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The surprising social phenomena of the Arab Spring and the Occupy Wall Street movement posit the
question of whether the active role of committed groups may produce political changes of significant
importance. Under what conditions are the convictions of a minority going to dominate the future direction
of a society? We address this question with the help of a Cooperative Decision Making model (CDMM)
which has been shown to generate consensus through a phase-transition process. We observe that in a
system of a finite size the global consensus state is not permanent and times of crisis occur when there is an
ambiguity concerning a given social issue. The correlation function within the cooperative system becomes
similarly extended as it is observed at criticality. This combination of independence (free will) and
long-range correlation makes it possible for very small but committed minorities to produce substantial
changes in social consensus.

ocial progress and change can be portrayed from at least two competing perspectives. The first is that of a

gradual, cumulative evolution of thoughts and opinions providing a smooth gradual transition from one

orientation to another. The second, more contemporary view approaches history as a series of status quo
periods interrupted by abrupt, intermittent and sometimes violent events'. Those brief moments of social unrest
often bring an opportunity for radical change within the structure of society or its political organization. As the
events of the last century, such as the Velvet revolution, the fall of the Berlin wall and the Solidarity movement in
Poland, have demonstrated, the instances of social unrest can lead to the replacement of totalitarian regimes by
democratic parliamentary systems. However, equally often the transformation proceeds in the opposite direction,
where one dictator is replaced by another, as happened during the Cuban revolution and in many African
countries in the 1960’s. In extreme cases unrest can lead to political destabilization, creating an environment
in which extremist or terrorist ideas thrive. As a result of globalization, social and political changes that occur in
one place in the world almost immediately have a wider almost universal effect. The interdependence of eco-
nomies, cultures and organizations create a complex network in which even weak interactions can have a
profound effect on the spread of ideas and opinions. Therefore the understanding of what conditions have to
be realized for a given “movement for change” to succeed is an issue of overwhelming importance’.

Recent studies demonstrate that the abrupt, discontinuous events such as the catastrophic failure of power
grids, computer networks and financial market crashes are a consequence of the high connectivity of those
networks®. Therefore it is important to realize that the local interactions between the building blocks of such
networks play a role analogous to that of the interactions between particles in solid state matter, which suggests
that adopting a phase-transition perspective to describe complex network dynamics* is a natural application of
statistical physics to network science. Thus, in a manner analogous to the abrupt phase transitions seen in physical
phenomena, social and political dynamic discontinuities arise from the local interactions among the elements of
those systems and result in a tipping point. Consequently the cooperative behaviour within social groups need not
be caused by external factors but can be determined by internal interactions.

As early as 1975 Haken’ used the phase transition concept to interpret the 1968 French student revolution. His
approach explained the remarkably rapid transition from traditional morality to sexual liberation, but he did not
investigate the role the minority of protesting students may have played in triggering this change. Only recently
the concept of inflexible agents (committed minorities) who retain their opinion regardless of their social
environment has been introduced by Galam and Jacob®. These minorities are known as zealots in the sociology
literature. Masuda’ investigated the influence of zealots on cooperation in evolutionary phenomena using social
dilemma game theory. He found that even a small fraction of zealous co-operators results in a large fraction of
cooperation in the evolutionary dynamics. Mobilia et al.* determined, using a master equation form of the voter
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model, that zealots balanced between parities can also inhibit
consensus even when there is a robust majority of one party over
another.

Xie et al.” studied the influence of these inflexible individuals using
a Naming Game approach and found that when this committed
minority reaches a threshold of 10% of the population the opinion
of the entire social network can be reversed to conform to that of the
minority. This result was shown to be largely independent of the
structure of the model interactions within society but can be deter-
mined by as much as 10% to as little as 4% for a sparse network'. The
percentage at which the tipping point (critical point of a phase trans-
ition) occurs is clearly model dependent and can vary from 4 to
1 5%1 1,12.

