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Abstract
Amajor weakness in many high-throughput genomic studies is the lack of consideration of

a clinical environment where one patient at a time must be evaluated. We examined gener-

alizable and platform-specific sources of variation from NanoString gene expression data

on both ovarian cancer and Hodgkin lymphoma patients. A reference-based strategy, appli-

cable to single-patient molecular testing is proposed for batch effect correction. The pro-

posed protocol improved performance in an established Hodgkin lymphoma classifier,

reducing batch-to-batch misclassification while retaining accuracy and precision. We sug-

gest this strategy may facilitate development of NanoString and similar molecular assays by

accelerating prospective validation and clinical uptake of relevant diagnostics.

Introduction
The use of molecular technologies in clinical assays for guiding patient diagnosis, prognosis and
management is paving the way for precision medicine. Gene expression in particular has been
widely used in biomedical research to identify biomarkers and genetic profiles that enable dis-
ease diagnosis, (sub) classification, and prediction of prognosis and response to therapy[1–4].
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Despite advances in molecular research, clinical adoption of gene expression assays has been
slow. This is proposed to be, in part, due to the impact of technological and biological biases
that arise during sample collection and processing, resulting in poor reproducibility[5–7].

Pre-processing, normalization and accounting for systematic sources of variability in gene
expression data affect the ability to combine different cohorts for model development and
cross-cohort predictions for a single patient; these are key requirements for the development,
validation and proof of utility for clinical assays[8,9]. Batch effects (BE) refer to the systematic
and technical variations between measurements introduced when handling samples in batches.
BE are ubiquitous in gene expression analysis[8], and their presence could mask or simulate
biological signals in data, resulting in either spurious and/or missed associations, especially
when the biological factor of interest is confounded with a given batch[10].

Approaches for BE adjustment in multi-sample data [11–15] generally assume homogeneity
amongst populations across batches, which is often not the case in practice. In addition, multi-
sample methods are impractical in clinical settings, where patient samples are typically col-
lected in small numbers, often one at a time, making single-patient data processing vital to the
translation of molecular assays. Several studies have suggested the use of a reference-based
approach [9,11] for BE adjustments, resulting in quantification relative to reference sample(s)
that are run alongside clinical specimens. Depending on the end goal, types of reference sam-
ples may include RNA pooled from actual samples or cell lines, DNA oligonucleotides, syn-
thetic RNA, or universal human RNA[16].

Generally, BE refers to systematic variability that may be attributed to RNA extractions,
types or conditions of tissue, differences between operating labs and technicians, the use of dif-
ferent batches of reagents, age and storage conditions of assays components, experimental con-
ditions, or hardware versions. Failing to correct for BE, particularly when the signal from the
confounder is larger than the biological signal, can result in missed or false discoveries and irre-
producible results[9,17,18]. Good experimental design can alleviate the impact of such con-
founding, subject to logistics and cost constraints. Additionally, if the sources of BE are not
obvious, they may go unmeasured and unaccounted for.

The NanoString nCounter technology is a relatively new platform for quantifying RNA that
exhibits several advantages over traditional microarray, quantitative PCR (qPCR) and RNA-
seq methods. It is simple to use, highly automated, cost- and time-effective allowing quantifica-
tion of up to 800 targets in a single reaction. Its sensitivity is comparable to that of qPCR[19–
22], with the advantage that RNA content is measured directly, without amplification or other
enzymatic processing. NanoString has been shown to work well even when nucleic acids are
degraded[22,23], as is usually the case with formalin-fixed paraffin-embedded (FFPE) tissues,
the mainstay of pathology labs worldwide. This feature facilitates large retrospective clinical
studies, making NanoString a popular platform for the development and validation of prognos-
tic and diagnostic assays[24–26]. Validated assays would have the potential for near immediate
transfer to clinical use without the need to modify standard pathology handling.

