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The coronavirus disease 2019 (COVID19) pandemic has left researchers scrambling to
identify the humoral immune correlates of protection from COVID-19. To date, the
antibody mediated correlates of virus neutralization have been extensively studied.
However, the extent that non-neutralizing functions contribute to anti-viral responses
are ill defined. In this study, we profiled the anti-spike antibody subtype/subclass
responses, along with neutralization and antibody-dependent natural killer cell functions
in 83 blood samples collected between 4 and 201 days post-symptoms onset from a
cohort of COVID-19 outpatients. We observed heterogeneous humoral responses
against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein.
Overall, anti-spike profiles were characterized by a rapid rise of IgA and sustained IgG
titers. In addition, strong antibody-mediated natural killer effector responses correlated
with milder disease and being female. While higher neutralization profiles were observed in
males along with increased severity. These results give an insight into the underlying
function of antibodies beyond neutralization and suggest that antibody-mediated natural
killer cell activity is a key function of the humoral response against the SARS-CoV-2
spike protein.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus (SARS-CoV-2)
infection results in a majority of symptomatic individuals
presenting with mild disease (1–4). The individuals most
frequently requiring hospitalization were those with underlying
co-morbidities such as hypertension and diabetes (1, 3, 5).
Interestingly, previous studies have reported that the severity
of infection is associated with higher antibody (Ab) titers and
neutralizing activity compared to individuals in whom the
disease is mild or moderate (6–10). Despite early attention to
hospitalized individuals (1, 5, 11), the still-growing population of
outpatients with moderate to more severe symptomatology
represents a critical group to study. Previously, they were
reported to present a waning of spike-specific Ab titers during
the first months after infection (12–15). Fortunately, while the
quest for immune correlates of protection against SARS-CoV-2
infection continues (16) accumulating evidence is beginning to
identify immune hallmarks related to the severity of symptoms
reported by patients, and would contribute to knowing deeper
aspects of the natural immune response expected to be replicated
by prophylactic and therapeutic approaches (8, 17–22).

The use of Ab titers as the gold standard for measuring the
acquired protection after vaccination or infection is common
practice (23–25). However, the ability of Abs to control pathogen
infection or protect against reinfection is not solely dependent on
their titers, but rather on their capacity to induce neutralizing and
non-neutralizing functions (26–30). Several studies have now
explored the Ab correlates of SARS CoV-2 neutralization (8, 21,
31–35), in particular, Immunoglobulin (Ig) G class has received
more attention, due to its well-known participation in
neutralization induced by viral infections (36). Yet, the
contribution of non-neutralizing Ab responses remains ill defined.

Beyond neutralizing functions, Abs can trigger non-
neutralizing antigen-specific innate immune functions via
interactions with Fc receptors found on the surface of innate
immune cells, playing an essential role in connecting adaptive to
innate immunity. Indeed, Abs mediating these functions have
been recently discovered to play an important role against Ebola
virus (29, 37), HIV (38, 39), and influenza virus (40, 41) infections.
These Ab-dependent cellular functions include among others
phagocytosis of infected cells and natural killer (NK) cell effector
functions. After their activation, NK cells can control infection
through both, the release of lytic granules containing perforin and
granzymes; and the release of proinflammatory cytokines like
IFN-g and TNF-a (42, 43). Those functions can be induced after
the binding of different Fc receptors to Fc domains of Abs engaged
to viral proteins presented in infected cells (44, 45). Notably, Abs
commonly have the potential to elicit several effector functions
and diverse determinants have been found to modulate their
activation, such as Ab isotype, subclass, glycosylation pattern
and specificity for viral antigens on the Ab side, and, differential
Fc receptors expression and polymorphisms found in effector cells,
among other factors (46). In COVID-19, both Fc effector functions
previously mentioned have been correlated with immunity in
SARS-CoV-2 vaccine studies using animal models (47, 48).
Moreover, Ab-dependent Fc effector activity appears to be
Frontiers in Immunology | www.frontiersin.org 2
compromised in deceased versus recovered individuals (19). A
recent paper has also described the contribution of neutralizing
and Fc functions in seroconverted individuals after asymptomatic/
mild infection (27). These studies highlight that the breadth of Ab
functionality, rather than Ab titers, is more correlated with
immunity (45, 49). Therefore, it is important to examine the
contribution of Ab responses beyond neutralization and define if
non-neutralizing Ab responses are associated with mild or more
severe infections. It will further be important to define whether or
not natural infection in outpatients induces sustained Ab response
that yields protective and long-lived immunity. Considering that
these patients are the majority of cases reported during this
pandemic, along with a growing portion of convalescent
population mainly from non-hospitalized cases, it is essential to
investigate their immune correlates of protection post infection.

In the present study, we quantified IgA, IgM, and IgG Abs
against SARS-CoV-2 spike protein and its receptor binding
domain (RBD), and measured the Ab neutralization and Ab-
dependent NK effector functions against SARS-CoV-2 spike in a
cohort of 70 outpatient individuals. Correlations and principal
component analyses allowed us to determine the contribution of
the studied parameters and their association with symptoms
severity, days post-symptoms onset and demographic variables
such as sex. Interestingly, while NK effector functions were
associated with individuals that developed a mild disease,
specifically females; neutralization was most represented in the
group of individuals who suffered more severe symptoms,
specifically males. In summary, our data propose a humoral
signature associated with milder disease in coronavirus disease
2019 (COVID-19) outpatients.
MATERIALS AND METHODS

Sample Cohort
Healthy controls were obtained from a cohort of subjects, whose
samples were collected prior to the COVID-19 pandemic (50).
Samples were processed as previously described (51). Serum
from each donor was obtained from serum collection tubes (BD
Vacutainer) and stored at -80°C.

Clinical symptoms were classified in five categories: systemic
(fever, headache, myalgia, chills), upper respiratory
(odynophagia), lower respiratory (cough, dyspnoea),
neurological (anosmia, dysgeusia), and gastrointestinal
(diarrhea), to determine a clinical severity score, we analyzed,
the number of categories affecting each subject generating a score
from 1 to 5 for symptomatic cases.