Even more interestingly, Xie et al.” make the observation that the
onset of the American civil rights movement overlapped with the
African-American approaching 10% of the United States population,
and suggested historic relevance for their numerical investigations.
More recently, Couzin et al."” presented experimental evidence that a
committed minority of fish can override the consensus of a substan-
tially larger school of fish, reintroducing variability of opinions
within the system.

Social models provide a rich dynamics that is associated with the
nature of the interactions among the members of the network, as well
as the changing structure of the network itself. Singh et al."* investi-
gated how these two aspects of the dynamics influence the time to
reach consensus as a function of network size N. They found a critical
value of the committed fraction. The time to reach consensus in the
subcritical domain is exponent in network size and transitions to
logarithmic in network size in the supercritical domain. The critical
minority fraction is determined to be 10%.

Herein we further investigate the conditions under which com-
mitted minorities can initiate global changes. With the use of a prev-
iously developed Cooperative Decision Making Model (CDMM)I'>'¢
we demonstrate that the abrupt changes in the organization of social
groups, rather than being moments of disorder, are instances of
increased spatial correlation between the units of the network. This
condition of extended cooperation, like that of the critical state of a
phase transition, allows for a small subgroup of the society to exert
remarkable influence over the whole system. In the results section we
briefly review some material that has previously been published, but
which is necessary to formulate a clear understanding of what is
entailed by CDMM dynamics. The microscopic dynamics of the
two-state master equation is replaced by a stochastic macroscopic
global variable that is determined to undergo a phase transition'.
The results in the sections on the scaling of critical exponents, the
three-dimensional CDMM, the correlation function and the com-
mitted minority are new and show by direct calculation that the
CDMM dynamics belong to the Ising universality class. This last
result is consistent with a general claim made by Grinstein et al.””
that universality occurs for a large class of two-state probabilistic
lattice models with local interactions as pointed out to us by an
anonymous referee.

Results

Model description. Consider the Cooperative Decision Making
model (CDMM) consisting of two-state units s;, each of which
represents an agent making decision to agree ("yes") or disagree
("no") on a given issue and whose dynamics are described by a
master equation on a two-dimensional lattice'>'. In the absence of
interactions the probability for a given unit to change its decision
from "yes" to "no", or vice versa, is given by a Poisson distribution
with a transition rate g < 1. When the interaction between agents is
turned on, the probability that a given unit is going to change its
decision becomes time dependent, yielding transition rates

Pinsj(t) =g exp [K{Mi(t) — M;(1) } / M] (1)

where M; is the number of nearest neighbours in the state i = {“yes”,
“no”}, and M is the total number of nearest neighbours. Global
decisions of a network composed of N units whose interactions are
described by Eq. (1) can be defined by the time-dependent global
order parameter

(1) = [Nyes() =No(1)] /N 2)

where Ny, and N,,, are the global counts of units being in one of the
two states at a given time . Here we consider the units of the CDMM
to be on the nodes of a two-dimensional lattice with periodic
boundary conditions. In the simulation each element is updated at
each time step after which the transition rates in Eq. (1) are updated
for the next time step.

Phase transition. The CDMM is similar to the well-known model
proposed by Vicsek' to study the cooperative dynamics of swarms of
birds and demonstrates the shift from a configuration dominated by
randomness to an organized state once the control parameter is
increased above the critical value K.'°. For values of the control
parameter K corresponding to the disorganized phase K < K,
single units are only weakly influenced by the decisions of their
neighbours and change their state with probability only slightly
faster than the decoupled rate g. Thus, the fluctuations of the
global order parameter £(f) are characterized by small amplitude
and very fast oscillations about the zero-axis [see Fig. la]. For K >
K., the interaction between units gives rise to a majority or consensus
state, during which a significant number of agents adopt the same
opinion at the same time [see Fig. 1c]. Figure 1d depicts the CDMM
phase transition under the condition of nearest neighbour coupling
on the two-dimensional lattice, where the time average of the global
order parameter, &, =(|S()]), is used as a measure of the
organization of the system.

