24 hr postirradiation (Fig-

ures 2E, 2F, and S2). In contrast, both WT and Trp53 KO

GSCs stained strongly, even at 72 hr postirradiation.

Because ATM is an important mediator of the DNA dam-

age response and also contributes to SSC self-renewal (Ta-

kubo et al., 2008), we examined its expression levels by

western blotting (Figures S3A and S3B). Analysis revealed

that GSCs express a low level of ATM compared with other

cell types. Thus, DNA damage persists longer in GSCs than

in mGSCs or MEFs, which may be the result of lower ATM

levels.
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Figure 2. Damage Response of Different Cell Types after Irradiation
(A) TUNEL staining. Counterstained with Hoechst 33342.
(B) Quantification of apoptosis (n = 3 experiments). At least 1,500 cells were counted in each experiment.
(C) Analysis of cell cycle distribution. GSCs, mGSCs, and MEFs were recovered 72, 12, and 24 hr, respectively, after irradiation. WT GSCs were
arrested at G1 phase, whereas MEFs were arrested at G2/M phase.
(D) gH2AX staining, counterstained with Hoechst 33342.
(E) Quantification of cells with six or more gH2AX foci (n = 3 experiments). At least 1,022 cells were counted at each time point.
(F) Quantification of western blot band intensities for gH2AX (n = 3 experiments).
Scale bar, 10 mm (A and D). Data are represented as mean ± SEM. See also Figures S2 and S3.
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Increased GSC Survival after Bbc3 Depletion

To understand the mechanism of action of Trp53, we

examined several Trp53 downstream target genes. Trp53-

dependent cell-cycle control is determined largely by the

Trp53-responsive Cdkn1a, which induces G1 and G2

growth arrest (Komarova et al., 2000). Because Cdkn1a is

involved in radiation-induced apoptosis by interacting

with proapoptotic molecules (Gartel and Tyner, 2002), we
Stem Cell
derived Cdkn1a KO GSCs and compared them with WT

cells. However, there were no significant differences in

survival after irradiation (Figure 3A).

Previous studies in somatic cells revealed that two

different Trp53-regulated apoptotic pathways (intrinsic

and extrinsic) protect against radiation (Haupt et al.,

2003). Bcl2 family members regulate the intrinsic pathway,

and some of these are regulated transcriptionally by Trp53
Reports j Vol. 3 j 676–689 j October 14, 2014 j ª2014 The Authors 679



Figure 3. Involvement of Bbc3 in GSC Sur-
vival after Irradiation
(A) Radiation sensitivity of Cdkn1a KO GSCs
(n = 3 experiments).
(B) Real-time PCR analysis of BH3-only
protein expression (n = 3 experiments).
Cells were analyzed 24 hr after irradiation.
(C) Real-time PCR analysis of target gene
expression following transfection of lentivi-
ruses expressing shRNA (n = 3 experiments).
Cells were irradiated 3 days after transfection
and harvested the following day.
(D) Effects of target gene depletion on
proliferation (n = 3 experiments). Cells were
analyzed 3 days after transfection.
(E) Increased survival of irradiated GSCs
after Bbc3 depletion (n = 3 experiments).
Cells were irradiated 3 days after trans-
fection and assayed 3 days later.
(F) Quantification of apoptotic cells using
TUNEL staining (n = 3 experiments). At least
1,500 cells were counted at each time point.
(G) Expression of Bbc3 in several cell types
(n = 3 experiments).
(H) Expression of Bbc3 in irradiated WT and
Trp53 KO GSCs (n = 3 experiments).
(I) Survival of Trp53 KO GSCs that were
transfected with a Bbc3 KD vector (n = 3
experiments). Cells were irradiated 3 days
after transfection and cell survival was
determined 3 days after irradiation.
(J) Real-time PCR analysis of Bbc3 over-
expression (n = 3 experiments). Cells were
analyzed 3 days after transfection.
(K) Induction of apoptosis by Bbc3 over-
expression (n = 3 experiments). The survival
rates of GSCs transfected as indicated are
shown. Cells were assayed 3 days after
transfection.
(L) Increased survival of different cell types
after Bbc3 depletion (n = 3 experiments).
Cells were irradiated3days after transfection.
GSCs, mGSCs, and MEFs were assayed 72, 12,
and 24 hr after irradiation, respectively.
Data are represented as mean ± SEM. *p <
0.05. See also Table S1.
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(Haupt et al., 2003). Because BH3-only proteins are impli-