SARS-CoV-2 Spike and RBD Recombinant
Protein Expression and Purification
The previously characterized SARS-CoV-2 spike and RBD were
produced as previously described (52, 53). Briefly, codon-
optimized coding sequences based on SARS-CoV-2 isolate
(GenBank: MN908947.3) for 6xHistidine-tagged soluble RBD
and spike (at trimeric pre-fusion conformation), were cloned
into pCAGGS backbones, transfected into HEK293 T cells, and
February 2022 | Volume 13 | Article 796481
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subsequently purified from supernatants throughout Ni-NTA
Agarose (Qiagen). Recombinant proteins were then
concentrated using Amicon centrifugal units (EMD Millipore)
and re-suspended in 0.067M PO4 pH 7.4 phosphate-buffered
saline (PBS). Sodium dodecyl-sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and Coomassie staining were used
to confirm protein stability.

Spike- and RBD- Enzyme-Linked
Immunosorbent Assays (ELISAs)
Based on protocols from a previous study (53), 96-well plates
were coated with 2 µg/ml solution of soluble trimeric spike
ectodomain or RBD purified proteins at a volume of 50 µl per
well overnight. The plates were then washed and blocked with
3% non-fat milk prepared in PBS with 0.1% Tween 20 (PBST).
Serial dilutions of previously heated serum samples were
prepared in 1% non-fat milk prepared in PBST and incubated
in the washed coated plates for 2 h at room temperature. The
plates were washed again and incubated with a 1:3,000 dilution of
goat anti-human IgG, IgA, IgM –horseradish peroxidase (HRP)
conjugated antibodies (Thermo Fisher Scientific) for IgG1, IgG2,
IgG3, or IgG4, followed by incubation with secondary anti-
mouse HRP antibody (Jackson ImmunoResearch). All
antibodies were prepared in 0.1% PBST and incubated for 1
hour. After a final wash, 100 µl of SIGMAFAST OPD (o-
phenylenediamine dihydrochloride; Sigma–Aldrich) substrate
solution was added to each well for 10 min, the reactions were
then stopped with 3N hydrochloric acid. The optical density at
490 nm (OD490) was measured using a TECAN Infinite M Nano
plate reader. Data were analyzed using Prism (GraphPad).

Pseudovirus Neutralization Assay
Generation of the HIV-1-SD19 pseudotyped viral particles and
HEK-ACE2 (human embryo kidney cells expressing angiotensin
converting enzyme 2) cells were carried out as previously
described (54). For neutralization assays, serum samples were
initially diluted 1:40 in Dulbecco’s modified Eagle’s medium
(DMEM) and serially diluted 1:3 up to a dilution of 1:87480.
Simultaneously, a 96 white well-plate was loaded with 50 µL of
HIV-1-SD19 pseudotyped viral particles containing approximately
4.5 ng of p24 equivalents diluted in DMEM. Subsequently, 50 µL
of each serum dilution point was added to the particle-loaded wells
in duplicate and mixed. As a positive control, 50 µL of DMEM
were mixed with pseudotyped particles.

Plates were incubated for 1 hour at 37°C and then 100 µL of
DMEM containing 1x104 HEK-ACE2 cells was added to each well.
As a negative control, HEK293T cells were added to pseudotype-
containing wells. Firefly luciferase activity was measured 48 hours
later, according to manufacturer’s instructions (E1980,
PROMEGA) using a GLOMAX luminometer.

Estimation of the 50% neutralization titer (NT50) was
obtained using a 4-parameter nonlinear regression curve fit
measured as the percent of neutralization determined by the
difference in average relative light units (RLU) between test
samples and pseudotyped virus controls.
Frontiers in Immunology | www.frontiersin.org 3
Antibody-Mediated Degranulation and
Activation of Human NK Cells
Human NK cells were enriched from fresh peripheral blood of
healthy human volunteer donors’ buffy coats, obtained by Clıńica
Sanatorio Alemán blood bank at Concepción, Chile.

Briefly, a negative selection kit (Miltenyi) was used to isolate
NK cells. 2 µg /ml of SARS-CoV-2 spike recombinant proteins
were coated on ELISA High Bind Microplate (Corning) at 4°C
overnight, and plates were blocked with 5% bovine serum albumin
(BSA) prior to addition of the serum dilutions (1/100) in PBS for 2
hours at 37°C. Unbound antibodies were removed by washing
wells 3X with PBS prior to the addition of NK cells. The NK cells
were added at 5 x 105 cells/well in the presence of brefeldin A
(BioLegend), monensin (BioLegend), and anti-CD107a
phycoerythrin (PE) (BioLegend) and incubated for 5 hours at
37°C. NK cells were surface stained with CD56 Alexa Fluor 647
(BioLegend), followed by intracellular staining with IFNg Alexa
Fluor 488 (BioLegend) and MIP1b Brilliant Violet 421
(BioLegend) using the Fix & Perm cell permeabilization kit
(Invitrogen) used to detect the production of cytokine/
chemokine. Cells were analyzed on a BD LSRFortessa X-20 flow
cytometer and data was analyzed using FlowJo software (37).

Statistics
Statistical and data analyses were performed using GraphPad
Prism 8.4.3, R 4.0.4, and R Studio 1.4.1103. Graphs were
generated in both Prism and R Studio, some of these were
adjusted for better visualization using the software Adobe
Illustrator (23.0.1).

Scatter plots in Figures 1–3 and box plots in Figure 3 were
visualized with ggplot2 (v3.3.3) in R Studio. Statistical differences
for boxplot in Figure 3B were calculated by Mann-Whitney test.
Statistical significance was defined as * p < 0.05.

The heatmap in Figure 1 was generated using the function
“geom_tile” in R studio to represent the enrichment profile for
each sample. Previously, all data were normalized to z-score
where each variable was mean-centered and then divided by the
standard deviation of the variable.

Heatmaps in Figures 2–5 were generated using the package
GGally (v 2.1.1) in R studio to represent the correlation between
all variables analyzed.