We quantify the changes in temporal properties of the global
variable £(t), which accompany the phase transition, by evaluat-
ing the waiting-time probability density function ¥(t)and survival
probability'®

W(r)= J (e (3)

of time intervals 7 between consecutive crossing of the zero-axis. As
illustrated in Fig. 1e, in the subcritical regime ¥ (7)has an exponential
form, which reflects the large independence of single units from their
neighbours. In the supercritical region K > K, the abrupt transitions
between consecutive majority intervals, that result from the lattice
having finite size, are responsible for an exponential shoulder present
in W(1).

It is important to notice that for a given value of the transition rate
g departing significantly from the limiting condition g — 0, there is
no theoretical prediction for the critical coupling strength K.'. The
value of K, estimated with the traditional Binder cammulant method"
yields K¢ =1.644 when g = 0.10. However, since this approach esti-
mates critical coupling for a network of infinite size, it is not surprising
that W(t)evaluated for Kg and a lattice of size N = 100 X 100 nodes
shows an exponential shoulder, which is the hallmark of the organized
phase. Simultaneously, following Vanni et al.*> we observe that for a
network of finite size one can always find a value of the control
parameter K for which the exponential shoulder vanishes and for
which W(7)is an inverse power-law (IPL) function. We assume this
condition to correspond to the critical point for a network of finite
size, and we obtain K, = 1.625 for N = 100 X 100 and g = 0.10.

Critical exponents. The CDMM, defined by means of a two-state
master equation, in which the transition rates between states depend
on the local configuration of the lattice, has a number of properties in
common with the kinetic Ising model*', where the dynamics of a
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Figure 1| (a—c) Temporal evolution of the global order parameter for increasing values of the control parameter, K = 1.50, K = 1.62 and K = 1.66.
(d) Phase transition diagram for the amplitude of the global order parameter £(#) as a function of the control parameter K. (e) Survival probability
distribution W(7) for selected values of K: blue line corresponds to K = 1.50, red line to K = 1.62 and green line to K = 1.66. Lattice size is N = 100 X 100
nodes, and transition rate g = 0.10; all the calculation were done with periodic boundary conditions.

single spin is a function of the temperature of a thermal bath in which
system is submerged. If one disregards the physical aspect of
temperature and other physical quantities that follow, then a
correspondence can be found'® between the CDMM control
parameter and the temperature which defines the organization in
the kinetic Ising model. From this perspective the CDMM is a
generalization of the dynamic phase transition models and as such
it shares their scaling behaviour. To illustrate this fact we study
scaling properties of the global variable. Fig. 2a demonstrates that
the £, dependence on the control parameter rescales and therefore
collapses onto a single curve for a system of increasing size, with
exponents f = 1/8 and v = 1. Next, the exponent ff = 1/8
reappears in the scaling of &, near the critical point (Fig. 2b):

éeq:(l_K/KC)ﬂ' (4)
Finally, the susceptibility,
r=(&)— (&)’ 5)
scales as
1< (|K—=Ke| /Ke) ™ (6)

with exponent y = 7/4, demonstrating that the CDMM belongs to
the Ising universality class®”. However, as pointed in earlier publica-
tions on CDMM"™', the correspondence between the two models
arises merely from their mathematical implementation, and their
physical interpretations are fundamentally different. In the kinetic
Ising model, the fluctuations are induced by a thermal bath, whereas
in the CDMM variability arises from within the system itself, as a
consequence of its finite size. We noted previously that Grinstein et
al."” anticipated that such two-state probabilistic lattice models with
local interactions would have dynamics belonging to the Ising uni-
versality class regardless of the source of fluctuations.