cated in radiation-induced apoptosis (Qiu et al., 2008; Yu

et al., 2010), we investigated the expression of BH3-only

proteins using real-time PCR 24 hr after irradiation (Fig-

ure 3B). GSCs showed increased expression of Pmaip1,

Bbc3, Bad, Bik, Bcl2l11, Bmf, and Bid; however, Hrk did

not change significantly.

We then used short hairpin RNA (shRNA) to assess the ef-

fect of gene depletion. Knockdown (KD) of any of these

genes did not affect GSC proliferation (Figures 3C and
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3D). However, Bbc3 depletion increased GSC survival and

decreased TUNEL staining (Figures 3E and 3F). The expres-

sion of Bbc3 was comparable among cell types (Figure 3G).

In GSCs, Bbc3 was induced in a Trp53-dependent manner

(Figure 3H), and Bbc3 KD did not influence Trp53 KO

GSC survival (Figure 3I). Overexpression of Bbc3 induced

apoptosis in all cell types (Figures 3J and 3K). Bbc3 KD

also rescued apoptosis inmGSCs andMEFs (Figure 3L), sug-

gesting that Bbc3-dependent apoptosis was not limited to

germ cells.
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Figure 4. Involvement of TNFSF10-
TNFRSF10B in GSC Survival after Irradia-
tion
(A) Tnfsf10 expression. Cells were plated
3 days before irradiation and protein
levels were determined by ELISA (n = 3
experiments).
(B) Real-time PCR analysis of Tnfsf10 and
Tnfrsf10b expression after irradiation (n = 3
experiments).
(C) Real-time PCR analysis of Tnfsf10 and
Tnfrsf10b expression in WT and Trp53 KO
GSCs after irradiation (n = 3 experiments).
(D) Flow-cytometric analysis of TNFRSF10B
expression after irradiation (purple popu-
lation). Green lines indicate unstained
controls.
(E) Real-time PCR analysis of target gene
expression following transfection of lenti-
viruses expressing shRNA against Tnfsf10 or
Tnfrsf10b (n = 3 experiments). Cells were
irradiated 3 days after transfection. GSCs
and MEFs were assessed 24 and 8 hr after
irradiation, respectively.
(F) Effect of Tnfsf10 or Tnfrsf10b depletion
on proliferation (n = 3 experiments). Cells
were analyzed 3 days after transfection.
(G and H) Effects of Tnfsf10 or Tnfrsf10b
depletion on survival after irradiation on
GSCs (G) and MEFs (H) (n = 3 experiments).
Cells were irradiated 3 days after trans-
fection, and GSCs and MEFs were recovered
72 and 24 hr after irradiation, respectively.
(I) Quantification of apoptosis (n = 3 ex-
periments). At least 1,500 cells were coun-
ted at each time point.
(J) Real-time PCR analysis of Tnfrsf10b
expression (n = 3 experiments). Cells
were transfected with the indicated viral
constructs and analyzed 3 days after
transfection.
(K) Effect of Tnfrsf10b overexpression on
GSC survival (n = 3 experiments). Cells were
assayed 3 days after transfection with the
indicated vectors.
Data are represented as mean ± SEM. *p <
0.05. See also Figure S4 and Table S1.
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The TNFSF10-TNFRSF10B Pathway Is Involved in the