Using the NanoString nCounter platform, we considered quality control metrics, normali-
zation procedures, and BE adjustment methods for gene expression data obtained with the goal
of assembling a protocol suitable for single-patient processing, which can be adopted in clinical
settings from start to finish. We assessed both within and between-batch variability, focusing
on the latter as many existing studies have already investigated within-batch reproducibility of
nCounter data[20,23,27]. Different types of references were considered for BE adjustment and
compared to multi-sample approaches. The impact of BE correction with a reference-based
method was illustrated on the downstream analysis of a pre-existing Hodgkin lymphoma prog-
nostic model[26].
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Materials and Methods

NanoString nCounter Data
The NanoString technology is based on single-molecule imaging of color-coded barcodes
bound to target-specific probes[8,10]. A CodeSet is a unique, single production-run, multi-
assay mix of all probes of interest; it includes six positive controls, spiked-in at fixed, propor-
tional concentrations (from 0.125–128 fM), and eight negative controls (probes without a cor-
responding target) used to assess background and non-specific binding. “Housekeeping genes”
(HK) are an obligate component in the design of each CodeSet. Similar to quantitative
RT-PCR, HK are expected to remain constant between biological conditions of interest and are
used to control for the amount of RNA in a given reaction. A standard cartridge holds 12 lanes,
allowing for 12 samples to be processed in a given run.

Cohort Description
Datasets obtained from different NanoString experiments included 161 clinical specimens
from two cancer types: Hodgkin lymphoma (HL) and ovarian cancer (OC). For the HL
cohort, data was derived from Scott et al.[26], wherein a subset of samples had replicate data
generated on a second CodeSet (n = 32) and an additional subset had data generated on a
third CodeSet (n = 10). OC specimens (n = 129) were obtained through the OVCARE tissue
bank and the Ovarian Tumour Tissue Analysis (OTTA) consortium and were also run on
two CodeSets. Ovarian cancer cell lines (OVCL)[28] were also run in duplicate across Code-
Sets (n = 13). The last two cohorts were DNA oligonucleotides, complementary to target
RNA in the HL (HLO) and the OC (OVO) CodeSets, run at different concentrations for a
total of 203 runs. A detailed description of individual cohorts is given in Table 1. All speci-
mens were collected through hospital based research studies with approval of local research
ethics and/or institutional review boards. The BCCA/UBC research ethics board further
approved generation of gene expression data for investigation of tumour biology, including
development of RNA-based classifiers.

Nucleic acid preparation
RNA extraction was standardized within each research group (either Hodgkin or ovarian). All
samples were reviewed for the presence of tumour. Ovarian frozen specimens were cryosec-
tioned (5–40 section at 20 μm, depending on face size), tissue was dissociated by vortexing in
Trizol reagent and then processed using the Qiagen miRNeasy protocol (Qiagen) as per manu-
facturer’s recommendations. FFPE tissues were sectioned (3 sections at 10 μm) into microfuge
tubes. OTTA-sourced specimens were collected by scrapping 2–4 5um section off glass slides.
FFPE specimens were de-paraffinized and processed according to the Qiagen miRNeasy FFPE
kit (Qiagen) with an elongated 55°C digest period (45 min). Lymphoma specimens, all FFPE
derived, were processed similarly with the exception of deparaffinization using Qiagen deparaf-
finization solution as described previously[26].

For oligonucleotide experiments, standard desalted, single strand, 100-base DNA oligonu-
cleotides were obtained (IDT) and a single pool of DNA oligonucleotides was generated by
mixing all oligonucleotides in equimolar concentration corresponding to the sum of targets
in both ovarian CodeSets. This resulted in each CodeSet targeting only a subset of the total
pool. We refer to the “functional concentration” as the concentration of the subset oligonu-
cleotide pool that is targeted in a given CodeSet hybridization. In the case of Hodgkin lym-
phoma CodeSets an oligonucleotide pool corresponding only to the prognostic genes [26]
was used.

Reference-Based Strategy for Batch Effect Correction
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NanoString RNA expression data
The manufacturer’s protocol was adhered to with the exceptions noted below. Briefly, capture,
reporter, specimen total RNA (or DNA oligonucleotides) were mixed with hybridization buffer
and hybridized at 65°C overnight. Sample, wash reagents and imaging cartridge were then pro-
cessed on the nCounter Prep Station and finally imaged on the nCounter Digital Analyzer.
FFPE derived specimens used 200–500 ng of input total RNA, whereas frozen specimens used
only the recommended 100 ng. Hybridization times ranged from 12–23 hours and were strictly
monitored in selected cohort experiments. See Table 1 for further details.