Three-dimensional CDMM. We observe the phenomenon of global
cooperation introduced by the interactions between the units of the

CDMM in systems of lower and higher dimension than the regular
two-dimensional lattice previously discussed. The mean-field appro-
ach is studied extensively in Turalska et al.®, where both phase tran-
sition and temporal complexity of the global variable are reported.
Similar behaviour occurs in scale-free and random networks, as well
as for dynamics on a three dimensional lattice. The latter case is
illustrated in Fig. 3, where we show that the transition from lower
to higher dimension does not significantly affect the qualitative
behaviour of the model. First, we still perceive phase transition
behaviour of the global variable. Next, the fluctuations of &(f)
increase in amplitude similarly to the behaviour observed in the two-
dimensional case. In the organized phase one observes time intervals
with a majority of the units within the cube being in the same state.
Finally, the distribution of those time intervals shows three distinct
regimes, which were also present on the two-dimensional lattice.

Correlation function. Further insight into the dynamic properties of
the CDMM is obtained by adopting the statistical measure of spatial
influence, that being the correlation function® C(r) between the
nodes separated by the Euclidean distance r:

C(r)=(sisi+r) = (si) (Si+r) (7)
The quantity (s;s;+,) denotes an average over all pairs of units on the
lattice separated by distance r and (s;) = (s; 1) denotes averages over
all the units of the network. Figure 2c shows C(r) for selected values of
the coupling constant K. For both sub-critical (K < K,) and super-
critical (K > K,) values of the control parameter, the correlation
function C(r) decreases rapidly as a function of the distance
between nodes. However, at criticality, K = K, we observe the
correlation length to be significantly more extended than in either
the sub- or super-critical regimes, a characteristic property of
systems at a phase transition®’. It is important to note that since we
consider a network of finite size, this extended correlation implies the
emergence of dynamical coupling between units that are not nearest
neighbours and therefore not directly linked.
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Although traditionally the correlation function C(r) is considered C(r,t) = (si(1)si4 () — (s:(t)) {si1 (1)) (8)
an equilibrium property of a network*, the central result of this
paper is obtained by modifying Eq. (7) in order to study temporal and as shown on Fig. 4, we observe that the fluctuations of the
fluctuations of the correlation function. For each instant of time we  correlation function C(r,t) closely track those of the global order
define the spatiotemporal correlation function parameter £(f). In particular, the abrupt transitions between epochs
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of dominating majority, the instances of crisis that take place when
K> K, correspond to jumps in C(r,t). Additionally, as demonstrated
in Fig. 5, careful inspection of the network at the instant of crisis
reveals an extended correlation length when compared with the
organization of the lattice during majority rule. This observation
provides an explanation of how committed minorities succeed in
their goal of inducing significant social change. Since at the moment
of the jump the order parameter vanishes, £() = 0, we interpret those
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events as free will states. One could expect that the network had lost
its organization and is randomly configured at that moment.
However, such an interpretation would signify the presence of only
local coupling and therefore could not explain how a small bias
exerted on the network is able to produce large-scale changes, as
shown subsequently.

Committed minority. A member of the committed minority consi-
dered herein is a randomly selected element on the lattice that keeps
its decision of either "yes" or "no" independently of the opinion of its
neighbours. To prove that the committed minorities may operate
efficiently in spite of their very small number, in Fig. 6 we compare
the evolution of () in the absence of a committed minority to the
evolution of £(f) in the presence of a relatively small (1%) committed
group. As might be expected the effect is observed both in the
two and three dimensional system, letting us believe that it will
also be present in networks of more complex topology. In the two-
dimensional case considered here a high value of the control
parameter, (K > K,), leads to the extended condition of global
consensus, during which the influence of the minority is negligible.
The rapidly decreasing correlation function C(r) reflects the rigidity
of the network and prevents the global transmission of the pertur-
bation. However, from time to time a crisis occurs where &(¢) = 0. In
crisis the network may undergo an abrupt change of opinion and the
correlation length is sufficiently large to make it possible for the
committed minority to force the social network to adopt their
view. As a consequence, during the time interval over which the
minority acts it imposes its opinion over the whole network.
Finally, to quantify this phenomenon, we study how introducing a
committed minority affects the average lifetime of the consensus