Radiation Response of GSCs

The above data suggest the involvement of the intrinsic

pathway in radiation-induced apoptosis. However, we

noticed that the culture supernatant of irradiated GSCs

and MEFs caused apoptosis in nonirradiated GSCs (Fig-

ure S4). Because the extrinsic pathway involves death re-

ceptors such as FAS, radiation-induced GSC apoptosis

may also activate the extrinsic pathway. An ELISA showed
Stem Cell
that the expression of TNFSF10, a TNFRSF10B ligand, was

increased significantly in the media of irradiated cells (Fig-

ure 4A). We then quantified the levels of Tnfsf10 and

Tnfrsf10b using real-time PCR (Figure 4B). Tnfsf10 was

induced more strongly in MEFs than in GSCs, whereas

Tnfrsf10b was upregulated more strongly in GSCs than

MEFs. The expression of Tnfsf10 and Tnfrsf10b was un-

changed in mGSCs. The induction of Tnfrsf10b, but not

Tnfsf10, was Trp53 dependent (Figure 4C). Flow-cytometric
Reports j Vol. 3 j 676–689 j October 14, 2014 j ª2014 The Authors 681
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analysis confirmed the upregulation of TNFRSF10B

(Figure 4D).

We then depleted these genes using shRNA to assess

their roles (Figure 4E). Depletion of either gene did not

influence GSCs and MEF proliferation (Figure 4F). How-

ever, Tnfrsf10b depletion increased the survival of GSCs,

but not MEFs (Figures 4G and 4H). Apoptosis was sup-

pressed for at least 72 hr postirradiation (Figure 4I). Inter-

estingly, Tnfrsf10b transfection did not induce apoptosis

(Figures 4J and 4K). These results suggest that the

TNFSF10-TNFRSF10B pathway contributes to radiation-

induced GSC apoptosis.

Trp53-Independent Induction of Tnfrsf10b by

Trp53inp1

Reactive oxygen species (ROS) generation accompanies

irradiation treatment (Nagaria et al., 2013). Flow-cytomet-

ric analysis showed that radiation induced increased

ROS levels in GSCs (Figure S5A). Addition of H2O2 also

increased apoptosis of irradiated WT GSCs (Figure S5B).

Because Trp53inp1 is strongly expressed in the testis and

is a major mediator of the antioxidant effects of Trp53

(Cano et al., 2009), we hypothesized that Trp53inp1 regu-

lates the SSC radiation response. Real-time PCR analysis

revealed that expression of Trp53inp1 was higher in WT

GSCs than in other cell types (Figure 5A) and was induced

by irradiation (Figure 5B). This was Trp53 dependent,

because Trp53inp1 induction was significantly reduced

in Trp53 KO GSCs (Figure 5C). In a manner similar to

that observed for Trp53, Trp53inp1 KD increased ROS

levels when GSCs were supplemented with H2O2 (Figures

S5C–S5E), which confirmed its antioxidant function

(Cano et al., 2009).

Although Trp53inp1 KD did not influence cell prolife-

ration under nonirradiated conditions, it increased the

survival of irradiated WT GSCs (Figures 5D–5F). Trp53inp1

KD attenuated apoptosis for 72 hr postirradiation (Fig-

ure 5G). This protection was not observed in other

cell types. Transfecting GSCs with Trp53inp1 increased

Tnfrsf10b expression in nonirradiated GSCs, whereas

Trp53inp1 KD downregulated Tnfrsf10b expression after

irradiation (Figures 5H and 5I). Unlike the case with Bbc3,

Trp53inp1 overexpression did not induce apoptosis (Figures

5J and K).

In Vivo Expression of BBC3, TNFRSF10B, and

TRP53INP1 in Undifferentiated Spermatogonia after

Irradiation

To confirm the in vitro data, we examined the expression of

BBC3, TNFRSF10B, and TRP53INP1 using antibodies

against GFRA1 and CDH1 (Figure 6A). GFRA1 was highly

expressed in As and Apaired spermatogonia and gradually

declined in Aaligned spermatogonia. CDH1 was expressed
682 Stem Cell Reports j Vol. 3 j 676–689 j October 14, 2014 j ª2014 The A
in the total undifferentiated spermatogonia population

(Tokuda et al., 2007). BBC3 and TNFRSF10B were expressed

in �2%–4% of CDH1+ or GFRA1+ cells in nonirradiated

testes. TRP53INP1 was expressed more widely in �19%

and �11% of CDH1+ and GFRA1+ cells, respectively (Fig-

ure 6B). Unlike other proteins, TNFRSF10B showed focal

expression, which is probably due to accumulation in lipid

rafts (Min et al., 2009).