Correlation Analyses
We calculated the Spearman correlation and their p values using
the R package “correlation” (v 0.6.0) in R Studio. For Figures 2
and 3 this analysis was performed using Holm adjust with c.i.
0.95. In Figures 4, 5 this analysis was performed without
adjusting. The p values <0.05 were highlighted on the heatmap
with an asterisk and subsequently used to create a circos plot
with the R package “circlize” (v 0.4.12) in R Studio.

Principal Component Analyses
Unsupervised principal components analyses (PCA) were
performed in R Studio. Complete data were scaled to variance
units using FactoMineR (v2.4 R studio) and the PCA results were
February 2022 | Volume 13 | Article 796481
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extracted and visualized using factoextra (v1.0.7 R Studio). For
Figures 2, 3, the PCA was performed using all samples data and
graphed by days from the onset of symptoms (Early ≤ 43 days;
Late > 43 days) for Figure 2 or by the severity of symptoms (mild
or more severe) for Figure 3. In Figures 4, 5 the data was divided
into two subgroups by the days from the onset of symptoms
criteria and then the PCA was performed using severity of
symptoms for Figure 4 or sex for Figure 5.

Polar Plots
Polar plots represent the value of different variables normalized
to the Z-score of data. Then, to create the different polar plots in
Figures 2–5 the z-score mean of variables was calculated using
considering the samples from each subgroup.
Frontiers in Immunology | www.frontiersin.org 4
Study Approval
Human blood samples were collected after signed informed
consent that was obtained in accordance with protocols and
approval from the Institutional Review Board (Valdivia Health
Service). Written informed consent was received prior
to participation.
RESULTS

Cohort Description
A total of 83 blood samples were collected from 70 COVID-19
outpatients between 4 and 201 days following symptoms onset,
in addition, seven subjects provided longitudinal blood samples.
A

B

D

C

FIGURE 1 | The humoral response mounted against SARS-CoV-2 Spike is heterogeneously represented up to 6 months after the onset of symptoms in COVID-19
outpatients. (A) Heatmap showing the humoral immune response for each patient ordered from the earliest to the latest collected sample (83 COVID-19 samples
from 70 donors). The color scale represents the Z-scores calculated independently for each variable. (B) Spike and RBD-specific titers for IgM, IgA, and IgG
antibodies measured as AUC (Area Under Curve) are displayed according to their respective sampling day from the onset of symptoms (83 COVID-19 samples from
70 donors and 14 controls). Loess estimation curve for COVID-19 samples is displayed in blue with gray-area indicating standard-error. Dotted line indicates the
threshold of mean values from healthy donors plus two standard deviations. (C) Spike-specific IgG1, IgG2, IgG3, and IgG4 sub-class Abs measured as OD490
values are displayed according to their respective sampling day from the onset of symptoms (83 COVID-19 samples from 70 donors and the mean of controls).
Loess estimation curve for COVID-19 samples is displayed in blue with gray-area indicating standard-error. Dotted line indicates the threshold of mean values from
healthy donors. (D) Spike-specific functions of sera are displayed according to their respective sampling day from the onset of symptoms. Ab-dependent NK
degranulation, measured as the frequency of CD107a+ NK cells; Ab-dependent NK activation, measured as the frequency of IFNg+ and MIP1b+ NK cells; plus their
neutralizing ability, measured as NT50 values (83 COVID-19 samples from 70 donors and 14 controls). Loess estimation curve for COVID-19 samples is displayed in
blue with gray-area indicating standard-error. Dotted line indicates the threshold of mean values from healthy donors plus two standard deviations. Dotted line in
NT50 indicates the reciprocal of the initial sera dilution used in the assay.
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Specifically, from 70 subjects, 67 tested positive for SARS-
CoV-2 by nasopharyngeal PCR, two tested positive by serological
IgM/IgM-IgG test and one was diagnosed based on clinical
manifestations of COVID-19. All of these patients recovered
without the need for hospitalization. These individuals were
Frontiers in Immunology | www.frontiersin.org 5
recruited during the first wave of the COVID-19 pandemic
between July and December 2020 in southern Chile. The
cohort was composed by 29 female and 41 male donors (41.4
and 58.6% respectively), the complete set of 83 donations was
composed of 32 samples from women and 51 from men (38.6
A B

D E F

G H

C

FIGURE 2 | Ab-dependent NK effector functions are represented during the early phase and shown to be sustained six months after symptoms onset in COVID-19
outpatients. (A) A scatter plot showing linear regressions for Spike and RBD-specific titers for IgM, IgA, and IgG antibodies shown as AUC (Area Under Curve) values
against their respective Ab-dependent functions: Ab-dependent NK degranulation, shown as the frequency of CD107a+ NK cells; Ab-dependent NK activation,
shown as the frequency of IFNg+ and MIP1b+ NK cells; plus neutralizing ability, shown as NT50 values (83 samples from 70 donors). Colored or gray circles display
Spike or RBD-specific titers, respectively. (B) Correlation heatmap showing the Spearman’s r values between the complete set of variables analyzed for the entire
cohort of COVID-19 outpatients (83 samples from 70 donors). The scale of blue-to-red color indicates a negative-to-positive correlation. Asterisks are shown for
statistical significance of Holm-Bonferroni adjusted for multiple hypothesis testing (*p < 0.05). (C) Circos plot showing the significant Spearman correlations between
the pairs of variables displayed with asterisks in (B). The color of the links represents the magnitude of Spearman’s r values. (D) Biplot showing the principal
component analysis (PCA) depicting the “early” and “late” convalescence samples distinguished based on their sampling from the onset of symptoms (Early ≤ 43
days; Late > 43 days) (83 samples from 70 donors). (E) Contribution of variables for both dimensions (1 and 2) in the PCA analysis. (F) Correlation heatmap showing
the Spearman’s r values between the complete set of variables analyzed for early-sampled (42 samples from 42 donors) and late-sampled (41 samples from 31
donors) groups of outpatients. A scale of blue-to-red color indicates a negative-to-positive correlation. Asterisks are shown for statistical significance of Holm-
Bonferroni adjusted for multiple hypothesis testing (*p < 0.05). (G) Circos plot showing the significant Spearman correlations between the pairs of variables displayed
with an asterisk in (F) for early-sampled and late-sampled groups of outpatients. The color of the links represents the magnitude of Spearman’s r values. (H) Polar
plots showing the differential composition of humoral immune responses in different groups. Each bar represents the mean z-scores of variables for early-sampled
(42 samples from 42 donors) or late-sampled (41 samples from 31 donors) outpatients.
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and 61.4% respectively). While the mean age of donors across 83
samples was 34, mean age of females and males at their sampling
was 32 and 36 years old respectively (Table 1).