Statistical Methods
Raw data was assessed using several quality assurance (QA) metrics to measure imaging
quality, oversaturation and overall signal to noise. All samples satisfying QA metric checks
were log-transformed (base 2) to help with distributional assumptions, and were normalized
by subtracting the average expression level of HK genes (equivalent to the geometric mean
normalization on the raw scale). Principal Components Analysis (PCA) and Principal Vari-
ance Components Analysis (PVCA) were used to measure the impact and assess sources of
variability in the normalized data. The minimal set of principal components for PVCA[29]
were selected to ensure at least 60% explained variability was retained. We compared the

Table 1. Cohort Description.

Hodgkin Lymphoma Clinical Samples (HL)

CodeSet # Runs Type

HL1 32 Unique Samples

HL2 32 Replicates of HL1 samples

HL3 10 Replicates (subset of HL1 samples)

TOTAL 74

Ovarian Cancer Clinical Samples (OC)

CodeSet # Runs Type

OC1 129 Unique

OC2 129 Replicates of OC1 samples

TOTAL 258

Ovarian Cancer Cell Lines (OVCL)

CodeSet # Runs Type

OC1 13 Unique

OC2 13 Replicates of OC1 samples

TOTAL 26

DNA Oligonucleotides for the HL CodeSet (HLO)

CodeSet # Runs Type

HL1 36 HLO pool run at different concentrations

HL2 30 HLO pool run at different concentrations

HL3 2 HLO pool run at different concentrations

TOTAL 68

DNA Oligonucleotides for the OC CodeSet (OVO)

CodeSet # Runs Type

OC1 47 OVO pool run at different concentrations

OC2 88 OVO pool run at different concentrations

TOTAL 135

doi:10.1371/journal.pone.0153844.t001
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intra-CodeSet to inter-CodeSet variability using the Dispersion Separability Criterion (DSC)
[30], a ratio of between- to within-batch dispersion computed from batch scatter matrices.
High DSC (over 0.5) indicates large inter-batch variability. Significance of DSC was assessed
using a permutation test: starting with a null hypothesis of no batch effects present and that
the data is homogeneous in terms of batches—five thousand permutations were generated
from the full data (including all batches). DSC values were computed for each permutation;
at the end of all the runs the proportion of values greater than the observed DSC is computed
to yield the p-value (significance level at 0.05).

A series of multi-sample methods were applied to both OC and HL data: batch mean cen-
tering (bmc)[11], mean and variance standardization (zscore)[11], a two-stage location/scale
correction (ber)[11], and parametric empirical Bayes approach (combat)[14]. In addition,
we considered different types of references and their performance in comparison to multi-
sample methods. HL samples were calibrated using the HLO data (HLO_ref) and three clini-
cal HL samples chosen at random (any3_ref). Similarly, OC samples were adjusted using the
OVO data (OVO_ref), five samples from each carcinoma histotype[31] chosen at random
(any5_ref), and the OVCL data (OVCL_ref; averaging over all OC cell lines). PVCA plots
were used to compare the variability post-adjustment to the unadjusted data. Furthermore,
gene-wise agreement between CodeSets was compared using: Pearson’s correlation coeffi-
cient (R), for precision; the coefficient of accuracy (Ca), to assess the systematic bias; Lin’s
concordance correlation[32] was used to capture both precision and accuracy simulta-
neously (Rc = R Ca). The degree of BE removal was evaluated using DSC.

Adjusting for batch effects using reference samples, involved running designated reference
samples in every batch along actual samples and measuring the same set of genes. Assuming
we have two batches (A and B) and were interested in calibrating samples XB that were run in
batch B to samples in XA that were run in batch A, the reference approach would require that
some number of reference samples (R) would be run in both batches A and B, resulting in RA

and RB. These reference samples would be used to calibrate between the two batches. Mathe-
matically, we assumed the following standard additive (on the log scale) batch effect model on
the normalized and log (base 2) transformed NanoString data[11]:

XA
ij ¼ X 0

ij þ bAij þ εAij ð1Þ

Where XA
ij is the observed mRNA expression of gene i in sample j run in batch A, X

0
ij is the

true gene expression, bAij is the batch effect corresponding to batch A, and �Aij is a random error

assumed to be independent with expected value equal to 0. Let RA be a set of designated refer-
ence samples of size k, run alongside actual samples in batch A, we can then write

RA
il ¼ R0

il þ bAil þ εAil ; ð2Þ

and to remove BE, we subtract the observed gene expression of the reference from the observed
gene expression of clinical samples

X̂ ij ¼ XA
ij �

1

k

Xk

l¼1
RA
il ð3Þ

We note in the above equation that if a certain gene i, measured in the original sample, is

not expressed in the reference sample, then
Xk

l¼1
Ril ¼ 0, thus resulting in no adjustment for

that gene and BE will not be eliminated. For this reason, it is important to ensure that the
selected reference samples have a good expression level of the genes of interest otherwise the
reference will not be effective at eliminating BE.