state, with the average lifetime defined as
o0

0= | v ©
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It is important to note that in the condition where no committed
group is present the distribution of time durations of global decision
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minority is present. (Left) Fluctuations of the global variable &(#) for K = 1.65 and the 2D lattice of size N = 100 X 100 nodes are compared with the
behaviour of £(t) once 1% of the randomly selected nodes are kept in state "yes" at all time. (Right) The dynamics of the CDMM on the 3D lattice when a
1% committed minority is present. The studied lattice has N = 5 X 5 X 5 nodes, thus 1 node was always kept in state “+1” to realize the committed
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time interval 1, shows strong shift in the length of positive and negative majority states due to the presence of the minority.
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in "yes", ¥(1,.,), and in "no", ¥(z,,), coincide and are equal to the
distribution evaluated for both time intervals, ¥ (t)= ¥(1)e) =
¥(7,,). This symmetry is however broken once a minority is intro-
duced, as shown on Fig. 6, by an increase in temporal span of con-
sensus states that correspond to the opinion of the minority. In Fig. 7
we compare (7) in the absence of the inflexible agents to (t) in the
presence of a committed minority of sizes 1% and 5%. First, in the
native case the average consensus time (7) increases exponentially
with an increase in the coupling strength K, showing a faster rise once
K > K, with a discontinuous change at the critical interaction
strength. This switch in the rate of increase confirms the validity of
the approach used to determine K, based on the temporal properties
of (). Consecutively, the introduction of a small minority leads to a
linear increase in (7) and the fact that two exponential regimes are
preserved confirms the crucial role that instances of crisis play in the
global transmission of minority opinion. Analogous behaviour is
observed for the CDMM studied on a three-dimensional lattice.
Note that this result differs from the transition found by Singh et
al." from exponential to logarithmic dependence on network size ata
critical value of the fraction of the committed minority. We attribute
this functional change that is not observed in CDMM to the mech-
anism of dynamically rewiring the network introduced into their
model by Singh et al."

To provide additional evidence demonstrating the role of long-
range correlations present in the network during the transition from
one majority interval to another, we consider an ensemble of realiza-
tions of the CDMM process: one initialized with random configuration
of the lattice and the other with a configuration derived from the
instance of a crisis. Both ensembles of realizations of the CDMM
process include 1% of committed nodes. This approach lets us invest-
igate the influence of an initial condition on the evolution of stochastic
realizations of the model. Due to the presence of a small minority each
evolution of £(#) spends more time in the state "yes" and gives rise to a
non-zero ensemble average (£(¢)). As shown on the Fig. 7, the
ensemble average initialized with the state of crisis reaches an equilib-
rium earlier that the system randomly initialized. Since all other para-
meters of the dynamics are the same, this allows us to conclude that the
long range correlations present in the system at the time of crisis do
play a role in the spread of the opinion of the committed minority.

Discussion
Our approach does not allow us to test the speculation made
by Xie et al.’ that the minimal size of the committed minority

necessary to significantly affect the opinion of the entire network
is 10%. If we assume that a substantial effect of a committed
minority is defined by an order of magnitude increase in the
average consensus time (t), Fig. 7a indicates that for CDMM this
requirement is realized by a committed minority of less than 5%.
Simultaneously, we observe that the effect of the minority on the
dynamics of the CDMM is preserved once the dimension of the
lattice is increased from two to three, which is contrary to the
results reported by Mobilia*>. We are convinced that those differ-
ences are a consequence of the non-local interactions present in
the CDMM and the local, diffusion-like behaviour shown by the
models investigated by others™.