From the total of 83 samples, 36 were obtained from a
common outbreak affecting health workers from the Hospital
of Osorno City in Los Lagos Region and 47 samples were
obtained from convalescent blood donors at Hospital Base of
Valdivia city in Los Rıós region (43.4 and 56.6% respectively).

As detailed below, a broad range of symptoms was reported
(Table 1). A survey was carried out at the time of recruitment to
Frontiers in Immunology | www.frontiersin.org 6
assign a clinical severity score according to the symptoms when
acute disease was reported.

Convalescent COVID-19 Patients Exhibit
Diverse Humoral Immune Profiles
To broadly explore the humoral immune responses mounted by
COVID-19 outpatients against SARS-CoV-2 spike protein, we
profiled serum samples obtained from convalescent individuals
described above. We assessed 14 serological and cellular features
including Ab-dependent NK cell activation. Due to the
A B

D

E

F

G

C

FIGURE 3 | Ab-dependent NK effector functions are prominently enriched in subjects with mild symptoms compared to subjects with more severe symptoms
outpatients. (A) Box plots showing the neutralization function activity grouped according to different symptoms reported by patients at the time of diagnosis (70
donors). (B) Box plots showing differentially enriched functions and Ab titers according to the severity score of symptoms. Statistical differences were evaluated
between groups of outpatients classified as 0-2 (33 samples and 33 donors) or 3-5 scores (37 samples and 37 donors), using two-tailed unpaired nonparametric
Mann-Whitney test (*p value < 0.05). (C) Biplot showing the principal component analysis (PCA) depicting the “mild” (39 samples and 33 donors) and “more severe”
(44 samples and 37 donors) COVID-19 outpatients, distinguished based on their severity scores, between 0 and 2 (mild) or between 3 and 5 (more severe).
(D) Contribution of variables for both dimensions (1 and 2) in the PCA analysis. (E) Correlation heatmap showing the Spearman’s r values between the complete set
of variables analyzed for mild-scored (33 samples from 33 donors) and more severe-scored (37 samples from 37 donors) groups of outpatients. The scale of blue-
to-red color indicates a negative-to-positive correlation. Asterisks are shown for statistical significance of Holm-Bonferroni adjusted for multiple hypothesis testing
(*p < 0.05). (F) Circos plot showing significant Spearman correlations between the pairs of variables displayed with an asterisk in (E) for mild-scored and more
severe-scored groups of outpatients. The color of the links represents the magnitude of Spearman’s r values. (G) Polar plots showing the differential composition of
humoral immune responses at different groups. Each bar represents the mean z-scores of variables for mild-scored (33 samples from 33 donors) or more severe-
scored (37 samples from 37 donors) outpatients.
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polyclonal nature of a humoral response, multiple features may
simultaneously contribute to a differential control and clearance
of infection. Thus, we determined circulating titers and
functional features of SARS-CoV-2 specific Abs that recognize
spike protein and the spike-derived receptor binding domain
(RBD). Levels of Ab isotypes and IgG subclasses together with
their neutralizing function, as well as NK cell activation and
degranulation functions were measured. Heterogeneous
Frontiers in Immunology | www.frontiersin.org 7
responses were observed across individuals, as depicted by Z-
scores (Figure 1A).

Specifically, we observed that all convalescent patients had
seroconverted, presenting positive spike-specific IgG (spike-IgG)
titers with area under curve (AUC) values higher than the mean
response of healthy donors plus two standard deviations
(Supplementary Figures 1A, B). A predominant anti-spike IgG
response was observed across convalescent donors in comparison
A B

D

E F

G H

C

FIGURE 4 | Ab-dependent NK effector functions are prominently enriched in mild compared to more severe outpatients up to 6 months from the onset of
symptoms. (A, B) Biplot showing the principal component analysis (PCA) depicting the early-mild (21 samples from 21 donors) and early-more severe (21 samples
from 21 donors) sub-groups of COVID-19 outpatients (A); the late-mild (18 samples from 12 donors) and late-more severe (23 samples from 18 donors) sub-groups
of COVID-19 outpatients (B). The bar graph shows the contribution of variables for both dimensions (1 and 2) in the PCA analysis. (C, D) Correlation heatmap
showing the Spearman’s r values between the complete set of variables analyzed for early-mild (21 samples from 21 donors) and early-more severe (21 samples
from 21 donors) sub-groups of outpatients (C); or for late-mild (18 samples from 12 donors) and late-more severe (23 samples from 18 donors) sub-groups of
outpatients (D). The scale of blue-to-red color indicates a negative-to-positive correlation. (E, F) Circos plot showing significant Spearman correlations without
adjustment between the pairs of variables displayed in (C) or (D) for early-mild and early-more severe sub-groups of outpatients (E); or for late-mild and late-more
severe sub-groups of outpatients (F). The color of the links represents the magnitude of Spearman’s r values. (G, H) Polar plots showing the differential composition
of humoral immune responses at different sub-groups. Each bar represents the mean z-scores of variables for early-mild (21 samples from 21 donors) or more early-
more severe outpatients (21 samples from 21 donors) (G); and for late-mild (18 samples from 12 donors) or more late-more severe outpatients (23 samples from 18
donors) (H).
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to spike-IgM or IgA titers. In general, RBD-specific IgG, IgM, and
IgA titers were lower than the corresponding spike-specific titers
(Figure 1B and Supplementary Figures 1A, B).