Reference-Based Strategy for Batch Effect Correction
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If the interest is to combine data obtained from different batches, this can be achieved by sub-

tracting RA ¼
Xk

l¼1rAil

,
k

from XA and similarly RB ¼
Xk

l¼1rBil

,
k

from XB prior to combining

the two data sets. In certain cases a model may have been developed with data that were not
batch corrected and hence future data would need to be calibrated to the training data. This is
achieved by adding the difference between the reference to the new data: XB + (RA − RB).

Results

Quality Assurance Metrics
All OC clinical samples passed all QA metrics. Only one HL sample failed based on fields of
view (FOV; obtained 73% cutoff criteria>75%) metric and was removed. Samples were flagged
as imaging failures if the percentage of lane images FOV obtained was less than 75% of the
requested number of fields. This may be affected by either physical problems with the cartridge
or oversaturation of probes (locally or across the whole lane). Oversaturation occurs when
probes compete for physical space on a lane, displacing positive control probes and resulting in
loss of linearity while simultaneously probes expressed at low levels become indistinguishable
from background noise. Lane oversaturation was determined using the linearity of positive
control probes (R2< 0.95) and the ability to detect the smallest positive control. Failures were
more common in OVO cohort (12/135 failed) vs. HLO (no failure); however, this was expected
as dilution experiments were set to stress usability limits. OVCL had a large number of genes
that were not expressed (Fig 1), likely due to OC CodeSet design based on OC histotype and
molecular subtype analysis[31,33,34], with a substantial proportion of stromally-derived genes
[33,34]. Taking this into account, we were less stringent in excluding cell lines that had a lower
percent of genes detected above background. Clinical samples with a signal-to-noise ratio (S/
N) smaller than 100 and<50% genes detected above limit of detection (LOD) were considered
poor quality and removed from analyses. Oligonucleotide samples with less than 95% detection
levels were considered failed as these synthetic samples were engineered for 100% perfect-
match. The S/N, computed as a ratio of the geometric mean of HK and the LOD, was used as
an overall sample quality measure. LOD is a metric used to determine the level of background
noise in the system; high LOD results in fewer genes being detected above background noise.
The fraction of genes above LOD is a good measure of the quality of RNA preparation and the
quantity of RNA loaded, however it should be noted this is not a generalizable cut-off and
must be established (empirically) for a given codeset and experimental design. A subset of
OVO cohort also failed the S/N metric; again, this was expected as noted above (Fig 2). Samples
with high S/N and a large % of genes detected are generally considered better quality samples;
however, the cutoff for the removal of samples from analyses would be application-dependent.
The results are presented in Table 2 and more details are provided in S1 File.

Binding density (BD), a quality assurance measure suggested by the manufacturer to moni-
tor oversaturation, was not used, as there were minor inconsistencies between hardware ver-
sions. BD also did not correlate well with S/N (See S1 File for detail), suggesting BDs well above
the recommended limit were still valid for quantitation.

Data Normalization
NanoString generates non-amplified count data, which may be right-skewed depending on
gene selection. All samples satisfying QA metric checks were log-transformed (base 2) to help
with distribution assumptions, as needed. NanoString recommends a three-step normalization
procedure which involves adjustments relative to positive controls and HK as well as

Reference-Based Strategy for Batch Effect Correction
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background subtraction [35]. Different normalizations for nCounter data have also been con-
sidered previously[20]. We found that normalizing to positive controls made little difference
and resulted in unnecessary processing of the data. Similarly, estimating and subtracting back-
ground resulted in a “false floor”, a problem that becomes most evident when comparing data
from different CodeSets. Our analysis demonstrated that a sufficient step is the subtraction of
the arithmetic mean of HK (on the log scale, this is equivalent to the geometric mean on the
raw scale; S2 File). Finally, for the methodology to be suitable in a single-patient clinical setting,
we strongly discourage rescaling, which creates an unnecessary dependency on the level of
expression of other samples processed concurrently. Using our approach, the final data can be
interpreted as a relative fold change to [the mean of] HK.