All of these markers were strongly expressed 24 hr after

irradiation (Figure S6A), but TNFRSF10B and TRP53INP1

were upregulated more significantly than BBC3 in both

CDH1+ and GFRA1+ cells (Figure 6B). Although the

expression of BBC3 in germ cells was increased signifi-

cantly (Figure S6A), its expression in undifferentiated

spermatogonia remained at �3% (Figure 6B). Double

immunohistochemistry showed that BBC3 was upregu-

lated significantly in KIT+ spermatogonia (Figures S7A

and S7B). In addition, western blotting showed that

TNFSF10 increased in irradiated testes from WBB6F1-

W/Wv (W) mice, which lack differentiating germ cells

(Figures S6B and S6C).

Functional Analysis of SSC Activity Using Germ Cell

Transplantation

We performed germ cell transplantation to confirm the

effects of Bbc3, Tnfrsf10b, and Trp53inp1 on SSCs. First,

green GSCs were transfected with a KD vector for each

gene and irradiated 3 days after transfection. Cells were

then microinjected into the seminiferous tubules (Fig-

ure 7A). Analysis of recipient testes showed that the

concentration of SSCs ranged from 0.1% to 0.7%, which

is somewhat lower than previously reported values for

GSCs (1%–2%) (Kanatsu-Shinohara et al., 2005). The

lower colonization efficiency is likely due to the trans-

fection treatments we used in this study. Surprisingly,

Bbc3-depleted cells generated fewer colonies than control

cells, suggesting that Bbc3 is not involved in radiation-

induced SSC apoptosis. In contrast, Tnfrsf10b or

Trp53inp1 KD improved GSC survival (Figure 7A) and

normal spermatogenesis was observed in transplanted

cells (Figure 7B). Because progenitor cells do not have

self-renewal activity and ‘‘disappear’’ after transplanta-

tion, only SSCs can produce this result. Therefore, the

GSCs that survived after Bbc3 KD were enriched for

progenitor cells.

Next, we confirmed the effect of Tnfrsf10b and Trp53inp1

using KO mice. KO mice were mated with green mice to

introduce a donor marker. The mice were irradiated at

6 Gy and their testes were used for transplantation. Ana-

lyses of the recipient testes showed that deficiency of

Tnfrsf10b or Trp53inp1 increased donor cell survival sig-

nificantly after irradiation (Figures 7C and 7D). Immuno-

histochemistry revealed that apoptosis was reduced in
uthors



Figure 5. Involvement of Trp53inp1 in
GSC Survival after Irradiation
(A) Real-time PCR analysis of Trp53inp1
expression in different cell types (n = 3
experiments).
(B) Real-time PCR analysis of Trp53inp1
expression after irradiation (n = 3
experiments).
(C) Real-time PCR analysis of Trp53inp1
expression in WT and Trp53 KO GSCs after
irradiation (n = 3 experiments).
(D) Real-time PCR analysis of Trp53inp1
expression following transfection of lenti-
virus expressing shRNA against Trp53inp1
(n = 3 experiments). Cells were transfected
with a Trp53inp1 KD vector and irradiated
3 days after transfection. Cells were
analyzed 12 hr after irradiation.
(E) Effect of Trp53inp1 depletion on prolif-
eration (n = 3 experiments). Cells were
assessed 3 days after transfection.
(F) Effect of Trp53inp1 depletion on sur-
vival after irradiation (n = 3 experiments).
Cells were irradiated 3 days after trans-
fection. GSCs, mGSCs, and MEFs were
analyzed 72, 12, and 24 hr after irradiation,
respectively.
(G) Quantification of apoptosis (n = 3
experiments). At least 1,500 cells were
counted at each time point.
(H) Real-time PCR analysis of Trp53inp1,
Tnfsf10, and Tnfrsf10b expression following
Trp53inp1 overexpression (n = 3 experi-
ments). Cells were assessed 3 days after
transfection.
(I) Real-time PCR analysis of Trp53inp1,
Tnfsf10, and Tnfrsf10b expression following
Trp53inp1 depletion and irradiation (n = 3
experiments). Cells were irradiated 3 days
after transfection and analyzed 3 days after
irradiation.
(J) Real-time PCR analysis of Trp53inp1