Interestingly, filtering statistically significant p values with
Holm-Bonferroni algorithm, a stronger correlation between
RBD- and spike-specific Ig titers were found with IgA (r=0.86,
p<0.00001), as compared to IgM (r=0.8, p<0.00001) or IgG (r=0.75,
p<0.00001) Ab isotypes (Supplementary Figure 1C). This suggests
Frontiers in Immunology | www.frontiersin.org 8
that circulating IgA Abs against full spike protein, are mainly
directed to the RBD region. In addition, high titers of IgG, IgA, and
IgM against the spike protein were observed in samples obtained
during the first six weeks since symptoms onset. However, after six
weeks we observed a stabilization of IgG and IgA titers (plateau
curves), along with a rapid waning of IgM titers (Figure 1B).

Due to the potential for different IgG subclasses to
differentially activate Fc-gamma receptor (FcgR) mediated
A B

D

E F

G H

C

FIGURE 5 | Ab-dependent NK effector functions but not neutralization, are better sustained in females compared to males up to 6 months from the onset of
symptoms. (A, B) Biplot showing the principal component analysis (PCA) depicting the early-female (20 samples from 19 donors) and early-male (22 samples from
21 donors) sub-groups of COVID-19 outpatients (A); the late-female (12 samples from 10 donors) and late-male (29 samples from 21 donors) sub-groups of COVID-
19 outpatients (B). The bar graphs show the contribution of variables for both dimensions (1 and 2) in the PCA analyses. (C, D) Correlation heatmap shows the
Spearman’s r values between the complete set of variables analyzed for early-female (20 samples from 19 donors) and early-male severe (22 samples from 21
donors) sub-groups of outpatients (C); or for late-female (12 samples from 10 donors) and late-male (29 samples from 21 donors) sub-groups of outpatients (D). A
scale of blue-to-red color indicates a negative-to-positive correlation. (E, F) Circos plot shows significant Spearman correlations without adjustment between the
pairs of variables displayed in (C) or (D) for early-female and early-male sub-groups of outpatients (E); or for late-female and late-male sub-groups of outpatients (F).
The color of the links represents the magnitude of Spearman’s r values. (G, H) Polar plots showing the differential composition of humoral immune responses at
different sub-groups. Each bar represents the mean z-scores of variables for early-female (20 samples from 19 donors) or early-male outpatients (22 samples from
21 donors) (G); and late-female (12 samples from 10 donors) or late-male outpatients (29 samples from 21 donors) (H).
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functions, we profiled IgG subclasses. IgG1 and IgG3 were the
predominant spike-specific IgG sub-classes, while IgG2 and IgG4
were less abundant in the cohort (Figure 1C and Supplementary
Figures 1D, E). These findings are in line with previous reports
(55–57), and were also supported by the results of our
longitudinal samples (Supplementary Figure 1D). Although
detection of IgG1 and IgG3 presented similar kinetics over
time since the onset of symptoms, 80 out of 83 samples of the
cohort had detectable titers for spike-specific IgG1 (96.4%) and
75 samples presented seroconversion for spike-specific IgG3
(90.4%). Spike-specific IgG2 and IgG4 titers slightly rose across
the samples obtained during the first six weeks (39.8% and 67.5%
respectively). These results suggest an active IgG class-switching
in COVID-19 convalescent outpatients mainly towards IgG1.

Similar results were observed in the analysis of Ab
functionality, where it was possible to measure Ab neutralizing
titers and NK cell effector functions in most analyzed subjects
(Figure 1D). Specifically, we assessed three different Ab-
dependent NK cell-effector functions that are related to their
activation: CD107a upregulation and macrophage inflammatory
protein 1b (MIP1b) and interferon g (IFNg) secretion (58). We
observed that the majority of convalescent samples induced
MIP1b+ and CD107a+ NK cell activation, despite some
samples being collected up to 6 months from symptoms onset
(88% and 95.2% respectively). The same trend was found for
IFNg secretion, where most of the samples displayed positive
activity (78.3%) (Figure 1D). Similarly, neutralizing Ab titers
expressed as NT50, the reciprocal value of the respective serum
dilution able to inhibit 50% of infection, displayed a broad range
of neutralization activities across the cohort (mean NT50 =
1454.9), with samples presenting null NT50 values (2 out of
83, 2.41%), some over 1000 (34 out of 83, 40.96%) and others
over 5000 (5 out of 83, 6.02%) (Figure 1D and Supplementary
Figure 1F). Altogether, these data show that neutralization
activity and Ab-dependent NK cell functions are key features
Frontiers in Immunology | www.frontiersin.org 9
of the anti-SARS-CoV-2 spike-specific humoral response
developed in non-hospitalized COVID-19 convalescents, which
are sustained up to six months during the convalescence period
in COVID-19 outpatients.

Diverse Igs Correlate With Functional
Features Mounted Against SARS-CoV-2
Spike Protein
To assess the potential contribution of RBD and spike-specific
IgA, IgM, and IgG titers to Ab functionality from convalescents
sera, neutralizing and NK-dependent Ab functions from each
patient were compared to Ab subclass and subtype abundance in
each patient across the cohort (Figure 2A). Overall, we found
stronger correlations between spike- and RBD-specific IgM and
IgA titers with neutralizing activity compared to NK-effector
functions. A correlation chart (Figure 2B) illustrates the
relationship between Ab titers and the functional activities
mounted against spike protein. We observed strong
associations between spike-specific IgM and IgA titers (r=0.75
p<0.00001), between RBD-specific IgM and IgA (r=0.68
p<0.00001) and also between spike-specific IgG1 and IgG3
(r=0.71 p<0.00001). Each correlation with a p value lower than
0.05 is displayed in a circos plot analysis (Figure 2C).

NK cell activation markers CD107a upregulation, MIP1b,
and IFNg secretion correlated with RBD-specific IgM, RBD-
specific IgA titers, and spike-specific IgM titers (Figures 2A, B).

In addition, because spike-specific IgG titers were high, even
in those samples that were taken up to 6 months from symptoms
onset, their contribution to NK function should be considered
regardless of the low correlation value observed (Figures 2A, B),
especially when we consider that non-neutralizing function relies
on the avidity of the Ab response (59).