Fig 1. Percentage of genes detected above the limit of detection (LOD) by cohort. Each point on the boxplot represents a NanoString nCounter unique
run (duplicates and triplicates included where available). The colored boxes represent the distribution of the percentage of genes detected in a particular
cohort. The white line indicates the median. A cutoff of 50% was used for Cell Lines and clinical samples, and 95%was used for oligonucleotide samples. HL:
Hodgkin lymphoma clinical samples, OC: ovarian cancer clinical samples, OVCL: ovarian cancer cell lines, HLO: oligonucleotides corresponding to the HL
CodeSet, OVO: oligonucleotides corresponding to the OC CodeSet.

doi:10.1371/journal.pone.0153844.g001
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HK selection, in the HL CodeSets was kept consistent with published works, using ACTB,
CLTC and RPLP0. For OC, HK were chosen from a panel of commonly accepted invariant
genes represented on the NanoString Human Reference GX panel, based on their variability
from a number of OC studies[33,34]. Five genes were selected from the upper (2), middle (2),
and lower (1) expression level quantiles: RPL19, ACTB, PGK1, SDHA, and POLR1B from high-
est to lowest median expression respectively. The selection of HK is important; optimal genes
should have lower variance across samples and an expression level that spans that of all other
genes while remaining in the linear dynamic range of the assay. Moreover, although there is

Fig 2. Percentage of genes detected as a function of Signal to Noise Ratio by cohort. Each point on the plot represents a NanoString nCounter unique
run (duplicates and triplicates included where available). The zoomed in section illustrates how the selected cut-off excludes samples that have low signal to
noise and low% genes detected. HL: Hodgkin lymphoma clinical samples, OC: ovarian cancer clinical samples, OVCL: ovarian cancer cell lines, HLO:
oligonucleotides corresponding to the HL CodeSet, OVO: oligonucleotides corresponding to the OC CodeSet.

doi:10.1371/journal.pone.0153844.g002
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little formal analysis as to the optimal number of genes to use as housekeepers, more is better
[36]; our current preference is to recommend a minimum of 5.

Monitoring Sources of Variability
CodeSet variability can challenge the reproducibility of results for any third-party without
access to original samples and CodeSet. Technical and true biological (e.g. histology and
Epstein Barr Virus (EBV) status) variables were considered in PVCA (Figs 3 and 4).

In both OC and HL, the variability associated with CodeSet was ~10%. HL clinical samples
showed pronounced CodeSet-dependent shifts in plots of the first three principal components.
A significant DSC of 0.21 and 0.26 was found in the HL and OC datasets respectively (p-value
<0.01) (Tables 3 and 4), indicating the presence of significant but weak BE. Finally, a gene-
wise percent change in the average log-expression between CodeSets was computed. The
median % change was around 10% in both the OC and HL gene sets, with certain genes being
more stable across CodeSets than others (all compared genes had identical probe-sequence
from lot-to-lot).

Batch Effect Correction
Common multi-sample BE adjustments in gene expression experiments[11,37,13,12,15] typi-
cally require a generous sample set (n> 30) to be processed within each batch. Empirical Bayes
methods[12,14] may be useful when the number of samples in each batch is small (n< 30);
however, all these methods assume that the underlying biological feature representation is equal
in every batch[12], a condition seldom met in clinical practice and observational studies.

Table 2. Overall QC Measures by cohort.

Total HL OC OVCL HLO OVO

Total 561(100%) 74 (13%) 258 (46%) 26 (5%) 68 (12%) 135 (24%)

All QC

Failed 15 (3%) 1 (1%) 0 (0%) 2 (8%) 0 (0%) 12 (9%)

Passed 546 (97%) 73 (99%) 258 (100%) 24 (92%) 68 (100%) 123 (91%)

FOV

Failed 6 (1%) 1 (1%) 0 (0%) 0 (0%) 0 (0%) 5 (4%)

Passed 555 (99%) 73 (99%) 258 (100%) 26 (100%) 68 (100%) 130 (96%)

Linearity

Failed 2 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (1%)

Passed 559(100%) 74 (100%) 258 (100%) 26 (100%) 68 (100%) 133 (99%)

Smallest PC

Failed 2 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (1%)

Passed 559(100%) 74 (100%) 258 (100%) 26 (100%) 68 (100%) 133 (99%)