overexpression (n = 3 experiments). Cells were transfected with the indicated viral constructs and assayed 3 days after transfection.
(K) Effects of Trp53inp1 overexpression on GSC survival (n = 3 experiments). Cells were analyzed 3 days after transfection of indicated
vectors.
Data are represented as mean ± SEM. *p < 0.05. See also Figure S5 and Table S1.
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both CDH1+ and GFRA1+ undifferentiated spermatogonia

in irradiated Tnfrsf10b and Trp53inp1 KO mouse testes

(Figures 7E and 7F). TNFRSF10B and TRP53INP1 were not

detected in irradiated Trp53 KO testes, confirming the re-

sults from GSCs (Figure 7G). Only 0.4%–0.8% of CDH1+

or GFRA1+ cells expressed TNFRSF10B or TRP53INP1

in Trp53 KO mice (Figure 7H). In contrast, TNFRSF10B

and TRP53INP1 were expressed in >88.6% of CDH1+ or

GFRA1+ cells in WT mice. These results suggest that the
Stem Cell
Trp53-Trp53inp1-Tnfrsf10b pathway is responsible for radi-

ation-induced SSC apoptosis in vivo.

Rescuing GSCs from Anticancer-Reagent-Induced Cell

Death by Trp53inp1 or Tnfrsf10b Depletion

The rescue of radiation-induced apoptosis by Trp53inp1

or Tnfrsf10b depletion suggested that inhibition of these

genes could prevent damage induced by other genotoxic

insults. Therefore, we examined the effect of these genes
Reports j Vol. 3 j 676–689 j October 14, 2014 j ª2014 The Authors 683



Figure 6. Induction of Bbc3, Tnfrsf10b,
and Trp53inp1 in Irradiated WT Testes
(A) Immunohistochemical staining of BBC3,
TNFRSF10B, and TRP53INP1 in WT testes
24 hr after irradiation.
(B) Quantification of cells using undiffer-
entiated spermatogonia marker expression
(n = 3 experiments). At least 150 cells ex-
pressing each spermatogonia marker were
counted.
Data are represented as mean ± SEM. *p <
0.05. Scale bar, 10 mm (A). See also Figures
S6 and S7.
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on damage induced by cisplatin or mitomycin C. Both

of these reagents crosslink DNA and are used as anti-

cancer agents, and cisplatin is commonly used to treat

germ cell tumors (Wu et al., 2004). GSCs were trans-

fected with shRNA against Trp53inp1 or Tnfrsf10b,

and cisplatin or mitomycin C was added 3 days later.

The cells were analyzed 72 hr later after addition of

chemicals. GSCs treated with 80 mg/ml mitomycin C

exhibited significantly enhanced survival after Tnfrsf10b

or Trp53inp1 depletion. Cell survival after cisplatin treat-

ment was improved at all tested doses, and the differ-

ences were statistically significant with >2 mg/ml (Figures

7I), suggesting that inhibiting the Trp53inp1-Tnfrsf10b
684 Stem Cell Reports j Vol. 3 j 676–689 j October 14, 2014 j ª2014 The A
pathway assists in protecting SSCs from chemical-

induced damages.
DISCUSSION

In contrast to previous studies, we have shown increased

survival of Trp53 KO SSCs after irradiation. At least two fac-

tors must be considered to explain this discrepancy. First is

the method used to identify SSCs. Whereas we identified

SSCs using a functional transplantation assay, previous

studies identified themby observing in situ colony regener-

ation. It is challenging to distinguish whether poor colony
uthors
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development is due to defects in the SSCs or their microen-

vironment. Second is the abnormal cell division of Trp53

KO spermatogonia. A previous study showed that loss of

Trp53 caused a 40%–50% increase in the total number of

type A spermatogonia in nonirradiated testes and also

stimulated a 7-fold increase in the number of giant sper-

matogonia after irradiation (Beumer et al., 1998). Giant

spermatogonia were mostly single cells, suggesting their

As spermatogonia origin. The fate of giant spermatogonia

is unknown, but it is possible that they represent SSCs

that cannot differentiate normally. Because TRP53 expres-

sion is highest in meiotic cells (Hendry et al., 1996), it is

also possible that Trp53 KO cells experience difficulties in

undergoing meiotic differentiation. Although we did not

analyze the effects of Trp53 signaling on spermatocyte or

spermatid development, this may result in smaller colony

formation, which could be underrepresented by a histolog-

ical detection method.