On the other hand, every spike-specific Igs subtype correlated
with NT50, as seen in Figures 2A, B, suggesting that the broad
composition of the humoral responses contributes at least
TABLE 1 | Demographics and clinical characteristics of the cohort.

First donation (n=70) All samples (n=83)

Sex (n, %) Female 29 (41.4%) 32 (38.6%)
Male 41 (58.6%) 51 (61.4%)

Age (Years, mean ± SD) All 34.26 ± 9.51 34.61 ± 9.68
Female 32.34 ± 9.94 31.75 ± 9.69
Male 35.61 ± 9.08 36.41 ± 9.33

Days from symptom onset to enrollment (mean, range) 48.99 (4-201) 58.47 (4-201)
Symptoms (n, %) Fever 28 (40%)

Chills 9 (12.9%)
Headache 48 (68.6%)
Anosmia 46 (65.7%)
Dysgeusia 39 (55.7%)
Cough 33 (47.1%)
Odynophagia 24 (34.3%)
Dyspnoea 16 (22.9%)
Myalgia 37 (52.9%)
Diarrhea 19 (27.1%)
None 2 (2.9%)
February 2022 | Volume
 13 | Article 796481

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fuentes-Villalobos et al. Mild COVID-19 NK Fc-Effector Function
partially to this function. Correlations between NT50 and spike-
specific IgG, IgM or IgA titers were found to be stronger than
those between NT50 and RBD-specific Ig titers (Figures 2A, B).
This observation suggests that IgG may mediate neutralization,
but not only by targeting epitopes within the RBD region.

A strong correlation between IgM titers and NT50 values
(r=0.72 p<0.00001 for spike-IgM and r=0.62 p<0.00001 for RBD-
IgM titers) (Figures 2A, B) highlights their critical contribution
to SARS-CoV-2 neutralization, especially during the first six
weeks from symptoms onset. Likewise, circulating spike- and
RBD-IgA titers strongly correlated with NT50 values (r=0.65
p<0.00001 and r=0.6 p<0.00001, respectively) (Figures 2A, B),
suggesting that RBD-specific IgM and IgA titers significantly
contribute to SARS-CoV-2 neutralization, at least during the
early convalescence of COVID-19 outpatients. In addition, the
high magnitude of IgG titers, together with their higher
seroprevalence and the correlation between spike-IgG and
NT50 (r=0.45 p<0.01) (Figures 2A, B) support its contribution
to neutralization, as compared to RBD-IgG titers. Furthermore,
IgG subclass titers were also compared to NT50 values, and only
IgG1 and IgG3 positively correlated with neutralization
(Figure 2B). Overall, these results point to a functional and
dynamic humoral response directed against spike protein in
outpatients who overcame COVID-19.

Time-Dependent Ab Functional Profiles
To further explore the dynamic nature of the humoral response
throughout convalescence in outpatients, we stratified
individuals according to the time of sampling (Early ≤ 43 days;
Late > 43 days since the onset of symptoms) and performed a
principal component analysis (PCA) including each variable
assayed (Figure 2D). The results of this analysis show that
both Dimensions (Dim1 and Dim2) capture 49.2% of the
variance of variables, and features such as Ab-dependent NK
cells functions, neutralization, spike-IgM, and RBD-IgM
contribute the most to the stratification of individuals
(Figure 2E). To further explore this concept, we generated a
correlation chart (Figure 2F) and conducted a circos plot
analyses (Figure 2G), plotting each variable by using polar plot
analysis for these two sub-groups (Figure 2H). Multiple and
strong correlations of neutralizing activity with spike- and RBD-
IgM, spike-IgG, and RBD-IgA present in early samples were not
found in late samples, suggesting that those remaining Ig titers
present during late convalescence do not sustain long term
neutralization. Polar plots confirmed the strong contribution of
neutralizing and NK cell activities in samples obtained during the
first 43 days after symptoms onset, and also, a profile of a long-
term sustained NK cells activity, with less neutralization activity
in late convalescence samples. These polar plots also confirmed
the preferential long-term prevalence of spike and RBD-specific
IgG titers.

Taken together, these results suggest that spike-specific Ab-
dependent NK degranulation and activation functions evolve
early in convalescent COVID-19 patients, potentially synergizing
with the highly heterogeneous and neutralizing activities present
during the months following infection. As neutralizing titers are
Frontiers in Immunology | www.frontiersin.org 10
known to be enriched in patients with severe COVID-19, it is
also highly likely that Ab-dependent NK effector functions play a
critical role in the mechanisms underlying the recovery of
COVID-19 patients and long-term functions of the humoral
response mounted against SARS-CoV-2.

Ab Mediated NK Function Correlates With
Mild Disease and May Influence Morbidity
in COVID-19 Outpatients
Next, we wanted to investigate whether characteristics of the
humoral response could be linked to symptoms presentation and
disease morbidity. To this end, we evaluated the clinical records
of patients that were registered since recruitment, which
included 10 different symptoms and a severity score compiled
during acute disease. While no single symptom was associated
with higher neutralizing or Ab-dependent NK effector functions
(Figure 3A and Supplementary Figure 2), some symptoms were
observed more frequently in the cohort (Table 1). Next, we
classified patients according to severity score which included the
number and magnitude of symptoms. Severity scores ranked
between 0 to 2 for mild disease and between 3 to 5 for more
severe conditions. Although convalescent patients with lower
and higher severity scores were indistinguishable from each
other in terms of neutralizing, spike- or RBD-specific IgG titers
(Figure 3B), differences between patient groups were evident
when analyzing their NK effector functions (Figure 3B). This
observation was further validated by a principal component
analysis (PCA), where NK functions segregated mild from
more severe COVID-19 outpatients (Figures 3C, D).

The correlation chart and the circos plot analysis showed that
the higher NK activity displayed in mild patients was correlated
with spike-IgM and also CD107a was correlated with spike-IgG.
In contrast in more severe outpatients, NK activity was not
correlated with any Ig titer (Figures 3E, F). In addition, polar
plot analysis revealed that in patients with milder conditions, NK
activity was overrepresented as compared to neutralization,
however, the opposite was observed in more severe
outpatients (Figure 3G).