S/N

Failed 12 (2%) 0 (0%) 0 (0%) 2 (8%) 0 (0%) 10 (7%)

Passed 549(98%) 74 (100%) 258 (100%) 24 (92%) 68 (100%) 125 (93%)

All % are column percentages. Columns: HL: all Hodgkin Lymphoma clinical samples; OC: all ovarian cancer clinical samples; OVCL: ovarian cancer cell

lines; HLO: DNA oligonucleotides corresponding to the HL CodeSet; OVO: DNA oligonucleotides corresponding to OC CodeSet. Rows: All QC: all quality

control metrics; FOV: fields of view metric; Linearity: Linearity of positive control metric; Smallest PC: detection of smallest positive control metric; S/N:

signal to noise ratio metric.

doi:10.1371/journal.pone.0153844.t002
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Fig 3. PVCA and PCA plots of the Hodgkin Lymphoma clinical samples.We considered the PVCA plot (A) of the HL clinical samples run in different
batches. The percentages represent the variability explained by each factor and first order interaction between factors. The PCA plot (B) provides a two-
dimensional summary of the pairwise plot of the first three principal components, which represent 49% of the variability in the data. HL1, HL2, and HL3 label
each of unique CodeSets corresponding to the HL gene list.

doi:10.1371/journal.pone.0153844.g003

Fig 4. PVCA and PCA plots of the ovarian cancer clinical samples.We considered the PVCA plot (A) of the OC clinical samples run in different batches.
The percentages represent the variability explained by each factor and first order interaction between factors. The PCA plot (B) provides a two-dimensional
summary of the pairwise plot of the first three principal components, which represent 40% of the variability in the data. CS1, CS2, and CS3 label each of
unique CodeSets corresponding to the OC gene list.

doi:10.1371/journal.pone.0153844.g004
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Using reference samples for BE adjustment has been suggested as more effective method for
calibration[9,11], where the expression level of the clinical sample is taken relative to the refer-
ence (see Materials and Methods).

PVCA plots were used to compare the variability post-adjustment to the unadjusted data
(Figs 5 and 6). In the HL data, the batch effect due to CodeSet was removed in all cases except
when using the HLO_ref. Similarly, in the OC data, % of variance due to CodeSet went down
in all cases except in OVO_ref and OVCL_ref. The results (Tables 3 and 4) showed that for
both cohorts, not correcting for BE, resulted in a smaller concordance correlation coefficient of
0.85 for the HL cohort and 0.88 for the OC cohort. Batch adjustment methods had no effect on
precision; in contrast, accuracy was modified in all cases, with changes to the OC cohorts being
marginal in comparison to HL. In multi-sample correction, all methods except combat in the
OC cohort seemed to perform similarly in improving concordance between batches; DSC
appeared to shrink in both cohorts after adjusting for BE. In reference-based methods, syn-
thetic DNA oligonucleotides did not perform as expected, appearing to add more bias to the
results.

Table 3. Concordance between duplicates of HL clinical samples obtained from two CodeSets, after adjusting using different methods.

Adjustment Method Rc Ca R DSC p-value

No adjustment 0.85 0.93 0.95 0.259 0.002

Multi-Sample

bmc 0.94 1 0.95 0 1

zscore 0.95 1 0.95 0 1

ber 0.95 1 0.95 0.005 1

pcombat 0.92 0.99 0.95 0.073 0.96

Single-Patient

HLO_ref 0.81 0.89 0.95 0.29 0

any3_ref 0.93 0.99 0.95 0.123 0.55

Column Labels: Rc: concordance coefficient; Ca: coefficient of accuracy; R: Coefficient of determination (Pearson’s correlation coefficient); DSC:

Dispersion Separability Criterion.

doi:10.1371/journal.pone.0153844.t003

Table 4. Concordance between duplicates of OC clinical samples obtained from two CodeSets, after adjusting using different methods.