To analyze the molecules downstream of Trp53, we first

focused on the role of CDKN1A and the BH3-only protein

family. Several previous studies suggested that CDKN1A-

mediated cell-cycle arrest and Bbc3-induced apoptosis

contribute to radiation damage in self-renewing tissues

(Yu et al., 2003; Leibowitz et al., 2011). For example, DNA

damage in hematopoietic and mammary stem cells acti-

vated CDKN1A and induced symmetrical self-renewal divi-

sions by suppressing Trp53 activation, thus inhibiting

apoptosis (Insinga et al., 2013). Moreover, Bbc3 deficiency

protected both intestinal crypt cells and hematopoietic

stem cells from radiation damage (Yu et al., 2010; Qiu

et al., 2008). In our study, Cdkn1a KO GSCs were compara-

ble to WT GSCs, whereas Bbc3 depletion enhanced GSC

survival. Cell rescue by Bbc3 depletion could also be appli-

cable to MEFs and mGSCs, suggesting that this effect of

Bbc3 is not specific to germ cells.

Interestingly, our transplantation study revealed that

Bbc3 depletion could not protect SSCs, suggesting that

the cells that survived irradiation were spermatogonia

progenitors. Bbc3-depleted cells retained their proliferative

activity but lost their recolonizing ability. This result was

unexpected because several studies showed the involve-

ment of Bbc3 in the Trp53-induced depletion of adult

stem cells, including spermatogonia (Qiu et al., 2008; Liu

et al., 2010; Yu et al., 2010). An additional study reported

that Bbc3 is upregulated in ITGA6+ side population (SP)

phenotype spermatogonia, which are thought to be SSC

enriched (Coureuil et al., 2010). The viability of Bbc3 KO

SP cells was decreased by 1.6-fold, compared with a 2.7-

fold reduction in the WT SP cells. However, because the

presence of SSCs was not assessed in that study, it was un-

clear whether apoptosis occurred in SSC or progenitor cells.

Our results suggest that Bbc3 is upregulated in KIT+ cells

and that radiation-induced apoptosis of progenitor cells,
Stem Cell
rather than SSCs, may be Bbc3 dependent. Given the bene-

ficial roles of Cdkn1a and Bbc3 in other self-renewing

tissues, SSCs appear to have radiation-response features

distinct from these stem cell types despite their common

dependence on Trp53.

Another possible regulator of Trp53-mediated apoptosis

is the TNFSF10-TNFRSF10B pathway. In stressed condi-

tions, germ cell apoptosis depends on both extrinsic and

intrinsic pathways. Radiation-induced apoptosis caused

by DNA damage generally requires the intrinsic, rather

than the extrinsic, pathway (Forand and Bernardino-

Sgherri, 2009). One study showed that spermatogonia

upregulated Tnfrsf10b after irradiation, whereas Tnfsf10

deficiency could not inhibit radiation-induced apoptosis

as efficiently as Bbc3 deficiency (Coureuil et al., 2010).

Consistent with this, the TNFSF10-TNFRSF10B pathway

did not protect against apoptosis in gonocytes, which are

spermatogonia precursors (Forand and Bernardino-Sgherri,

2009). Nevertheless, radiation-induced apoptosis in GSCs

was rescued by depleting Tnfrsf10b, highlighting the

importance of the extrinsic pathway in SSC radioprotec-

tion. Because TNFSF10 expression is upregulated in both

germ cells and somatic cells, we speculate that increased

TNFRSF10B expression in SSCs makes themmore sensitive

to apoptosis induced by upregulated TNFSF10 expression.

Taken together, our results suggest that quality control of

the male germline against genotoxic damage is unique in

that differentiation induces a switch in the cell death

machinery.