To expand the analysis, we included the studied variables in
new PCAs, applied separately to samples obtained during early
or late convalescence (Figures 4A, B). These analyses allowed for
the examination of convalescent patients who suffered mild or
more severe symptoms due to a differential contribution of Ab-
dependent NK functions during early (Figure 4A) and late
convalescent periods (Figure 4B). Correlation analysis
(Figures 4C–F) showed that in contrast to early-mild subjects,
early-more severe patients have no significant correlations
between spike-IgM, spike-IgG, or RBD-IgG and Ab-dependent
NK effector functions, (Figures 4E, F). These analyses also show
that late-more severe patients have no significant correlations
between RBD-specific IgA and any Ab function measured
(Figures 4D, F).

Polar plot analyses (Figures 4G, H) showed the profiles of
mean values of the data analyzed and highlights the differences
observed in Ab-mediated NK cell function betweenmild andmore
severe patients in early and late convalescence. Interestingly,
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higher Ab-dependent NK effector functions were found in patients
with mild symptoms regardless of early and late convalescence.
Moreover, the most prominent difference between mild and more
severe subjects in early convalescence was the higher levels of Fc-
mediated NK activity in mild individuals (Figure 4G). In
comparing more severe individuals at early and late
convalescence, we observed relatively diminished levels of
neutralization activity, along with decreasing levels of IgA and
IgM targeting spike and RBD, during late convalescence.
Interestingly, spike and RBD IgG levels were maintained during
early and late convalescence (Figures 4G, H). These findings
suggest that viral neutralization at early convalescence in more
severe samples was primarily mediated by IgA and IgM.

In order to further dissect the mild-disease associated
characteristics of convalescent sera, we compared Ab features
based on their demographics. Sex is known as an important
variable in COVID-19 (60, 61), as men present more severe
symptoms. Through principal component analyses, we observed
a trend towards the differential contribution of Ab-dependent
NK effector functions in female and male samples obtained
during early convalescence, while less evident differential
contributions were observed in late convalescence samples
(Figures 5A, B).

To better examine the differential contribution of the
studied Ab titers and functions in men and women, multiple
correlations between variables were evaluated after segregating
samples as before, in the early and late convalescent periods
(Figures 5C, D). In general, as drawn in circos plots, the
evaluated Igs correlated less with the Ab-dependent NK
functions in women than in men (Figures 5E, F). While polar
plot analyses revealed that, besides presenting a profile of higher
neutralizing ability, men also presented higher spike and RBD-
specific IgM and IgG titers compared to women in early samples
(Figure 5G). However, a late convalescence profile similar to
late-more severe samples was observed in males (Figure 5H).
This common profile was drawn by lower NK-effector functions
and higher spike and RBD-specific IgG titers than those found in
late convalescent female samples. These results suggest that the
abundance of those spike- or RBD-IgG titers do not reflect their
Fc Receptor functionality, suggesting that less prevalent Ab-
dependent NK effector functions may influence COVID-
19 morbidity.
DISCUSSION

As COVID-19 pandemic continues, more information regarding
the human immune response against SARS-CoV-2 has been
unveiled. The study of the responses mounted by convalescent
individuals against the virus is critical to better characterize
effective naturally evolved strategies to overcome disease. The
relevance of this new information is highlighted if the limited
scope of prophylactic vaccination efforts in developing countries
is taken in count (62). For instance, regarding the extent of long-
term responses, even without segregation of individuals due to
the severity of their COVID-19 symptoms, it has been shown
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that the majority of SARS-CoV-2 infected individuals develop
serum Abs that last for several months (63–65), even beyond a
year after infection (66, 67). Our results regarding outpatients
support those previous findings and are consistent with the
waning of IgM and stabilization of IgA and IgG titers of still
positive neutralizing titers found after several months post-
symptoms onset (64, 68–70). Interestingly, Marcotte H et al.
have found a similar seroprevalence of IgG titers over time, even
up to 15 months after infection (67), which are in the same trend
of results obtained by our study.

A typical antiviral response induces neutralizing Abs that can
inhibit infection. This humoral function has been extensively
evaluated as a correlate for protection against SARS-CoV-2
infection (32–34, 64, 71). However, once the virus has become
widespread in the host, additional Ab functions may be required
for efficient viral clearance. To date, Fc-effector functions have
not been extensively evaluated in the humoral response mounted
against SARS-CoV-2. Consistent with the potential Fc-
dependent effector functions contributing to SARS CoV-2
humoral responses, we have found persisting spike-specific Ab-
dependent NK effector functions detectable up to six months
from the onset of symptoms in COVID-19 outpatients. In line
with these findings, several studies have shown an enrichment of
Fc receptor binding and Fc-effector functions in acute COVID-
19 (18, 27, 72). Furthermore, Zohar et al. described an
enrichment of Fc-effector functions in COVID-19 survivors as
compared to deceased individuals (19). These studies highlight
the relevance of Ab-dependent effector functions in viral
clearance and pose the question of how these functions arise
during acute SARS-CoV-2 infection.

Although this is not a longitudinal study, our findings support
an important role for Fc-mediated NK activities in controlling
SARS-CoV-2 infection. We show that Ab-dependent NK-
effector functions were enriched in samples from outpatients
who suffered milder symptoms compared to those presenting
with more severe disease, with Ab-dependent NK functions more
highly sustained for at least six months after acute infection, as
compared to neutralizing activity over the same period. In line
with our results, LeeWS et al. showed that Ab-dependent cellular
cytotoxicity (ADCC) and Ab-dependent phagocytosis (ADCP)
Fc-effector functions were preserved up to five months from
symptoms onset (73). Also, supporting the relevance of NK cell
effector functions at effective immune responses against this
infection, Notarbartolo S et al. showed that NK cell population
is significantly expanded in individuals with mild disease (17),
plausibly synergizing with the Fc-dependent characteristics of
Abs. Additionally, NK cell-based therapy strategies, have now
received attention to hopefully control the harmful cytokine
storm induced by SARS-CoV-2 activation of infected
macrophages and CD4+ T cells in severe COVID-19 patients
(74–77).