Adjustment Method Rc Ca R DSC p-value

No adjustment 0.88 0.97 0.92 0.21 0

Multi-Sample

bmc 0.92 1 0.92 0 1

zscore 0.92 1 0.92 0 1

ber 0.92 1 0.92 0.002 1

pcombat 0.905 0.99 0.92 0.095 0.01

Single-Patient

OVCL_ref 0.865 0.965 0.92 0.36 0

OVO_ref 0.875 0.97 0.92 0.191 0

any3_ref 0.91 1 0.92 0.076 0.13

any5_ref 0.91 1 0.92 0.057 0.64

Column Labels: Rc: concordance coefficient; Ca: coefficient of accuracy; R: Coefficient of determination (Pearson’s correlation coefficient); DSC:

Dispersion Separability Criterion.

doi:10.1371/journal.pone.0153844.t004
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Fig 5. PVCA of the HL clinical samples after adjusting batch effect using different methods.We consider the PVCA plot of the HL clinical samples run
in different batches after adjusting BE with different methods. In each plot, percentages represent the variability explained by each factor and first order
interaction between factors.

doi:10.1371/journal.pone.0153844.g005
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Fig 6. PVCA of the OC clinical samples after adjusting batch effect using different methods.We
consider the PVCA plot of the OC clinical samples run in different batches after adjusting BE with different
methods. In each plot, percentages represent the variability explained by each factor and first order
interaction between factors.

doi:10.1371/journal.pone.0153844.g006
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Downstream Analysis
BE can have massive implications on downstream analysis. To assess this impact using the
NanoString nCounter data, we evaluated a reference-based approach to correct for BE using a
previously developed and published HL prognostic model[26] that uses 26 genes to predict
recurrence risk score for HL. A predictive score> 0.6235 is used to indicate a higher risk of
death. Using this model, we computed risk scores of the same 31 patients represented in two
HL CodeSets and compared the concordance of the scores (Fig 7a). While there was an excel-
lent correlation between scores, a lack of accuracy (Ca = 0.81) appeared to result in a systematic
shift from the identity line. If the threshold model is to be used 4/31 cases would be misclassi-
fied as low risk in the second CodeSet when in fact they were classified as high risk in the first
CodeSet. This can only be attributed to batch effect associated with CodeSet. We used the refer-
ence-based strategy, randomly selecting 3 samples and setting them as a reference (any3_ref),
to correct this bias, resulting in no misclassifications (Fig 7b). To ensure that this result was not
due to chance, we repeated the process of selecting 3 samples at random and setting them as
reference (in both CodeSets) 5000 times. Each time, we corrected for BE and counted the num-
ber of misclassification. Over 99% of the times, the resulting Ca was near perfect (over 0.99).
We observed no misclassification 39% of times, 1 misclassification 18% of the times, and a
maximum of 2 misclassifications 44% of the times. It should be noted that in all cases misclassi-
fications were attributed to the same two cases that sat very close to the threshold, and slight
perturbations in the data shifted their classification.

Discussion
We have provided empirical evidence that the use of our reference-based BE correction strat-
egy is equivalent to population-based correction methods with the advantage of being better
suited to clinical applications. Though multi-sample BE correction and normalization methods

Fig 7. Impact of BE on downstream analysis, illustrated using a HL prognostic model. The x and y axes correspond to risk scores obtained in HL1 and
HL2 respectively. The dashed line represents the identity line, and the solid line represents the best linear fit. The horizontal line indicates the threshold used
for prediction. The results in (A) correspond to scores not corrected for BE, and in (B) scores are corrected using 3 reference samples that were run in both
CodeSets.

doi:10.1371/journal.pone.0153844.g007
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may be appropriate for exploratory retrospective studies, as bulk data would likely be available,
special care should be taken to ensure that samples are from homogenous populations. One
problematic example within the spectrum of OC could be comparing a North American popu-
lation OC cohort to a Japanese cohort as the latter are known to have a larger proportion of
ovarian clear cell carcinoma histotype and lesser proportion of high-grade serous[38].

While in some cases a biological signal will over-power any of the above noted variability,
this is near impossible to predict in advance. Careful experimental design is critical to maxi-
mize the utility of any study intending to generate a clinically relevant classifier, whether diag-
nostic, prognostic or predictive. In such studies, planning for a reference-based strategy is
highly desirable. Optimally, a reference would be included on each cartridge—this being the
smallest “batch”. However, within-lot variability, examined in several recent studies, were
found to be highly stable and to yield negligible effects[23,27]; our data are largely consistent
with these findings. This suggests most applications will lend well to periodic reference runs, at
least until a locked-down protocol is established for validation[17].