Although the induction of Tnfrsf10b is Trp53 dependent,

up to now, its mechanism of induction has been elusive.

Our study reveals thatTrp53inp1 inducesTnfrsf10b. Despite

its ubiquitous expression, suppression of Trp53inp1 could

rescue GSCs, but not mGSCs or MEFs, suggesting that it

may confer a germ cell-specific response. Trp53inp1 is

induced by ROS (Cano et al., 2009) and was previously

isolated as a Trp53-inducible protein that participates in

Trp53-dependent apoptosis by regulating Trp53 function

(Okamura et al., 2001). More recent studies showed that

it also regulates ROS and autophagy (Cano et al., 2009; San-

cho et al., 2012; Seillier et al., 2012). TRP53INP1 binds to

HIPK2, PRKCD, and TRP53 to mediate the phosphoryla-

tion of TRP53 at Ser46. Colocalization of these proteins

in promyelocytic leukemia nuclear bodies facilitates the

protein interactions. This increases TRP53 stability and

transcriptional activity, leading to transcriptional activa-

tion of Trp53 target genes such as TP53AIP1, cell growth ar-

rest, and apoptosis upon DNA damage stress (Tomasini

et al., 2003; Yoshida et al., 2006).

Trp53inp1 is a major mediator of the antioxidant func-

tion of Trp53 (Cano et al., 2009). Although Trp53inp1 KO

mice do not exhibit an overt phenotype, they are suscepti-

ble to induction of colorectal tumorigenesis and acute
Reports j Vol. 3 j 676–689 j October 14, 2014 j ª2014 The Authors 685



Figure 7. Functional Analysis of SSC Activity by Germ Cell Transplantation
(A) Macroscopic appearance of testes that received irradiated GSCs transfected with the indicated KD vectors. WT GSCs were irradiated at
1.5 Gy and transplanted into recipient mouse testes. Inset: immunohistochemical staining of SYCP3 (red) in recipient testes, counter-
stained with Hoechst 33342.
(B) Colony counts (n = 18 testes, 3 experiments).
(C) Macroscopic appearance of testes that received irradiated Tnfrsf10b or Trp53inp1 KO testis cells. Donor testis cells were irradiated with
6 Gy and transplanted into recipient mouse testes.
(D) Colony counts (n = 10–18 testes, 3 experiments).

(legend continued on next page)
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colitis, which is thought to be due to increased ROS produc-

tion (Gommeaux et al., 2007). In a previous study (Mori-

moto et al., 2013), we showed that although moderate

ROS levels were required to stimulate self-renewal,

increasing ROS levels by H2O2 supplementation did not in-

crease SSC activity, and high concentrations of H2O2 killed

the SSCs. In this context, the degree of ROS generation after

irradiation was apparently toxic. Our results suggest that

Trp53inp1 also induces Tnfrsf10b expression after irradia-

tion. Because Tnfrsf10b is expressed more strongly in

GSCs, such cells are probably more sensitive to apoptosis

stimuli, which may explain the germ cell-specific rescue

of radiation-induced apoptosis. In addition, the relatively

lower ATM levels in GSCs also may have contributed to

this phenomenon. Like Trp53 KO mice, Trp53inp1 KO

mice have no apparent fertility phenotype. However, given

Trp53inp1’s diverse functions and functional redundancy

with Trp53inp2 (Nowak et al., 2009), future studies are

needed to delineate the physiological roles of these genes

in germ cell biology.

It has been known for years that germ cells are highly

sensitive to genotoxic reagents. This high level of apoptosis

may provide an important mechanism to prevent

abnormal germ cells from transmitting genetic informa-

tion to the next generation. In this context, our results

suggest that Trp53 appears to contribute to quality control.