The fact that CDMM generates consensus through a second-order
phase-transition process is of crucial importance to the influence the
committed minority has on the dynamics of the network. Due to the
finite size of the network, the consensus states are transient, contrary
to what is observed in the voter model or Naming Games, where the
dynamics progress to an absorption-like global agreement state. The
presence of a committed fraction of elements extends the global
states of overlapping opinion; however it does not change their inter-
mittent nature. Surprisingly, the instances at which the organization
of the network disappears are indicative of the critical state, rather
than being purely disordered in nature. The extended correlations
present in the network at times of crisis facilitate the transmission of
the opinion of the committed minority, providing a social mech-
anism for such an information transport process. This issue of facil-
itating opinion transfer is not discussed in earlier works on the role of
zealots in networks.

Herein we have demonstrated that in a dynamical network the
extended correlation length emerges not only at criticality, but quite
surprisingly also at times of crisis which separate intervals of strong
opinion. Our results indicate that this property is responsible for the
significant efficiency of inflexible minorities in influencing entire
networks. This discovery may shed light on the animal behaviour
recently observed® in flocks of locust or schools of fish and repro-
duced with the cooperative model of Vicsek'. In fact, the locusts’
change of direction seems to occur in the supercritical condition and
is accompanied by increased activity of the single insect.
Simultaneously, it follows that there is no need for specific organiza-
tion of the members of the committed minority, since due to
increased correlation their impact is perceived even if the inflexible
units are randomly arranged within the network and are not in direct
contact with each other.
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Methods

The Cooperative Decision Making model (CDMM) consists of a system of N
two-state units located at the nodes of a two and three dimensional square lattice.
Each unit s; is a stochastic oscillator and can assume either of two states, +1 or —1.
The dynamics is introduced by choosing a single unit on a site i and updating it in an
elementary time step with a transition rate defined by Equation (1). Due to selected
topology, the number of nearest neighbors is M = 4 and M = 6 for the square and
cubic lattice, respectively. All numerical calculations were performed assuming
periodic boundary conditions. In the case of the three-dimensional lattice the
opposite facets of the cube were considered to be in direct contact. Initially the states
of the single units were randomly assigned. Next, the dynamics of the model was
repetitively evaluated at the consecutive time steps. In a single time step a run over the
whole lattice was performed in a sequential fashion and for every unit s; the transition
rate of Eq. (1) was calculated according to which a node was given the possibility to
change its state. The size of the system was N = 100 X 100 for the square lattice and
N=5X5X50rN=10 X 10 X 10 in the case of the cubic lattice. In most cases the
simulations of the CDM model were performed on a time scale of 10° time steps for a
selected value of the coupling constant K.

The time-dependent global order variable (f) is defined by equation (2). Its
long-time scale properties are captured by the global order parameter, &, = (|£(t)]),
which is calculated as a time average of the absolute value of £(¢) over the time window
of 10° time steps. The temporal properties of the global variable &(t) are evaluated by
the means of approximating the waiting-time probability density function ¥(7) with
the normalized histogram of time intervals 7 extracted from a single, long time scale
evolution of the CDM process. Time intervals 7 are defined as the intervals between
the instances at which &(f) changes sign, disregarding the amplitude of &(t) or length
of previous intervals 7. In order to properly estimate ¥(t), the length of a CDM
process needs to be increased from 10° to 10° as the dynamics moves from subcritical
to supercritical regime and time intervals during which &(f) keeps constant sign
become larger and larger.

The correlation function C(r) and its spatiotemporal equivalent C(r,t), defined by
equations (7) and (8), respectively, requires the calculation of an average over all pairs
of units on the lattice separated by distance r. For simplicity of numerical calculations,
we considered only the natural values of the separation distance r, disregarding
possible contributions from elements separated in other manner. The calculation of
the separation distance took into account periodic boundary conditions.

The committed minority concept was realized by selecting randomly a small
fraction of the units of the system and freezing their state while letting other nodes
follow the CDM dynamics as described earlier. Thus, committed nodes were allowed
to influence their nearest neighbors, their state being included in the evaluation of the
transition rate for those neighbors, while at the same time they disregarded any
influence and kept their assigned state during the simulation time.
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