Variability in gene expression data can be partitioned into two sources[39]: biological,
caused by differences between different biological conditions, and technical, which can be
introduced by virtually every experimental detail. NanoString workflow automation and fore-
going the need for enzymatic processing/amplification minimizes technical variability that
would otherwise be influenced by the user. For nCounter assays, large lots of reagent are typi-
cally ordered upfront and used for all experiments in a given plan. We focused our efforts on
evaluating CodeSet-to-CodeSet variability, a topic that has garnered relatively little attention,
as well as deriving batch-independent quality assurance metrics and an algorithm for normali-
zation such that assays could be run in small batches, or single patient environments, as one
would encounter in clinical practice.

Overall we found lot-to-lot variance on a per-probe basis varied widely and was the single
greatest source of identifiable variation. Not all probes varied, however, since we do not have
knowledge on batch-manufacture of specific probe sets, it is unknown whether stability is
inherent to a gene/probe design or if genes with little difference were from the same
manufacturing pool.

In validating our reference-based strategy for batch-independent normalization we encoun-
tered some unexpected results. Specifically, the poor performance of the synthetic DNA oligo-
nucleotide references was surprising. This may have been due to: i) A substantial fraction of n-1
and other incomplete oligonucleotides known to occur in longer synthesis reactions even with
high coupling efficiency[40]. This may be correctable using HPLC purification, a cost restrictive
addition during our experiments. ii) Secondary structure interaction of native RNA that is lack-
ing in DNA. However, given the consistency between signal obtained between replicates of
intact mRNA and fragmented mRNA from FFPE sources, we do not suspect significant second-
ary structure interaction. iii) Unexpected interaction of DNA-oligonucleotides with the colour-
barcode molecules. Maintaining consistency in the probe-barcode combinations from batch-to-
batch may alleviate this. iv) Other non-optimal hybridization parameters (temperature/salt/
detergent) for the probe-DNA duplex compared to probe-RNA duplex of a true sample.

Similarly, in the OC cohort, the cell line-based reference performed poorly. In retrospect,
this may have been predictable since many of the genes were not expressed in the cell lines;
expression in clinical samples originated from stroma and their absence in cell lines hindered
correction.

Finally, we were unable to test specifically whether synthetic RNA-oligonucleotides had
superior performance to DNA-oligonucleotides (or other tested references). Synthetic RNA
may be an optimal solution for clinical/commercial assays as it could be recreated within very
precise parameters. An in vitro transcribed RNA strategy appears to be the method employed
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for NanoString’s FDA approved “ProSigna” assay[41]. However, synthetic RNA pools may be
overly expensive to establish and maintain during research and development phases.

Conclusion
Advance planning is key to any study and identifying the goals in a NanoString-based experi-
ment is no exception. Should a normalization reference sample be required, then careful selec-
tion of such a reference should be made: (1) must act identically to a test specimen in the assay,
(2) must be plentiful, even in the initial research setting it should last through several CodeSets
worth of reagents—stock should be established early, (3) must adequately represent all genes of
interest. Cell lines may be suitable in some applications, though not in the above example. If
they are used, it is important to avoid replenishing stock by growing more cells as transcript
levels may be affected by culture conditions including confluence, nutrient availability, oxygen-
ations, pH, and handling. A new batch of cells is a “new” reference, albeit with similar charac-
teristics to the original. Any new reference must be migrated into the experimental protocol
appropriately. Finally, (4) normal tissue, pooled samples or synthetic RNA pools may be con-
sidered—it appears that synthetic DNA oligonucleotide pools are not suitable for this purpose.
The current de facto gold standard, in vitro transcribed RNA pools, has been defined by FDA
approvals of NanoString’s ProSigna assay. This synthetic RNA approach is unfortunately
expensive to establish and maintain during the research and development phase. Large pools of
high-quality RNA from real biological samples of interest may be a low cost stand-in, could be
shared with others continuing/reproducing results, and can be migrated to replacement pools
or a long-term, commercial-product solution at a later stage.

Overall, we found the NanoString gene expression platform to be an easy to use and highly
robust technology. Experimental variability is relatively small and can be dealt with using good
experimental design and proactive planning, keeping in mind the goals of a given project and
the desired reproducibility.

Supporting Information
S1 File. Metrics for Quality Assurance. This file contains additional extensive detail on all
methods and parameters related to processing and establishment of metrics for quality assur-
ance.
(DOCX)

S2 File. Normalization. This file contains additional extensive detail on the method used for
normalization of the data using the reference-based strategy and example data comparing our
method to the manufacturer recommendations.
(DOCX)
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