Although the involvement of Trp53 in the radiation res-

ponse of SSCs was not confirmed in previous studies, our

results suggest that it is a critical molecule in the genotoxic

response of SSCs. However, several issues remain to be

addressed. For example, although the Trp53-Bbc3 pathway

has been shown to be involved in protection of somatic

stem cells, it is not known whether the Trp53-Trp53inp1-

Tnfrsf10b apoptotic pathway plays any role in different

self-renewing tissues. It will also be valuable to determine

the physiological role of Trp53inp1 during spermatogen-

esis. TRP53INP1 was expressed in both CDH1+ and

GFRA1+ spermatogonia without irradiation. Given the

increased apoptosis of spermatogenic cells in Trp53 KO

mice, TRP53INP1 may be used to eliminate abnormal

germ cells during spermatogenesis. Thus, our analyses

based on SSC culture and transplantation techniques

provide the groundwork for studying the DNA damage
(E) Immunohistochemistry for CDH1 or GFRA1 with TUNEL in irradiated
mice were irradiated with 2 Gy, and then used for immunohistochem
(F) Number of CDH1+ or GFRA1+ cells undergoing apoptosis (n = 3 ex
(G) Double immunohistochemistry of CDH1 or GFRA1 with TNFRSF10B
were irradiated with 2 Gy and used for immunohistochemistry 24 hr a
(H) Quantification of cells with undifferentiated spermatogonia ma
experiments). At least 106 cells expressing each spermatogonia mark
(I) Survival of GSCs after mitomycin C or cisplatin treatment (n = 3 e
Data are represented as mean ± SEM. *p < 0.05. Scale bars, 1 mm (A
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response in SSCs, and suggest that distinct cell death

machineries are activated during differentiation in

spermatogenesis.
EXPERIMENTAL PROCEDURES

Cell Culture
GSCs were established from green mice (a gift from Dr. M. Okabe,

Osaka University) or from Cdkn1a KO mice (The Jackson Labora-

tory), both of which were bred into an ICR background for at

least seven generations. GSCs from ICR background Trp53 KO

mice were previously described (Kanatsu-Shinohara et al., 2004).

GSCs were also derived from 7-day-old WT ICR and DBA/2 mice

(Japan SLC). The GSCs were maintained as described previously

(Kanatsu-Shinohara et al., 2003). The mGSCs used in this study

were described previously (Kanatsu-Shinohara et al., 2004). ESCs

(R1 cell line, a gift from Dr. M. Ikawa, Osaka University) and

mGSCs were cultured in standard ESC culture medium, which

consisted of Dulbecco’s modified Eagle’s medium (DMEM;

Invitrogen) supplemented with 15% fetal bovine serum (FBS)

and 103 U/ml leukemia inhibitory factor (ESGRO; Invitrogen).

MEFs were prepared from 12.5–14.5 days postcoitum ICR mouse

embryos and cultured in DMEM with 10% FBS. GSCs were main-

tained on laminin (20 mg/ml; BD Biosciences)-coated dishes at a

density of 3.0 3 105/9.6 cm2, whereas ESCs, mGSCs, and MEFs

were maintained on gelatin-coated plates at a density of 1.0 3

105/9.6 cm2. Cell viability was determined by adding 0.4% trypan

blue (Invitrogen). To collect culture supernatant, GSCs or MEFs

were cultured in StemPro-34 SFM supplemented with 1% FBS for

3 days before irradiation. Culture supernatant was collected from

MEFs and GSCs 1 and 3 days after radiation, respectively. The cul-

ture supernatant was supplemented with 15 ng/ml GDNF and

10 ng/ml FGF2 (both from Peprotech) before use. Mitomycin C

(Sigma) and cisplatin (Wako) were reconstituted in PBS and used

at the indicated doses.

Statistical Analysis
Results are presented as means ± SEM. Significant differences be-

tween means for single comparisons were identified using Stu-

dent’s t test. Multiple-comparison analyses were performed using

ANOVA followed by Tukey’s HSD test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, seven figures, and one table and can be found with
Tnfrsf10b or Trp53inp1 KOmouse testes. Tnfrsf10b and Trp53inp1 KO
istry 24 hr after irradiation.
periments). At least 96 cells in 32 tubules were counted.
or TRP53INP1 in irradiated Trp53 KO mouse testes. Trp53 KO mice
fter irradiation.
rker expression and TNFRSF10B or TRP53INP1 expression (n = 3
er were counted in each experiment.
xperiments).
and C) and 10 mm (E and G).
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