The role of Abs in protection against reinfection is another
scenario. Previous studies had determined the association
between Ab development and a decreased risk of reinfection
with SARS-CoV-2, but the information is still limited
(65, 78, 79). Furthermore, the low rate of reinfection reported
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so far across COVID-19 convalescent individuals (80, 81), suggests
that other Ab functions, beyond neutralization, such as sustained
Ab-dependent NK effector functions could contribute to long-
term protection. In support of this, Fc-effector functions have been
correlated with prophylactic protection against COVID-19
(47, 48) and are required for optimal protection during post-
exposure therapy conferred by neutralizing human monoclonal
Abs and convalescent plasma against SARS-CoV-2 (82, 83). Taken
together, these results suggest that Fc-effector functions not only
contribute to mounting effective immune responses against acute
SARS-CoV-2 infection but may also contribute to protection
against reinfection. Interestingly, a recent comparative
evolutionary analysis of SARS-CoV-2 and close relatives
suggests that reinfection with SARS-CoV-2 is likely to occur
after a median of 16 months (84). Thus there is an urgent need
to focus research beyond neutralization to further help our
temporally limited understanding of the underlying mechanisms
of sustained protection.

Despite the relatively small cohort size, different profiles in
sera composition and function were found between subtly
different sub-groups of individuals, thus demonstrating the
highly diverse range of responses elicited against SARS-CoV-2
infection, even in outpatients. Although clear differences in
functional features were observed between mild and more
severe cases, the similar Ig profile suggests that a differential
functionality in titers, rather than their abundance, is critical for
responses in individuals with phenotypically mild COVID-19. In
support of this, a similar profile of reduced: specific NK-effector
functions, neutralization, and IgM & IgA titers were found in
male individuals with more severe symptoms during late
convalescence. Although further studies are needed to
substantiate this, the data suggest that in spike- and RBD-
specific IgG responses, disrupted polyfunctionality of spike-
specific Ig titers is detrimental for COVID-19 resolution, which
is strongly supported by a female sex-dependent enrichment of
Fc effector functions.

Strict Holm-Bonferroni-filtered correlations were found
between Ab-dependent NK effector and neutralization
functions preferentially in mild cases thus supporting the
relevance of a broad and polyfunctional response in mild
COVID-19 cases. Similar data were obtained for correlations
between those Fc-effector functions and RBD-IgM, spike-IgM, or
spike-IgG titers.

Notably, regarding the persistent occurrence of SARS-CoV-2
variants of concern (VOC), recent work from Bartsch Y et al.
shows that while a loss of neutralizing activity against Omicron
VOC occurs in vaccinated individuals, it is accompanied by
persisting Spike-specific antibody binding to Fc-receptors (85),
further supporting the relevance of studying the contribution of
non-neutralizing Ab function to protection across vaccinated
and non-vaccinated individuals.

In summary, our data suggest that a polyfunctional response
against spike which involves Ab-dependent-NK activity is best
associated with a mild symptoms course and associated with
disease resolution. These data also support the concept that
Frontiers in Immunology | www.frontiersin.org 12
outpatients, the most representative COVID-19 convalescent
population, develop rapid and long-lasting spike-specific Ab-
dependent NK effector functions. Whether this NK function
signature contributes to immunity against future reinfection
remains to be elucidated; however, if it does, it would represent
a complement for neutralizing activity reported for COVID-19
convalescents and serve also as a good immune correlate to study
protection after infection and prophylactic approaches.
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Canales, Patricio Suazo, Pamela Ángel, Romina Inostroza,
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Krammer, Calvo, Barria and COVID-19 South Chile Group. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
February 2022 | Volume 13 | Article 796481

https://doi.org/10.1101/2021.08.09.21261290
https://doi.org/10.1101/2021.08.09.21261290
https://doi.org/10.1128/mSphere.00622-20
https://doi.org/10.1016/j.xcrm.2021.100296
https://doi.org/10.1016/j.humimm.2021.09.004
https://doi.org/10.1016/j.humimm.2021.09.004
https://doi.org/10.3389/fimmu.2012.00403
https://doi.org/10.1128/JVI.03002-13
https://doi.org/10.1002/1521-4141(2001010)31:10%3C3048::Aid-immu3048%3E3.0.Co;2-1
https://doi.org/10.1002/1521-4141(2001010)31:10%3C3048::Aid-immu3048%3E3.0.Co;2-1
https://doi.org/10.1128/JCM.02107-20
https://doi.org/10.15585/mmwr.mm6943a4
https://doi.org/10.1093/cid/ciab454
https://doi.org/10.1016/s1473-3099(21)00676-9
https://doi.org/10.1016/s1473-3099(21)00676-9
https://doi.org/10.1016/j.cell.2021.02.026
https://doi.org/10.1038/s41467-021-27201-y
https://doi.org/10.1016/s2666-5247(21)00219-6
https://doi.org/10.1101/2021.12.24.21268378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Sustained Antibody-Dependent NK Cell Functions in Mild COVID-19 Outpatients During Convalescence
	Introduction
	Materials and Methods
	Sample Cohort
	SARS-CoV-2 Spike and RBD Recombinant Protein Expression and Purification
	Spike- and RBD- Enzyme-Linked Immunosorbent Assays (ELISAs)
	Pseudovirus Neutralization Assay
	Antibody-Mediated Degranulation and Activation of Human NK Cells
	Statistics
	Correlation Analyses
	Principal Component Analyses
	Polar Plots
	Study Approval

	Results
	Cohort Description
	Convalescent COVID-19 Patients Exhibit Diverse Humoral Immune Profiles
	Diverse Igs Correlate With Functional Features Mounted Against SARS-CoV-2 Spike Protein
	Time-Dependent Ab Functional Profiles
	Ab Mediated NK Function Correlates With Mild Disease and May Influence Morbidity in COVID-19 Outpatients

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


